Publications

2024

Bello, Leon et al. “Systematic Time-Coarse Graining for Driven Quantum Systems.” (2024): n. pag.

Many recent advancements in quantum computing leverage strong drives on nonlinear systems for state preparation, signal amplification, or gate operation. However, the interplay within such strongly driven system introduces multi-scale dynamics that affects the long-time behavior of the system in non-trivial ways that are very difficult to model. Therefore, the analysis of these systems often relies on effective Hamiltonian models that introduce additional nonlinear processes which approximate the long-time dynamics so that highly oscillatory terms may be ignored. However, the removal of such high frequency transitions can only be performed rigorously within a systematic framework of time-coarse graining, which is a fundamentally irreversible operation. This implies that standard approaches with unitary effective models cannot accurately capture the long-time behavior of strongly driven nonlinear quantum systems in general. We introduce a systematic perturbation theory for obtaining the complete non-unitary effective model of the time-coarse grained (TCG) dynamics of a driven quantum system to any order in the coupling strengths. We derive a closed-form analytical formula for both unitary and non-unitary contributions, in the form of an effective Hamiltonian and non-unitary (pseudo-)dissipators. Remarkably, even though the effective theory presumes unitary time evolution at the microscopic level, the time-coarse grained dynamics is found to follow a nonunitary time evolution in general. This occurs even when there is no open heat reservoir for the system to become entangled with or dissipate into. We demonstrate the effectiveness of the new method using several typical models of driven nonlinear systems in superconducting circuits, and show that it generalizes and improves on existing methods by providing more accurate results and explaining phenomena that have not been accounted for.

Model order reduction encompasses mathematical techniques aimed at reducing the complexity of mathematical models in simulations while retaining the essential characteristics and behaviors of the original model. This is particularly useful in the context of large-scale dynamical systems, which can be computationally expensive to analyze and simulate. Here, we present a model order reduction technique to reduce the time complexity of open quantum systems, grounded in the principle of measurement-adapted coarse-graining. This method, governed by a coarse-graining time scale τ and the spectral band center ω0, organizes corrections to the lowestorder model which aligns with the RWA Hamiltonian in certain limits, and rigorously justifies the resulting effective quantum master equation (EQME). The focus on calculating to a high degree of accuracy only what can be resolved by the measurement introduces a principled regularization procedure to address singularities and generates low-stiffness models suitable for efficient long-time integration. Furthermore, the availability of the analytical form of the EQME parameters significantly boosts the interpretive capabilities of the method. As a demonstration, we derive the fourth-order EQME for a challenging problem related to the dynamics of a superconducting qubit under high-power dispersive readout in the presence of a continuum of dissipative waveguide modes. This derivation shows that the lowest-order terms align with previous results, while higher-order corrections suggest new phenomena.

Khan, Saeed A. et al. “A Neural Processing Approach to Quantum State Discrimination.” arXiv:2409.03748 (2024): n. pag.

Although linear quantum amplification has proven essential to the processing of weak quantum signals, extracting higher-order quantum features such as correlations in principle demands nonlinear operations. However, nonlinear processing of quantum signals is often associated with non-idealities and excess noise, and absent a general framework to harness nonlinearity, such regimes are typically avoided. Here we present a framework to uncover general quantum signal processing principles of a broad class of bosonic quantum nonlinear processors (QNPs), inspired by a remarkably analogous paradigm in nature: the processing of environmental stimuli by nonlinear, noisy neural ensembles, to enable perception. Using a quantum-coherent description of a QNP monitoring a quantum signal source, we show that quantum nonlinearity can be harnessed to calculate higher-order features of an incident quantum signal, concentrating them into linearly-measurable observables, a transduction not possible using linear amplifiers. Secondly, QNPs provide coherent nonlinear control over quantum fluctuations including their own added noise, enabling noise suppression in an observable without suppressing transduced information, a paradigm that bears striking similarities to optimal neural codings that allow perception even under highly stochastic neural dynamics. Unlike the neural case, we show that QNP-engineered noise distributions can exhibit non-classical correlations, providing a new means to harness resources such as entanglement. Finally, we show that even simple QNPs in realistic measurement chains can provide enhancements of signal-to-noise ratio for practical tasks such as quantum state discrimination. Our work provides pathways to utilize nonlinear quantum systems as general computation devices, and enables a new paradigm for nonlinear quantum information processing.

Hu, Fangjun et al. “Overcoming the Coherence Time Barrier in Quantum Machine Learning on Temporal Data.” Nature Communications 15 (2024): 7491.

The practical implementation of many quantum algorithms known today is limited by the coherence time of the executing quantum hardware and quantum sampling noise. Here we present a machine learning algorithm, NISQRC, for qubit-based quantum systems that enables inference on temporal data over durations unconstrained by decoherence. NISQRC leverages mid-circuit measurements and deterministic reset operations to reduce circuit executions, while still maintaining an appropriate length persistent temporal memory in the quantum system, confirmed through the proposed Volterra Series analysis. This enables NISQRC to overcome not only limitations imposed by finite coherence, but also information scrambling in monitored circuits and sampling noise, problems that persist even in hypothetical fault-tolerant quantum computers that have yet to be realized. To validate our approach, we consider the channel equalization task to recover test signal symbols that are subject to a distorting channel. Through simulations and experiments on a 7-qubit quantum processor we demonstrate that NISQRC can recover arbitrarily long test signals, not limited by coherence time.

