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Nonequilibrium gas-liquid transition in the driven-dissipative photonic lattice
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We study the nonequilibrium steady state of the driven-dissipative Bose-Hubbard model with Kerr nonlinearity.
Employing a mean-field decoupling for the intercavity hopping J , we find that the steep crossover between low
and high photon-density states inherited from the single cavity transforms into a gas–liquid bistability at large
cavity-coupling J . We formulate a van der Waals–like gas–liquid phenomenology for this nonequilibrium
setting and determine the relevant phase diagrams, including a new type of diagram where a lobe-shaped
boundary separates smooth crossovers from sharp, hysteretic transitions. Calculating quantum trajectories for a
one-dimensional system, we provide insights into the microscopic origin of the bistability.
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I. INTRODUCTION

The Bose-Hubbard Hamiltonian, describing strongly in-
teracting bosons hopping on a lattice, defines one of the
fundamental model systems of condensed matter physics and
quantum optics. Its equilibrium phase diagram is characterized
by a lobe structure that results from a commensuration effect
at integer particle filling per site [1]. The phase boundary
separating superfluid from Mott-insulating phases is well un-
derstood [1,2] and has been observed in landmark experiments
on cold gases [3,4]. Coming to grips with Bose-Hubbard
physics remains a challenge in the photonic arena, where
drive and dissipation are central to the nonequilibrium model
describing a lattice of nonlinear coupled cavities [5]. In this
paper, we employ a mean-field decoupling in the intercavity
hopping J on top of the exact single-cavity solution [6]. We
establish a van der Waals–like gas–liquid phenomenology and
propose an alternative type of nonequilibrium phase diagram
that addresses the nature of the transition between phases.
We find a boundary that separates smooth from hysteretic
transitions between photonic gas and liquid phases and exhibits
a pronounced quantum commensuration effect in the cavity
photon number. Quantum trajectories for a chain of cavities
show that local density-fluctuations in individual cavities at
small J transform into collective supercavity fluctuations
and intermittent light bursts when cavities become strongly
coupled at large J .

The challenge in understanding the driven lattice roots
in the complexity of the single nonlinear cavity with its
distinct low and high photon-density states separated by a steep
crossover. The experimental observation of bistability between
such states in a nonlinear optical device [7] triggered a vast
amount of theoretical work [6,8–16]. Similar hysteretic cycles
have been measured in different platforms and utilized in the
context of switching and amplification, e.g., with Josephson
junctions [17] and exciton-polaritons in semiconductor micro-
cavities [18–21]. While such single-cavity physics is now well
understood, new research perspectives are being developed to
explore bistable behavior in extended systems [22,23], where
the photon hopping J between different cavities competes with
the on-site nonlinearity U .

Early work on photonic lattices described an (artificial)
equilibrium setting with a chemical potential for polaritons
[24–29], exhibiting close similarities in its phase diagram with

that of the massive Bose-Hubbard model [1]. Furthermore,
a proper initialization of the photonic lattice [5], e.g., with
an appropriate pump-pulse [30], provided signatures for a
superfluid–insulator phase transition in a dissipative cavity
lattice. Quite different physics emerges, however, when the
cavities are coherently driven, breaking the U (1) symmetry
explicitly. In this case, a mean-field theory predicts a bistability
that takes the array’s state abruptly from low- to high-density
phases and vice versa, as was noted for the Jaynes-Cummings-
Hubbard model [31] and similarly for the Bose-Hubbard
model with Kerr nonlinearity [32,33]. On the experimental
front, a bistable behavior was recently observed on a large
one-dimensional circuit QED array [34], further motivating a
deeper understanding of bistable behavior in large lattices.

