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Supplementary Note 1: Details of the NISQRC architecture

1. The NISQRC algorithm

The underlying dynamical system we analyze in this article consists of L = M +R qubits, with M qubits serving as memory
qubits and R qubits serving as readout qubits. The evolution is governed by a Hamiltonian that is linearly parameterized by a
one-dimensional variable u ∈ [−1, 1] (serving as input):

Ĥ(u) = Ĥ0 + u · Ĥ1. (1)

We choose a form of Ĥ0 and Ĥ1 that can be implemented in a quantum annealing system or analog quantum simulator in a
hardware-efficient way: Ĥ0 =

∑
⟨i,i′⟩ Ji,i′ σ̂

z
i σ̂

z
i′ +

∑L
i=1 η

x
i σ̂

x
i and Ĥ1 =

∑L
i=1 η

z
i σ̂

z
i The coupling strength Ji,i′ , transverse

x-field strength ηxi = ηx + εxi and longitudinal z-drive strength ηzi = ηz + εzi are pre-selected via randomness: Ji,i′ ∼
Unif[0, Jmax], εxi ∼ εxrms × N (0, 1) and εzi ∼ εzrms × N (0, 1). One thing that needs to be emphasized is that the encoding
scheme Supplementary Equation 1 is general enough such that encoding Eq. (7) is merely an illustrative example. A variety of
Ĥ0, Ĥ1 can be employed as long as they are resource-efficiently realized in a physical platform.

In theory, the domain Z of n is infinite. However in practical experiments, it is impossible to feed an input sequence from
infinite past n = −∞ to infinite future n = ∞. Thus we cutoff infinity of time-step index into n ∈ [N ] ≡ {1, 2, · · · , N}. As
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a summary, now we have a sequence of reservoir recurrent units, each of which is characterized by an underlying Hamiltonian
H(un) for all n ∈ [N ], and step evolution duration τ .

As what we will prove in Supplementary Note 2, since calculating readout feature functions {xj(n)}j∈[K] can be done by

taking xj(n) = Tr
(
M̂j ρ̂

MR
n

)
where the effective density matrix is ρ̂MR

n = U(un)
((

C(un−1) · · · C(u1)ρ̂
M
0

)
⊗ |0⟩⟨0|⊗R

)
, the

full dynamics of NISQRC can also be written into set of recurrent equations





ρ̂MR
n = U(un)

(
ρ̂Mn−1 ⊗ |0⟩⟨0|⊗R

)
,

x(n) = {xj(n)}j∈[K] = {Tr(M̂j ρ̂
MR
n )}j∈[K],

yn = w ·x(n).

(2)

This algorithm induces a functional F : u 7→ y, where y(n) = yn. We define an observable

M̂w ≡
K−1∑

j=0

wjM̂j , (3)

and therefore yn = Tr(M̂wρ̂MR
n ) which affords a great deal of convenience in our notation.

The readout features xj(n) are nothing but the respective probabilities of measuring bj at the n-th time step, and we call
this readout scheme the probability representation [1]. In the literature, the readout features are alternatively chosen to be the
quantum spin moments. In this moment representation, O′

R = {M̂j |M̂j = I⊗M ⊗⊗L
i=M+1 σ̂i} where each σ̂i ∈ {Î , σ̂z}.

These two different representations can be related by a Walsh-Hadamard transformation [1].

Supplementary Note 2: Quantum dynamics under NISQRC – Role of repeated evolution, measurement, and reset

1. Quantum dynamics under measurement without subsequent qubit reset

For simplicity, we first consider a QRC with M = 1 memory qubit and R = 1 readout qubit (namely L = M + R = 2).
Furthermore, we consider σ̂z measurement of the readout qubit at each time step n of the framework. The measurement Kraus
operators introduced in the main text then take the specific form

P̂i = Î ⊗ |i⟩⟨i| . (4)

The corresponding observable M can be written as M̂ =
∑1

i=0 iP̂i = Î ⊗ |1⟩⟨1|, which measures the probability of the single
readout qubit being in excited state.