Khan, Saeed et al. “Practical Trainable Temporal Post-Processor for Multi-State Quantum Measurement.” PRX Quantum 5.2 (2024): 020364.

We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on the essential task of qubit state readout, which has historically relied on temporal processing via matched filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can reliably outperform standard filtering approaches under complex readout conditions, such as high-power readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data, such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier. Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most general readout noise conditions, all while preserving a training complexity that is essentially negligible in comparison with that of training neural networks for processing temporal quantum measurement data. The TPP can be autonomously and reliably trained on measurement data and requires only linear operations, making it ideal for field-programmable gate array implementations in circuit QED for real-time processing of measurement data from general quantum systems.

2023

Pham, Dzung N, Richard D. Li, and Hakan E. Türeci. “Spectral Theory for Non-Linear Superconducting Microwave Systems: Extracting Relaxation Rates and Mode Hybridization.” arXiv:2309.03435 (2023): n. pag.

The accurate modeling of mode hybridization and calculation of radiative relaxation rates have been crucial to the design and optimization of superconducting quantum devices. In this work, we introduce a spectral theory for the electrohydrodynamics of superconductors that enables the extraction of the relaxation rates of excitations in a general three-dimensional distribution of superconducting bodies. Our approach addresses the long-standing problem of formulating a modal description of open systems that is both efficient and allows for second quantization of the radiative hybridized fields. This is achieved through the implementation of finite but transparent boundaries through which radiation can propagate into and out of the computational domain. The resulting spectral problem is defined within a coarse-grained formulation of the electrohydrodynamical equations that is suitable for the analysis of the non-equilibrium dynamics of multiscale superconducting quantum systems.

The expressive capacity of physical systems employed for learning is limited by the unavoidable presence of noise in their extracted outputs. Though present in physical systems across both the classical and quantum regimes, the precise impact of noise on learning remains poorly understood. Focusing on supervised learning, we present a mathematical framework for evaluating the resolvable expressive capacity (REC) of general physical systems under finite sampling noise and provide a methodology for extracting its extrema, the eigentasks. Eigentasks are a native set of functions that a given physical system can approximate with minimal error. We show that the REC of a quantum system is limited by the fundamental theory of quantum measurement and obtain a tight upper bound for the REC of any finitely sampled physical system. We then provide empirical evidence that extracting low-noise eigentasks can lead to improved performance for machine learning tasks such as classification, displaying robustness to overfitting. We present analyses suggesting that correlations in the measured quantum system enhance learning capacity by reducing noise in eigentasks. The applicability of these results in practice is demonstrated with experiments on superconducting quantum processors. Our findings have broad implications for quantum machine learning and sensing applications.

Coherent multimode instabilities are responsible for several phenomena of recent interest in semiconductor lasers, such as the generation of frequency combs and ultrashort pulses. These techonologies have proven disruptive in optical telecommunications and spectroscopy applications. While the standard Maxwell-Bloch equations encompass such complex lasing phenomena, their integration is computationally expensive and offers limited analytical insight. In this paper, we demonstrate an efficient spectral approach to the simulation of multimode instabilities via a quantitative analysis of the instability of single-frequency lasing in ring lasers, referred to as the Lorenz-Haken (LH) instability or the Risken-Nummedal-Graham-Haken (RNGH) instability in distinct parameter regimes . Our approach, referred to as CFTD, uses generally non-Hermitian Constant Flux modes to obtain projected Time Domain equations. CFTD provides excellent agreement with finite-difference integration of the Maxwell-Bloch equations across a wide range of parameters in regimes of non-stationary inversion, including frequency comb formation and spatiotemporal chaos. We also develop a modal linear stability analysis using CFTD to efficiently predict multimode instabilities in lasers. The combination of numerical accuracy, speedup, and semi-analytic insight across a variety of dynamical regimes make the CFTD approach ideal to analyze multimode instabilities in lasers, especially in more complex geometries or coupled laser arrays.

Maldonado, Thomas et al. “Negative Electrohydrostatic Pressure Between Superconducting Bodies.” arXiv:2307.04903 (2023): n. pag.

Despite being largely limited to bulk phenomena, well-known theoretical models of superconductivity like the Bardeen–Cooper–Schrieffer and Ginzburg–Landau theories have played a key role in the development of superconducting quantum devices. In this letter, we present a hydrodynamic non-relativistic scalar electrodynamic theory capable of describing systems comprising superconducting materials of arbitrary shape and apply it to predict the existence of a negative (attractive) pressure between planar superconducting bodies. For conventional superconductors with London penetration depth λL ≈ 100 nm, the pressure reaches tens of N/mm2 at angstrom separations.

Hu, Fangjun et al. “Fundamental Limits to Expressive Capacity of Finitely Sampled Qubit-Based Systems.” arXiv:2301.00042 (2023): n. pag.