BM

FIG. 1. Mean-field phase diagram of an array of nonlinear
cavities with interaction U and loss κ , pumped with amplitude
f at a frequency ωd detuned from the cavity frequency ωc by
� = ωd − ωc, see top-left inset. Photons tunnel to neighboring
cavities with amplitude J . The photon density n at the 4-photon
resonance 1 + 2�/U = 4 is shown as a function of the dimensionless
parameters f/U and J/U for small dissipation κ = U/20. The
smooth gas–liquid crossover at small J/U exhibits bimodality (BM
region, yellow lines) in the photon number distribution, and gives way
to a hysteretic transition at Jc ≈ 0.18 U (dot), opening a coexistence
region of gas and liquid at J > Jc (stripes; colors refer to densities
in gas and liquid). The resulting underdriven liquid and overdriven
gas phases terminate at the spinodal lines (white), which smoothly
extend the lines bounding the bimodal region at small J . The stars
mark the location of the quantum trajectory results in Fig. 4.
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FIG. 2. Mean-field phase diagram displaying the nature of the
gas–liquid transition in the driven-dissipative photonic lattice. Plot-
ting the dimensionless detuning 2�/U versus hopping J/U at small
dissipation κ = U/20, we show the boundary separating smooth from
hysteretic gas–liquid transitions as driven by increasing the pump
amplitude f . Distinct lobes appear between successive m-photon
resonances of the individual cavities, i.e., when 1 + 2�/U = m

assumes an integer value, thus featuring a similar commensuration
effect as the equilibrium Bose-Hubbard model. Note however that
the critical line separating smooth from hysteretic transitions does
not extend to J = 0 in correspondence with the resonances. Going to
small �/U or very small dissipation κ , instabilities show up in the
mean-field analysis, see also Refs. [32,52]. Numerical errors are of
order the size of the points.

Despite such promising results, no clear view has emerged
so far regarding the nature and shape of the nonequilibrium
diagram and its relation to the equilibrium Bose-Hubbard
model, if there exists any at all. In particular, the variety of
tunable parameters and drive schemes makes the study of
the nonequilibrium photonic lattice a challenging problem.
While the hopping J is the obvious choice to track intercavity
correlations, the replacement of the chemical potential μ

of the Bose-Hubbard model is less clear. It turns out, that
driving the cavities at a frequency ωd different from the
cavity frequency ωc, the detuning � = ωd − ωc allows to
take the system in and out of many-photon resonances
that assume a similar role as the integer site-occupation in
the Mott lobes, motivating its use in replacing μ. Finally,
imposing a coherent drive f , it is the gas–liquid transition
with its van der Waals–type phenomenology rather than the
insulator–superfluid transition that plays the central role in this
system.

In our analysis, we make use of a mean-field decoupling
scheme in the hopping J . Such a mean-field description has
been very successful in predicting the qualitative features of
the equilibrium phase diagram of the Bose-Hubbard model,
motivating its use for the investigation of our nonequilibrium
setting as well. The results of our analysis are expressed in two
phase diagrams. Figure 1 shows how the gas–liquid transition
as driven by the coherent pump amplitude f changes from a
steep crossover inherited from the single cavity at small J to
a first-order-type hysteretic or bistable transition at large J .
The termination of the hysteretic behavior upon decreasing J

then defines a critical end-point to a first-order-like transition
in the f -J diagram at fixed detuning �. In Fig. 2, we track
the location of this critical end-point in a �-J diagram and

find a boundary with characteristic lobes appearing between
successive m-photon resonances of the individual cavities
where 1 + 2�/U = m assumes integer values. This boundary
separates regions where the gas–liquid transition is smooth
(small J/U ) from regions where bistability governs the
lattice’s behavior as the pump amplitude f is tuned across the
transition. Contrary to conventional phase diagrams describing
transitions between phases, our �-J phase diagram addresses
the nature of the transition, smooth versus hysteretic, as the
system parameters are changed.

II. DRIVEN-DISSIPATIVE BOSE-HUBBARD MODEL

We consider the driven-dissipative Bose-Hubbard (BH)
model, describing photons hopping on a lattice of nonlinear
cavities, pumped and lossy. The Hamiltonian (h̄ = 1) reads

H =
∑

i

hBH
i + 1

z

∑

〈ij〉
Jij a

†
i aj , (1)

with hBH
i = −�ni + Uni(ni − 1)/2 + f (ai + a

†
i ), the

bosonic operators ai and the number operators ni = a
†
i ai .

Each site i is coherently pumped with strength f as described
by the last term in hBH

i . In a frame rotating with the drive
frequency ωd , the cavity frequency is renormalized to
� = ωd − ωc, while U is the local Kerr nonlinearity. The
second term in H describes the hopping to z nearest-neighbor
cavities with amplitude Jij = −J ; the factor 1/z in Eq. (1)
ensures a bandwidth 2J independent of z and guarantees a
regular limit z → ∞ where the mean-field theory becomes
exact. The dissipative dynamics for the density matrix ρ is
determined by the Lindblad master equation

ρ̇ = −i[H,ρ] + κ

2

∑

i

(2aiρa
†
i − a

†
i aiρ − ρa

†
i ai), (2)

with the photon decay rate κ . Models of this type can be re-
alized in quantum-engineered settings using superconductor-
[35–37] and semiconductor technologies [38,39].

A. Single cavity

The driven-dissipative single cavity [i.e., Eq. (2) with
J = 0] was solved exactly by Drummond and Walls [6] and
the results are summarized in Fig. 3. The diagram in Fig. 3(a)
exhibits two states or phases characterized by low and high
photon-densities n = 〈a†a〉. The crossover from the low- (gas)
to the high-density (liquid) phase is driven via increasing the
pumping amplitude f and exhibits bimodality in the photon
number distribution pk , see also Ref. [40]. We estimate the
location of the crossover line by comparing terms in the Hamil-
tonian hBH, generating scalings n ∼ (f/�)2 at small drive f

(gas-phase) and n ∼ (f/U )2/3 in the liquid phase at large f

where the interaction U dominates. The crossover between the
two regimes appears at n ∼ �/U and defines the crossover
line f sc

× /U ∼ (�/U )3/2. We obtain a more quantitative result
from the exact solution [6] at weak dissipation κ/U � 1:
with the compressibility K = 1 + n(g(2) − 1) dropping below
unity upon entering the liquid phase (g(2) = 〈a†a†aa〉/n2

the second-order coherence), the condition K = 1 provides
the result f sc

× /U ≈ (m/2e)3/2(mκ/U )1/m at the m-photon
resonance 2� = (m − 1) U (where the energy of m photons
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FIG. 3. (a) Density n and (b) second-order coherence g(2) as a
function of drive detuning 2�/U and drive strength f/U for a
single cavity as obtained from the exact solution [6] of Eq. (2)
with J = 0 and κ = U/20. The modulated gray lines labeled “BM”
encompass the bimodal regime. The inset displays the photon number
distribution pk at the two bars marked in the main panel. The
white crosses mark the onset f sc

× of the liquid phase as defined
by the condition of unit compressibility K = 1. The correlator
g(2) illustrates the phases’ coherent nature, while the crossover is
characterized by superbunching, see also Ref. [34]. The bottom inset
displays the density n and correlator g(2) evaluated at fixed detunings
2�/U = 3,3.5 (solid, dashed).

outside and inside the cavity match up), which agrees (up to a
numerical coefficient) with our previous estimate at large m.

The interaction leads to an intermediate plateau in the liquid
phase with density n ≈ �/U , see inset in Fig. 3(b) (the 1/2
reduction in n with respect to m is a saturation effect [41]).
The transition to the liquid is helped when the drive frequency
is resonant with the m-photon state of the cavity at 2�/U =
(m − 1), yielding the modulation of the crossover line in Fig. 3,
see also Ref. [13]. The low- and high-density phases are well
described by coherent states (except for small f and �) as
quantified by the correlator g(2). The crossover in between is
characterized by large density fluctuations and superbunching,
see Fig. 3(b).