The expressive capacity for learning with quantum systems is fundamentally limited by the quantum sampling noise incurred during measurement. While studies suggest that noise limits the resolvable capacity of quantum systems, its precise impact on learning remains an open question. We develop a framework for quantifying the expressive capacity of qubit-based systems from finite numbers of projective measurements, and calculate a tight bound on the expressive capacity and the corresponding accuracy limit that we compare to experiments on superconducting quantum processors. We uncover the native function set a finitely-sampled quantum system can approximate, called eigentasks. We then demonstrate how low-noise eigentasks improve performance for tasks such as classification in a way that is robust to noise and overfitting. We also present experimental and numerical analyses suggesting that entanglement enhances learning capacity by reducing noise in eigentasks. Our results are broadly relevant to quantum machine learning and sensing applications

Pham, Dzung N et al. “Flux-Based Three-Dimensional Electrodynamic Modeling Approach to Superconducting Circuits and Materials.” Phys. Rev. A 107, 053704 (2023): n. pag.

Modeling the behavior of superconducting electronic circuits containing Josephson junctions is crucial for the design of superconducting information processors and devices. In this paper, we introduce DEC-QED, a computational approach for modeling the electrodynamics of superconducting electronic circuits containing Josephson junctions in arbitrary three-dimensional electromagnetic environments. DEC-QED captures the nonlinear response and induced currents in BCS superconductors and accurately captures phenomena such as the Meissner effect, flux quantization, and Josephson effects. Using a spatial coarse-graining formulation based on discrete exterior calculus (DEC), DEC-QED can accurately simulate transient and long-time dynamics in superconductors. The expression of the entire electrodynamic problem in terms of the gauge-invariant flux field and charges makes the resulting classical field theory suitable for second quantization.

2022

Sinha, Kanupriya et al. “Radiative Properties of an Artificial Atom Coupled to a Josephson Junction Array.” Phys. Rev. A 106, 033714 (2022): n. pag.

We study the radiative properties -- the Lamb shift, Purcell decay rate and the spontaneous emission dynamics -- of an artificial atom coupled to a long, multimode cavity formed by an array of Josephson junctions. Introducing a tunable coupling element between the atom and the array, we demonstrate that such a system can exhibit a crossover from a perturbative to non-perturbative regime of light-matter interaction as one strengthens the coupling between the atom and the Josephson junction array (JJA). As a consequence, the concept of spontaneous emission as the occupation of the local atomic site being governed by a single complex-valued exponent breaks down. This breakdown, we show, can be interpreted in terms of formation of hybrid atom-resonator modes with radiative losses that are non-trivially related to the effective coupling between individual modes. We develop a singular function expansion approach for the description of the open quantum system dynamics in such a multimode non-perturbative regime. This modal framework generalizes the normal mode description of quantum fields in a finite volume, incorporating exact radiative losses and incident quantum noise at the delimiting surface. Our results are pertinent to recent experiments with Josephson atoms coupled to high impedance Josephson junction arrays.

2021

Khan, Saeed Ahmed et al. “Physical Reservoir Computing Using Finitely-Sampled Quantum Systems.” arXiv: 2110.13849 (2021): n. pag.
The paradigm of reservoir computing exploits the nonlinear dynamics of a physical reservoir to perform complex time-series processing tasks such as speech recognition and forecasting.  Unlike other machine-learning approaches, reservoir computing relaxes the need for optimization of intra-network parameters, and is thus particularly attractive for near-term hardware-efficient quantum implementations. However, the complete description of practical quantum reservoir computers requires accounting for their placement in a quantum measurement chain, and its conditional evolution under measurement. Consequently, training and inference has to be performed using finite samples from obtained measurement records. Here we describe a framework for reservoir computing with nonlinear quantum reservoirs under continuous heterodyne measurement. Using an efficient truncated-cumulants representation of the complete measurement chain enables us to sample stochastic measurement trajectories from reservoirs of several coupled nonlinear bosonic modes under strong excitation. This description also offers a mathematical basis to directly compare the computational capabilities of a given physical reservoir operated across classical and quantum regimes. Applying this framework to the classification of quantum states of systems that are part of the same measurement chain as the quantum reservoir computer, we assess and explain measurement-contingent advantages and disadvantages of reservoir processing in quantum regimes. Our results also identify the vicinity of bifurcation points as presenting optimal nonlinear processing regimes of an oscillator-based quantum reservoir. The considered models are directly realizable in modern circuit QED experiments, while the framework is applicable to more general quantum nonlinear reservoirs.
pdf
Angelatos, Gerasimos, Saeed Khan, and Hakan E. Türeci. “Reservoir Computing Approach to Quantum State Measurement.” Physical Review X 11.4 (2021): 041062.
Efficient quantum state measurement is important for maximizing the extracted information from a quantum system. For multi-qubit quantum processors in particular, the development of a scalable architecture for rapid and high-fidelity readout remains a critical unresolved problem. Here we propose reservoir computing as a resource-efficient solution to quantum state readout of superconducting multi-qubit systems. We consider a small network of Kerr oscillators realized by Josephson parametric oscillators, which can be implemented with minimal device overhead and in the same platform as the measured quantum system. We theoretically analyze the operation of this Kerr network as a reservoir computer to classify stochastic time-dependent signals subject to quantum statistical features. We apply this reservoir computer to the task of multinomial classification of measurement trajectories from joint multi-qubit readout. For a two-qubit dispersive measurement under realistic conditions we demonstrate a classification fidelity reliably exceeding that of an optimal linear filter, while simultaneously requiring far less calibration data. These results are obtained for reservoirs of two to five nodes trained with as few as 10 samples per state. We understand this remarkable performance through an analysis of the network dynamics and develop an intuitive picture of reservoir processing generally. This reservoir-classifier avoids computationally intensive training common to other deep learning frameworks and can be implemented as an integrated cryogenic superconducting device for low-latency processing of quantum signals on the computational edge.