B. Cavity lattice

We now combine cavities into a lattice and increase the
intercavity hopping J . We solve for the nonequilibrium steady
state ρ̇ = 0 of the photonic lattice by reducing the task to
a single-site problem via a mean-field decoupling of the
hopping term [30,42] in Eq. (2), i.e, a†

i aj ≈ 〈a†
i 〉aj + a

†
i 〈aj 〉 −

〈a†
i 〉〈aj 〉; the same decoupling has been used in the equilibrium

model [1] and provided correct qualitative results for the
phase diagram. Alternatively, the same approximation can be
obtained from an expansion of the lattice density matrix in
inverse powers of the coordination number z [43]; truncating
the expansion at order unity is equivalent to the mean-field
decoupling of the hopping term and is exact in the limit
z → ∞, i.e., large dimensions. We then obtain a self-consistent
equation [6,32] for the mean amplitude 〈ai〉 = 〈a〉

〈a〉 = −2|ϕJ |
δ

0F2(; 1 + δ,δ∗; 8|ϕJ |2)

0F2(; δ,δ∗; 8|ϕJ |2)
, (3)

with the renormalized drive ϕJ = (f − J 〈a〉)/U depending
on 〈a〉, the dimensionless detuning δ = −(2� + iκ)/U and
the hypergeometric function 0F2(; a,b; z); the solution for 〈a〉
provides direct access to the photon density n = 〈a†

i ai〉 =
〈a†a〉 and higher-order correlators [6]. Equation (3) exhibits
multiple solutions at large hopping J . The location Jc where
these multiple solutions first show up is our main interest
here since it describes the transition from a smooth gas–liquid
crossover in the density n as observed in the single cavity, to a
hysteretic first-order-type transition characteristic of a strongly
coupled lattice system.

The driven Bose-Hubbard model involves the parameters f ,
U , J , and �, and it is the suitable choice within this set which
brings forward the properties of this system. In a first step,
we fix the dimensionless detuning �/U to the four-photon
resonance at 1 + 2�/U = 4 and increase the drive f/U . This
produces the gas–liquid phase diagram in Fig. 1, where the
density n assumes the role of the order parameter. At small
hopping J/U < 0.18, gas and liquid phases are separated by
a steep crossover with a bimodal distribution pk of photon
numbers inherited from the single cavity. The location of this
crossover is well described by the compressibility criterion
K = 1, resulting in a line following accurately the upper
boundary of the bimodal region in Fig. 1; an approximation in
the small-κ limit [33] yields a linear dependence on J ,

f× ≈ f sc
× (1 − 2J/U ), (4)

with f sc
× the single-cavity expression derived with the same

condition K = 1. The smooth crossover between gas and
liquid phases ends at a “critical” value Jc ≈ 0.18 U (blue
dot), corresponding to fc ≈ 0.29 U , giving way to a hysteretic
transition at larger hopping J/U that shows the signatures
typical of a van der Waals–like gas–liquid transition [44]: using
this terminology, we find two-phase coexistence bounded by
spinodal lines at large coupling J that smoothly develop out
of the bimodal lines at small coupling. Similar results are
obtained at different values of the misfit parameter �/U , but
with a plateau at a suitably adapted photon density n ≈ �/U .

Evaluating the location of the critical point Jc for different
detunings �/U , we can plot a boundary separating smooth
from hysteretic behavior and arrive at a complete character-
ization of the system. We find a boundary with a lobe-like
structure that is commensurate with the m-photon resonances
at integer values of 1 + 2�/U , see Fig. 2, a result that has
been searched for in the past, but has remained elusive so far.

III. QUANTUM TRAJECTORIES

To substantiate our results, we complete this study with a
microscopic view on the gas–liquid diagram in Fig. 1. In Fig. 4,
we present simulation results of selected quantum trajectories
[45,46] (see also the reviews [47,48] and Appendix A for
further information) for a chain of six nonlinear cavities in one
dimension (1D) with periodic boundary conditions. At small
values of J , the cavities switch individually between gas and
liquid states, see Fig. 4(a), with a rapidly growing weight of the
liquid when f is tuned across f×/U ∼ (�/U )3/2. As J/U is
increased within the bimodal region, the fluctuations become
correlated and extended supercavities are formed, see Fig. 4(b).
Increasing J further across Jc, the entire strongly coupled
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(a) (b) (c)