2020

Lu, Pinlei et al. “Nearly Quantum-Limited Josephson-Junction Frequency Comb Synthesizer.” Phys. Rev. Applied 15 (2020): 044031.
While coherently driven Kerr microcavities have rapidly matured as a platform for frequency-comb formation, such microresonators generally possess weak Kerr coefficients; consequently, triggering comb generation requires millions of photons to be circulating inside the cavity. This suppresses the role of quantum fluctuations in the dynamics of the comb. In this paper, we realize a minimal version of coherently driven Kerr-mediated microwave-frequency combs in the circuit quantum electrodynamics (cQED) architecture, where the fluctuations of the quantum vacuum are the primary limitation on comb coherence. We achieve a comb phase coherence of up to 35 μs, approaching the theoretical device quantum limit of 55 μs and vastly longer than the inherent lifetimes of the modes, of 13 ns. The ability within cQED to engineer stronger nonlinearities than optical microresonators, together with operation at cryogenic temperatures, and the excellent agreement of comb dynamics with quantum theory indicates a promising platform for the study of complex dynamics of quantum nonlinear systems.
pdf
Petrescu, Alexandru, Moein Malekakhlagh, and Hakan E. Türeci. “Lifetime Renormalization of Driven Weakly Anharmonic Superconducting Qubits. II. The Readout Problem.” Physical Review B 101.13 (2020): 134510.
Recent experiments in superconducting qubit systems have shown an unexpectedly strong dependence of the qubit relaxation rate on the readout drive power. This phenomenon limits the maximum measurement strength and thus the achievable readout speed and fidelity. We address this problem here and provide a plausible mechanism for drive-power dependence of relaxation rates. To this end we introduce a two-parameter perturbative expansion in qubit anharmonicity and the drive amplitude through a unitary transformation technique introduced in Part I. This approach naturally reveals number-nonconserving terms in the Josephson potential as a fundamental mechanism through which applied microwave drives can activate additional relaxation mechanisms. We present our results in terms of an effective master equation with renormalized state- and drive-dependent transition frequency and relaxation rates. Comparison of numerical results from this effective master equation to those obtained from a Lindblad master equation which only includes number-conserving terms (i.e., Kerr interactions) shows that number-nonconserving terms can lead to significant drive-power dependence of the relaxation rates. The systematic expansion technique introduced here is of general applicability to obtaining effective master equations for driven-dissipative quantum systems that contain weakly nonlinear degrees of freedom
pdf
Malekakhlagh, Moein, Alexandru Petrescu, and Hakan E. Türeci. “Lifetime Renormalization of Weakly Anharmonic Superconducting Qubits. I. Role of Number Nonconserving Terms.” Physical Review B 101.13 (2020): 134509.
The dynamics of a weakly anharmonic superconducting qubit in a complex electromagnetic environment is generally well described by an effective multimode Kerr Hamiltonian at sufficiently weak excitation. This Hamiltonian can be embedded in a master equation with losses determined by the details of the electromagnetic environment. Recent experiments indicate, however, that when a superconducting circuit is driven with microwave signals populating the system with sufficiently high excitations, the observed relaxation rates appear to be substantially different from expectations based on the electromagnetic environment of the qubit alone. This issue is a limiting factor in the optimization of superconducting qubit readout schemes. We claim here that an effective master equation with drive-power-dependent parameters is an efficient approach to model such quantum dynamics. In this sequence of papers, we derive effective master equations, whose parameters exhibit nonlinear dependence on the excitation level of the circuit as well as the electromagnetic environment of the qubit. We show that the number nonconserving terms in the qubit nonlinearity generally lead to a renormalization of dissipative parameters of the effective master equation, while the number conserving terms give rise to a renormalization of the system frequencies. Here, in Paper I, we consider the excitation-relaxation dynamics of a transmon qubit that is prepared in a certain initial state, but is not driven otherwise. A unitary transformation technique is introduced to study the renormalization of (i) qubit relaxation due to coupling to a generic bath and (ii) Purcell decay. Analytic expressions are provided for the dependence of the nonlinear dissipative terms on the details of the electromagnetic environment of the qubit. The perturbation technique based on unitary transformations developed here is generalized to the continuously driven case in Paper II [A. Petrescu et al., Phys. Rev. B 101, 134510 (2020)].
pdf