FIG. 4. Selected quantum trajectories for a 1D cavity array with
six sites. The panels (a)–(c) show the photon density in color scale
as a function of time (tκ) and position (lattice site j ) at fixed drive
strength f/U = 0.35 and for increasing hopping J/U as marked with
the stars in the phase diagram of Fig. 1. At small hopping J � Jc,
(a) the trajectories of different sites are uncorrelated, while for J > Jc,
the entire cavity array switches collectively between gas and liquid
states within the coexistence region of the mean-field diagram, see (c).
The panels (d)–(f) show trajectories for a single lattice site j = 4 as a
function of time, as taken from the respective top panels (a)–(c). The
vertical red bars indicate the photon emissions from the lattice. (d) For
J � Jc each individual cavity displays intermittency [47] (see also
text) at random times, yielding a constant photon emission from the
array. (f) For J > Jc the array behaves as a coherent supercavity and
a collective intermittency is restored. The horizontal arrows mark the
gas and liquid mean-field values, showing that collective switching
in panel (c) indeed occurs between the mean-field densities. Panels
(a), (b), (c): J/U = 0.01,0.1,0.5. Other parameters are chosen as in
Fig. 1. Convergence of the quantum trajectory results in the photon
truncation parameter (cutoff) is illustrated in Appendix B.

array switches collectively as illustrated by the appearance of
pronounced stripes in Fig. 4(c), with switching times largely
exceeding those of the individual cavities. In an infinite system,
we then expect a second-order transition with a diverging
correlation length to appear as J is increased towards Jc in
the bimodal strip. This hypothesis is supported by simulations
exhibiting a rapid increase of the collective switching time
with system size, suggesting a closing of the Liouvillian gap
in the thermodynamic limit (see Appendix C), and invites
for further exploration, also with a view on the role of
lattice dimensionality [49]. On the other hand, increasing the
drive f at fixed coupling J > Jc, we expect a first-order-
type behavior with nucleation of extended liquid phases in
the gas and vice versa on decreasing f . The intermittent light
bursts appearing in the hysteretic regime, cf. the red photon
emission processes shown in Fig. 4(f), naturally show up
in the context of dynamical phase transitions [50] and can
serve as an experimental probe of the hysteretic behavior [34].
We note that quantum trajectories obtained in related models,
assemblies of Rydberg atoms [50,51] and spin-1/2 XY models
[52], also exhibit collective switchings between phases, but do
not show individual fluctuations with a transition between the
two behaviors.

In comparing the physics of the two versions of the
Bose-Hubbard model, equilibrium versus coherently-driven–
dissipative, we note that the former is characterized by a phase
boundary Jc(μ) describing a spontaneous breaking of U (1)
symmetry, while the latter exhibits the phenomenology of a
tunable van der Waals–type gas–liquid transition. In particular,
in the coherently driven system, the U (1) symmetry is

explicitly broken and the interesting feature is the transforma-
tion of a smooth crossover into a hysteretic transition involving
local (at small J ) or collective (at large J ) temporal fluctuations
of low- and high-density phases. Despite the differences
between the two phenomenologies, both phase boundaries
Jc(μ) and Jc(�) exhibit a particle commensuration effect
resulting in a lobe-like structure. In the equilibrium situation,
the superfluid phase is favored whenever the chemical potential
μ allows for two different particle numbers, while in the driven
Bose-Hubbard model, a detuning � matching a many-photon
resonance in each cavity facilitates their synchronization and
thereby triggers collective jumps between gas- and liquid-
photonic phases. This can be understood as a variation of Le
Chatelier’s principle stating that the system reacts to a distur-
bance, here a change in μ or �, by favoring the corresponding
phase, superfluid when particle number becomes undefined
and intermittent light bursts when approaching a resonance.

IV. SUMMARY AND CONCLUSION

Summarizing, we present a mean-field analysis of the
driven-dissipative Bose-Hubbard model describing a lattice
of coupled nonlinear cavities. Inspired by the exact single-
cavity solution with its crossover between low- and high-
density phases, we establish a van der Waals–type gas–
liquid phenomenology for the driven photonic Bose-Hubbard
model featuring a change from smooth to hysteretic transition
upon increasing the coupling J beyond critical. A quantum-
trajectory analysis shows that the bistable region involves
collective switching between gas and liquid phases trigger-
ing bursts of light. Choosing the correct representation in
parameter space, both equilibrium and driven phase diagrams
exhibit boundaries with a lobe-like structure that originates
from a resonance condition in the on-site Hamiltonian. We
expect that models with a similar on-site nonlinearity, e.g.,
the Jaynes-Cummings-Hubbard model [24,31] will exhibit
an analogous phase diagram, while models of similar kind,
e.g., assemblies of Rydberg atoms and spin-1/2 systems
[14,50–52], will benefit from the insights obtained in this
paper. Our results clarify a long-standing problem on the nature
and shape of the phase diagram of the driven Bose-Hubbard
model and guide further experiments on photonic arrays.
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APPENDIX A: QUANTUM TRAJECTORY APPROACH

Here, we briefly summarize the quantum trajectory algo-
rithm introduced in Refs. [45,46] and well documented in
reviews, see, e.g., Refs. [47,48]. The algorithm is used to
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describe open quantum systems whose dynamics is described
by a master equation in Lindblad form, as Eq. (2) in the
main text. The quantum trajectory method is (i) numerically
advantageous with respect to the direct integration of the
master equation and (ii) can provide further insight into
the dynamical behavior of the system due to the stochastic na-
ture of the trajectories. The algorithm stochastically propagates
the wave function |ψ(t)〉 under the non-Hermitian Hamiltonian

Heff = H − i
κ

2

∑

j

a
†
j aj , (A1)

with the photon decay rate κ . The Hamiltonian H of Eq. (A1),
the density operator nj = a

†
j aj and the photon operator aj

were introduced in Eq. (1) of the main text. The algorithm can
be summarized as follows. If in the time interval [t,t + dt] the
cavity at site j emits a photon, the wave function collapses
to |ψ(t + dt)〉 = aj |ψ(t)〉, while, if no photon is emitted,
|ψ(t + dt)〉 = (1 − iHeff dt) |ψ(t)〉. Which of these events
occurs depends on the photon density nj (t) = 〈ψ(t)|nj |ψ(t)〉
and is determined stochastically by comparison with a random
number. This process can be understood as the measurement
of the system by the environment. This follows from the fact
that information is gained also when no photon is emitted.
After normalizing the wave function, the stochastic evolution
continues with the next time step till the trajectory is complete.
In practice, variants of the algorithm of higher order in the time
step dt are used [48].

The quantum trajectory algorithm is numerically advan-
tageous with respect to the direct integration of the master
equation since it is based on propagating the wave function in-
stead of the density matrix; furthermore, different trajectories
are independent and can thus be propagated in parallel. The
average over different stochastic evolutions is equivalent to the
density matrix dynamics as determined by the Lindblad master
equation given by Eq. (2) of the main text. Furthermore, in the
single trajectories, fundamental information on the behavior
of the system is revealed.

APPENDIX B: CONVERGENCE IN THE PHOTON
TRUNCATION PARAMETER

To obtain Fig. 4 in the main text, we employ a fifth-order
Runge-Kutta (built in the MATLAB routine ODE45) to simulate
the stochastic evolution as outlined in Sec. 3.5 of Ref. [48].
For the quantum trajectories displayed in Fig. 4 of the main
text, up to six photons per cavity are admitted, resulting in
a Hilbert space of 76 = 117649 ≈ 217 states. Figure 5 shows
the convergence of the average photon density as a function
of the photon number truncation parameter ncutoff for different
J/U values for a lattice of N = 5 sites with periodic boundary
conditions (PBC). The average photon density is defined as

n = 〈〈〈n〉time〉sites〉traj

= 1

NtrajNsitesNt-steps

Ntraj∑

r=1

Nsites∑

j=1

Nt-steps∑

t=t0

nj,r,t . (B1)

In the definition above, the average is taken first over time
for t � t0, with t0 
 1/κ such that a steady state is reached;
the resulting density is averaged over different sites in