2018

Khan, Saeed, and Hakan E. Türeci. “Frequency Combs in a Lumped-Element Josephson-Junction Circuit.” Physical Review Letters 120.15 (2018): 153601.
We investigate the dynamics of a microwave-driven Josephson junction capacitively coupled to a lumped element LC oscillator. In the regime of driving where the Josephson junction can be approximated as a Kerr oscillator, this minimal nonlinear system has been previously shown to exhibit a bistability in phase and amplitude. In the present study, we characterize the full phase diagram and show that besides a parameter regime exhibiting bistability, there is also a regime of self-oscillations characterized by a frequency comb in its spectrum. We discuss the mechanism of comb generation which appears to be different from those studied in microcavity frequency combs and mode-locked lasers. We then address the fate of the comb-like spectrum in the regime of strong quantum fluctuations, reached when nonlinearity becomes the dominant scale with respect to dissipation. We find that the nonlinearity responsible for the emergence of the frequency combs also leads to its dephasing, leading to broadening and ultimate disappearance of sharp spectral peaks. Our study explores the fundamental question of the impact of quantum fluctuations for quantum systems which do not possess a stable fixed point in the classical limit.
pdf
Potočnik, Anton et al. “Studying Light-Harvesting Models With Superconducting Circuits.” Nature Communications 9.1 (2018): n. pag.
The process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a technique for studying photosynthetic models based on superconducting quantum circuits, which complements existing experimental, theoretical, and computational approaches. We demonstrate a high degree of freedom in design and experimental control of our approach based on a simplified three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 105. We show that the excitation transport between quantum-coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.
pdf
Türeci, Hakan E. “A Multimode Dial for Interatomic Interactions.” Physics 11 (2018): n. pag.
pdf
Sun, Yongbao et al. “Stable Switching Among High-Order Modes in Polariton Condensates.” Physical Review B 97.4 (2018): n. pag.
We report multistate optical switching among high-order bouncing-ball modes (“ripples”) and whispering-gallery modes (“petals”) of exciton-polariton condensates in a laser-generated annular trap. By tailoring the diameter and power of the annular trap, the polariton condensate can be switched among different trapped modes, accompanied by redistribution of spatial densities and superlinear increase in the emission intensities, implying that polariton condensates in this geometry could be exploited for an all-optical multistate switch. A model based on non-Hermitian modes of the generalized Gross-Pitaevskii equation reveals that this mode switching arises from competition between pump-induced gain and in-plane polariton loss. The parameters for reproducible switching among trapped modes have been measured experimentally, giving us a phase diagram for mode switching. Taken together, the experimental result and theoretical modeling advance our fundamental understanding of the spontaneous emergence of coherence and move us toward its practical exploitation.
pdf
Metelmann, A., and H. E. Türeci. “Nonreciprocal Signal Routing in an Active Quantum Network.” Physical Review A 97.4 (2018): 043833.
As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain parametrically driven elements selectively embedded in the circuit, offer a viable solution. Here, we present a general strategy for routing nonreciprocally quantum signals between two sites of a given lattice of oscillators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of overdamped oscillators linking the nodes of the main lattice. Solutions for spatially selective driving of the lattice elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to nonreciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the dynamical matrix of the network. We also demonstrate that signal and noise transmission characteristics can be separately optimized.
pdf
Petrescu, Alexandru et al. “Fluxon-Based Quantum Simulation in Circuit QED.” Physical Review B 98.17 (2018): 174505.
Long-lived fluxon excitations can be trapped inside a superinductor ring, which is divided into an array of loops by a periodic sequence of Josephson junctions in the quantum regime, thereby allowing fluxons to tunnel between neighboring sites. By tuning the Josephson couplings and, implicitly, the fluxon tunneling probability amplitudes, a wide class of one-dimensional tight-binding lattice models may be implemented and populated with a stable number of fluxons. We illustrate the use of this quantum simulation platform by discussing the Su-Schrieffer-Heeger model in the one-fluxon subspace, which hosts a symmetry-protected topological phase with fractionally charged bound states at the edges. This pair of localized edge states could be used to implement a superconducting qubit increasingly decoupled from decoherence mechanisms.
pdf