FIG. 5. Convergence plot of the average photon density n [see
Eq. (B1)] in the steady state for various values of hopping strengths
J/U as calculated with quantum trajectories. The average density n

is shown as a function of the photon number truncation parameter
ncutoff for a lattice of N = 5 sites with PBC. The vertical bars denote
one standard deviation (see text). Other parameters as in Fig. 4 of
the main text. The vertical arrow indicates the cutoff value ncutoff = 6
used in Fig. 4 of the main text, for an array of N = 6 sites with PBC.

the lattice and finally an average over the results obtained
through independent trajectories is performed. The squared
deviation from the mean (variance) is propagated according
to the standard prescriptions of error propagation, yielding
a final standard deviation σn. In the coexistence region of
the mean field (see main text) where the different sites
in the array are correlated, only a specific site j = 4 is
considered and the average over different sites is discarded. In
our convergence simulations, Nt-steps ≈ 104, Ntraj = 100 and
Nsites = N = 5. At small J/U (blue and red symbols) we
note that already ncutoff = 5 provides a good approximation. At
larger hopping strengths (green symbols) we find that a larger
cutoff is needed to reach convergence within one standard
deviation.

APPENDIX C: SCALING OF THE COLLECTIVE
SWITCHING TIME WITH SYSTEM SIZE

In this section we focus on the coexistence region of the
mean field (see main text) and discuss the scaling of the
collective switching time (see main text) with system size as
calculated with quantum trajectories. To this end we consider
the average time τ spent in the liquid phase; to extract τ from
an ensemble of trajectories we first obtain the average time
spent in the liquid phase in a single trajectory and successively
average the result over different trajectories, i.e.,

τ = 〈〈τ 〉time〉traj = 1

Ntraj

Ntraj∑

r=1

1

Nliquid(r)

Nliquid(r)∑

s=1

τs,r . (C1)

In the definition above τs,r is the time spent in the liquid phase
in trajectory r and in period s; the number of separate periods
where the system dwells in the liquid phase in each trajectory is
denoted by Nliquid(r) and is trajectory-dependent. The squared
deviation from the mean (variance) is propagated according
to the standard prescriptions of error propagation, yielding a
final standard deviation στ . In these simulations Ntraj = 150.
Figure 6(a) shows τ (C1) as a function of system size for a set
of parameters within the coexistence region of the mean field,
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(b)

FIG. 6. (a) Collective time spent in the liquid phase τ [see Eq. (C1) and main text] in the steady state as calculated with quantum trajectories
(QT) as a function of the size N of a one-dimensional array with PBC. The inset displays a sample trajectory for N = 8 exhibiting three
separate periods where the system dwells in the liquid phase (see also text). To extract τs,r (see text), an arbitrary threshold n = 0.4 is used to
separate gas and liquid phases and density fluctuations on a scale smaller than dt = 2/κ are neglected. We checked that the trend in the results
(exponential-like increase of τ with N ) is invariant with respect to these choices. The trajectory results are shown for a set of parameters within
the coexistence region of the mean-field (MF), f/U = 0.15, J/U = 0.6, as indicated by the white star in (b). The detuning value � = ωd − ωc

(detuning between the drive frequency and the cavity frequency) is set to 1 + 2�/U = 1.55. For this choice of detuning, convergence of the
quantum trajectory results in the photon truncation parameter ncutoff is achieved for ncutoff = 3, much lower than ncutoff = 6 required for the
detuning value 1 + 2�/U = 4 used in Figs. 1 and 4 in the main text. The choice of a lower detuning �/U with respect to Fig. 4 in the main
text thus allows us to study larger system sizes. The dissipation strength is chosen as κ/U = 20, as in Figs. 1 to 4 in the main text.

see Fig. 6(b). The inset in Fig. 6(a) shows a sample trajectory
characterized by three separate periods; when the system is
still in the liquid phase at the end of the trajectory, the latter
is considered as the end of the period. We find that the time

spent in the liquid phase increases rapidly with system size;
this result is consistent with the hypothesis on the emergence
of a transition in the thermodynamic limit characterized by a
closing of the Liouvillian gap (see main text).
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