2017

Biondi, Matteo et al. “Spatial Correlations in Driven-Dissipative Photonic Lattices.” New Journal of Physics 19.12 (2017): 125016.
We study the nonequilibrium steady-state of interacting photons in cavity arrays as described by the driven-dissipative Bose–Hubbard and spin-1/2 XY model. For this purpose, we develop a self-consistent expansion in the inverse coordination number of the array to solve the Lindblad master equation of these systems beyond the mean-field approximation. Our formalism is compared and benchmarked with exact numerical methods for small systems based on an exact diagonalization of the Liouvillian and a recently developed corner-space renormalization technique. We then apply this method to obtain insights beyond mean-field in two particular settings: (i) we show that the gas–liquid transition in the driven-dissipative Bose–Hubbard model is characterized by large density fluctuations and bunched photon statistics. (ii) We study the antibunching–bunching transition of the nearest-neighbor correlator in the driven-dissipative spin-1/2 XY model and provide a simple explanation of this phenomenon.
pdf
Khan, Saeed A., and Hakan E. Türeci. “Competing Role of Interactions in Synchronisation of exciton–polariton Condensates.” New Journal of Physics 19.10 (2017): 105008.
We present a theoretical study of synchronisation dynamics of incoherently pumped exciton–polariton condensates in coupled polariton traps. Our analysis is based on a coupled-mode theory for the generalised Gross–Pitaevskii equation, which employs an expansion in non-Hermitian, pump-dependent modes appropriate for the pumped geometry. We find that polariton–polariton and reservoir-polariton interactions play competing roles and lead to qualitatively different synchronised phases of the coupled polariton modes as pumping power is increased. Crucially, these interactions can also act against each other to hinder synchronisation. We map out a phase diagram and discuss the general characteristics of these phases using a generalised Adler equation.
pdf
Biondi, Matteo et al. “Nonequilibrium Gas-Liquid Transition in the Driven-Dissipative Photonic Lattice.” Physical Review A 96.4 (2017): 043809.
We study the nonequilibrium steady state of the driven-dissipative Bose-Hubbard model with Kerr nonlinearity. Employing a mean-field decoupling for the intercavity hopping J, we find that the steep crossover between low and high photon-density states inherited from the single cavity transforms into a gas–liquid bistability at large cavity-coupling J. We formulate a van der Waals–like gas–liquid phenomenology for this nonequilibrium setting and determine the relevant phase diagrams, including a new type of diagram where a lobe-shaped boundary separates smooth crossovers from sharp, hysteretic transitions. Calculating quantum trajectories for a one-dimensional system, we provide insights into the microscopic origin of the bistability.
pdf
Malekakhlagh, Moein, Alexandru Petrescu, and Hakan E. Türeci. “Cutoff-Free Circuit Quantum Electrodynamics.” Physical Review Letters 119.7 (2017): 073601.
Any quantum-confined electronic system coupled to the electromagnetic continuum is subject to radiative decay and renormalization of its energy levels. When coupled to a cavity, these quantities can be strongly modified with respect to their values in vacuum. Generally, this modification can be accurately captured by including only the closest resonant mode of the cavity. In the circuit quantum electrodynamics architecture, it is, however, found that the radiative decay rates are strongly influenced by far off-resonant modes. A multimode calculation accounting for the infinite set of cavity modes leads to divergences unless a cutoff is imposed. It has so far not been identified what the source of divergence is. We show here that unless gauge invariance is respected, any attempt at the calculation of circuit QED quantities is bound to diverge. We then present a theoretical approach to the calculation of a finite spontaneous emission rate and the Lamb shift that is free of cutoff.
pdf

2016

Malekakhlagh, Moein, and Hakan E. Türeci. “Origin and Implications of an A2 -Like Contribution in the Quantization of Circuit-QED Systems.” Physical Review A 93.1 (2016): 012120.
By placing an atom into a cavity, the electromagnetic mode structure of the cavity is modified. In cavity QED, one manifestation of this phenomenon is the appearance of a gauge-dependent diamagnetic term, known as the A 2 contribution. Although in atomic cavity QED, the resulting modification in the eigenmodes is negligible, in recent superconducting circuit realizations, such corrections can be observable and may have qualitative implications. We revisit the canonical quantization procedure of a circuit-QED system consisting of a single superconducting transmon qubit coupled to a multimode superconducting microwave resonator. A complete derivation of the quantum Hamiltonian of an open circuit-QED system consisting of a transmon qubit coupled to a leaky transmission line cavity is presented. We introduce a complete set of modes that properly conserves the current in the entire structure and present a sum rule for the dipole transition matrix elements of a multilevel transmon qubit coupled to a multimode cavity. Finally, an effective multimode Rabi model is derived with coefficients that are given in terms of circuit parameters.
pdf
Baboux, F. et al. “Bosonic Condensation and Disorder-Induced Localization in a Flat Band.” Physical Review Letters 116.6 (2016): 066402.
We report on the engineering of a nondispersive (flat) energy band in a geometrically frustrated lattice of micropillar optical cavities. By taking advantage of the non-Hermitian nature of our system, we achieve bosonic condensation of exciton polaritons into the flat band. Because of the infinite effective mass in such a band, the condensate is highly sensitive to disorder and fragments into localized modes reflecting the elementary eigenstates produced by geometric frustration. This realization offers a novel approach to studying coherent phases of light and matter under the controlled interplay of frustration, interactions, and dissipation.
pdf
Kimchi-Schwartz, M. E. et al. “Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits.” Physical Review Letters 116.24 (2016): 240503.
Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered symmetries of the dissipative environment to stabilize a target Bell state; we further demonstrate suppression of the Bell state of opposite symmetry due to parity selection rules. This implementation is resource efficient, achieves a steady-state fidelity F=0.70, and is scalable to multiple qubits.
pdf
Aron, Camille, Manas Kulkarni, and Hakan E. Türeci. “Photon-Mediated Interactions: A Scalable Tool to Create and Sustain Entangled States of N Atoms.” Physical Review X 6.1 (2016): 011032.
We propose and study the use of photon-mediated interactions for the generation of long-range steady-state entanglement between N atoms. Through the judicious use of coherent drives and the placement of the atoms in a network of cavity QED systems, a balance between their unitary and dissipative dynamics can be precisely engineered to stabilize a long-range correlated state of qubits in the steady state. We discuss the general theory behind such a scheme and present an example of how it can be used to drive a register of N atoms to a generalized W state and how the entanglement can be sustained indefinitely. The achievable steady-state fidelities for entanglement and its scaling with the number of qubits are discussed for presently existing superconducting quantum circuits. While the protocol is primarily discussed for a superconducting circuit architecture, it is ideally realized in any cavity QED platform that permits controllable delivery of coherent electromagnetic radiation to specified locations.
pdf
Khan, S., and Hakan E. Türeci. “Non-Hermitian Coupled-Mode Theory for Incoherently Pumped Exciton-Polariton Condensates.” Physical Review A 94.5 (2016): 053856.
The generalized Gross-Pitaevskii equation (gGPE) is an effective phenomenological description for the dynamics of incoherently pumped exciton-polariton condensates. However, a brute force numerical simulation of the gGPE provides little physical insight into condensate formation under arbitrary pumping configurations, and is demanding in terms of computational resources. We introduce in this paper a modal description of polariton condensation under incoherent pumping of arbitrary spatial profile, based on eigenmodes of the non-Hermitian generator of the linearized dynamics. A pump-dependent basis is then introduced to formulate a temporal coupled-mode theory that captures condensate dynamics in the presence of all nonlinear interactions. Simulations using a single set of modes for a given pumping and trapping configuration agree very well with a full integration of the gGPE in diverse dynamical regimes, supporting the validity of this modal description, while also providing a speedup in simulation times.
pdf
Hein, Sven M., Camille Aron, and Hakan E. Türeci. “Purification and Switching Protocols for Dissipatively Stabilized Entangled Qubit States.” Physical Review A 93.6 (2016): 062331.
Pure dephasing processes limit the fidelities achievable in driven-dissipative schemes for stabilization of entangled states of qubits. We propose a scheme which, combined with already existing entangling methods, purifies the desired entangled state by driving out of equilibrium auxiliary dissipative cavity modes coupled to the qubits. We lay out the specifics of our scheme and compute its efficiency in the particular context of two superconducting qubits in a cavity-QED architecture, where the strongly coupled auxiliary modes provided by collective cavity excitations can drive and sustain the qubits in maximally entangled Bell states with fidelities reaching 90% for experimentally accessible parameters.
pdf
Schiró, M. et al. “Exotic Attractors of the Nonequilibrium Rabi-Hubbard Model.” Physical Review Letters 116.14 (2016): 143603.
We explore the phase diagram of the dissipative Rabi-Hubbard model, as could be realized by a Raman-pumping scheme applied to a coupled cavity array. There exist various exotic attractors, including ferroelectric, antiferroelectric, and incommensurate fixed points, as well as regions of persistent oscillations. Many of these features can be understood analytically by truncating to the two lowest lying states of the Rabi model on each site. We also show that these features survive beyond mean field, using matrix product operator simulations.
pdf
Malekakhlagh, Moein, Alexandru Petrescu, and Hakan E. Türeci. “Non-Markovian Dynamics of a Superconducting Qubit in an Open Multimode Resonator.” Physical Review A 94.6 (2016): 063848.
We study the dynamics of a transmon qubit that is capacitively coupled to an open multimode superconducting resonator. Our effective equations are derived by eliminating resonator degrees of freedom while encoding their effect in the Green's function of the electromagnetic background. We account for the dissipation of the resonator exactly by employing a spectral representation for the Green's function in terms of a set of non-Hermitian modes and show that it is possible to derive effective Heisenberg-Langevin equations without resorting to the rotating-wave, two-level, Born, or Markov approximations. A well-behaved time-domain perturbation theory is derived to systematically account for the nonlinearity of the transmon. We apply this method to the problem of spontaneous emission, capturing accurately the non-Markovian features of the qubit dynamics, valid for any qubit-resonator coupling strength.
pdf
Ge, Li et al. “Interaction-Induced Mode Switching in Steady-State Microlasers.” Optics Express 24.1 (2016): 41.
We demonstrate that due to strong modal interactions through cross-gain saturation, the onset of a new lasing mode can switch off an existing mode via a negative power slope. In this process of interaction-induced mode switching (IMS) the two involved modes maintain their identities, i.e. they do not change their spatial field patterns or lasing frequencies. For a fixed pump profile, a simple analytic criterion for the occurrence of IMS is given in terms of their self- and cross-interaction coefficients and non-interacting thresholds, which is verified for the example of a two-dimensional microdisk laser. When the spatial pump profile is varied as the pump power is increased, IMS can be induced even when it would not occur with a fixed pump profile, as we show for two coupled laser cavities. Our findings apply to steady-state lasing and are hence different from dynamical mode switching or hopping. IMS may have potential applications in robust and flexible all-optical switching.
pdf

2015

Mandt, Stephan et al. “Stochastic Differential Equations for Quantum Dynamics of Spin-Boson Networks.” New Journal of Physics 17.5 (2015): 053018.
The quantum dynamics of open many-body systems poses a challenge for computational approaches. Here we develop a stochastic scheme based on the positive P phase-space representation to study the nonequilibrium dynamics of coupled spin-boson networks that are driven and dissipative. Such problems are at the forefront of experimental research in cavity and solid state realizations of quantum optics, as well as cold atom physics, trapped ions and superconducting circuits. We demonstrate and test our method on a driven, dissipative two-site system, each site involving a spin coupled to a photonic mode, with photons hopping between the sites, where we find good agreement with Monte Carlo Wavefunction simulations. In addition to numerically reproducing features recently observed in an experiment [Phys. Rev. X 4, 031043 (2014)], we also predict a novel steady state quantum dynamical phase transition for an asymmetric configuration of drive and dissipation.
Ge, Li, and Hakan E. Türeci. “Inverse Vernier Effect in Coupled Lasers.” Physical Review A 92.1 (2015): 013840.
In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the “supermodes” formed at overlapping resonances of these two cavities have the lowest thresholds as previously found, leading to lasing at these overlapping resonances and a manifestation of the typical Vernier effect, but also they can have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. The inverse Vernier effect can also lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings in several previous studies. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.
Malik, O., K. G. Makris, and H. E. Türeci. “Spectral Method for Efficient Computation of Time-Dependent Phenomena in Complex Lasers.” Physical Review A 92.6 (2015): 063829.
Studying time-dependent behavior in lasers is analytically difficult due to the saturating nonlinearity inherent in the Maxwell-Bloch equations and numerically demanding because of the computational resources needed to discretize both time and space in conventional finite-difference time-domain approaches. We describe here an efficient spectral method to overcome these shortcomings in complex lasers of arbitrary shape, gain medium distribution, and pumping profile. We apply this approach to a quasidegenerate two-mode laser in different dynamical regimes and compare the results in the long-time limit to the steady-state ab initio laser theory (SALT), which is also built on a spectral method but makes a more specific ansatz about the long-time dynamical evolution of the semiclassical laser equations. Analyzing a parameter regime outside the known domain of validity of the stationary inversion approximation, we find that for only a narrow regime of pump powers the inversion is not stationary, and that this, as pump power is further increased, triggers a synchronization transition upon which the inversion becomes stationary again. We provide a detailed analysis of mode synchronization (also known as cooperative frequency locking), revealing interesting dynamical features of such a laser system in the vicinity of the synchronization threshold.
Schwefel, H. G. L., and H. E. Tureci. “A Chaotic Approach Clears up Imaging.” Science 348.6231 (2015): 189–190.
pdf
Sundaresan, Neereja M. et al. “Beyond Strong Coupling in a Multimode Cavity.” Physical Review X 5.2 (2015): 021035.
Here, we report an experimental realization of multimode strong coupling in cavity quantum electrodynamics. This novel regime is achieved when a single artificial atom is simultaneously strongly coupled to a large, but discrete, number of nondegenerate photonic modes of a cavity with coupling strengths comparable to the free spectral range. Our experiment reveals complex quantum multimode dynamics and spontaneous generation of quantum coherence, as evidenced by resonance fluorescence spanning many modes and ultranarrow linewidth emission. This work opens a new avenue for future experiments in light-matter interactions and poses a challenge to current theoretical approaches to its study.
pdf

2014

Ge, Li, Omer Malik, and Hakan E. Türeci. “Enhancement of Laser Power-Efficiency by Control of Spatial Hole Burning Interactions.” Nature Photonics 8.11 (2014): 871–875.
Raftery, J. et al. “Observation of a Dissipation-Induced Classical to Quantum Transition.” Physical Review X 4.3 (2014): n. pag.
Creatore, C. et al. “Quench Dynamics of a Disordered Array of Dissipative Coupled Cavities.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470.2169 (2014): 20140328.
Kulkarni, Manas, Ovidiu Cotlet, and Hakan E. Türeci. “Cavity-Coupled Double-Quantum Dot at Finite Bias: Analogy With Lasers and Beyond.” Physical Review B 90.12 (2014): n. pag.
Brandstetter, M. et al. “Reversing the Pump Dependence of a Laser at an Exceptional Point.” Nature Communications 5.1 (2014): n. pag.
Krimer, Dmitry O. et al. “Route from Spontaneous Decay to Complex Multimode Dynamics in Cavity QED.” Physical Review A 89.3 (2014): n. pag.
Biondi, Matteo et al. “Self-Protected Polariton States in Photonic Quantum Metamaterials.” Physical Review A 89.2 (2014): n. pag.
Makris, K. G., L. Ge, and H. E. Türeci. “Anomalous Transient Amplification of Waves in Non-Normal Photonic Media.” Physical Review X 4.4 (2014): n. pag.
pdf