Supplementary Figure 1. NISQRC architecture to generate a functional map F : u 7→ y by using a qubit-based quantum system. The input
function can be written as a time-discrete sequence u = {u−∞, · · · , u−1, u0, u1, · · · , u∞}, which is encoded in the quantum system at
every time step n via a fixed encoding scheme, here shown as a Hamiltonian encoding Ĥ(un). Measured features X̄j(n) are constructed
from finite samples S under a specified measurement scheme at each time step (for example probabilities of measured bit-strings b(s)(n)
under computational basis measurement). The output function y = {y−∞, · · · , y−1, y0, y1, · · · , y∞} is constructed from these finitely-
sampled measured features. The goal of the trained functional F is to approximate a desired functional F⋆ : u 7→ y⋆, where y⋆ =
{y⋆

−∞, · · · , y⋆
−1, y

⋆
0 , y

⋆
1 , · · · , y⋆

∞}, so that under the same input u, y⋆
n ≈ yn ∀ n with as little error as possible.
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The NISQRC framework then involves a continuous pipeline of evolution under a quite arbitrary superoperator U(n) (not
restricted to the linearly parameterized Hamiltonian form we consider in the main text), followed by measurement, repeated
until all inputs {un} have been processed by the QRC. The inclusion of measurement with stochastic outcomes interleaved with
evolution steps, as opposed to at the final step, makes our knowledge of the QRC state conditional on the entire measurement
history. For example, starting from the initial state ρ̂MR

0 and evolving under U1 at time step n = 1, the subsequent measurement
yields a measurement outcome Xn = in, where in ∈ {0, 1} for a single readout qubit. The post-measurement state ρ̂MR,cond

1 is
then conditioned on the measurement result at time step n = 1, as indicated by the superscript cond. For an arbitrary time step
n, this conditioning thus extends to the entire measurement history {X1, X2, . . . , Xn−1}. The entire pipeline can be viewed
schematically as below:

ρ̂MR
0

U1,P̂i1−−−−→ ρ̂MR,cond
1

U2,P̂i2−−−−→ ρ̂MR,cond
2 · · · Un,P̂in−−−−→ ρ̂MR,cond

n · · ·
⇓ ⇓ ⇓
X1 X2 Xn (5)

It is not hard to show that this process is equivalent to the quantum non-demolition scheme proposed in Ref. [2].

In practice, we are often interested not in the result of a single shot, but of the ensemble average computed over many shots;
in the limit of infinite-sampling, this defines the readout features x(n) computed via ensemble averages over an infinite number
of repeated shots of their stochastic conditional counterparts Xn:

x(n) = E[Xn]. (6)

Computing this expectation using individual measurement shots would be the standard approach in any experimental NISQRC
realization, but is prohibitively expensive for this analysis. This is not least because of the dependence of Xn at any time step
n on the entire measurement history {X1, X2, . . . , Xn−1}, a complexity that scales very unfavourably with QRC size and the
total number of time steps N . Instead, we show that the expectation can be efficiently evaluated - crucially, accounting for
the conditional dynamics due to interleaved measurements - to yield a simplified expression for the infinitely-sampled readout
features in terms of an effective, ensemble-averaged density matrix ρ̂MR

n , namely x(n) = Tr(M̂ρ̂MR
n ).

To proceed, we note that, by mathematical induction, the conditional state with associated measurement record {X1 =
i1, · · · , Xn−1 = in−1} is

ρ̂MR,cond
n =

Un

(
P̂in−1 · · · U2

(
P̂i1

(
U1ρ̂

MR
0

)
P̂ †
i1

)
· · · P̂ †

in−1

)

Tr
(
P̂in−1

· · · U2

(
P̂i1

(
U1ρ̂MR

0

)
P̂ †
i1

)
· · · P̂ †

in−1

) , (7)

while the probability of obtaining this measurement record is simply

Pr[X1 = i1, · · · , Xn−1 = in−1] = Tr
(
P̂in−1 · · · U2

(
P̂i1

(
U1ρ̂

MR
0

)
P̂ †
i1

)
· · · P̂ †

in−1

)
. (8)

In order to further simplify this expression, we observe the following identity for any Â ∈ C4×4, which can be verified by direct
computation

∑

i=0,1

P̂iÂP̂ †
i = (1̂⊗ Î) ◦ Â (9)

where the matrices Î =

(
1 0
0 1

)
and 1̂ =

(
1 1
1 1

)
, and the notation ◦ represents the Hadamard product (element-wise

product): (Â ◦ B̂)ij = AijBij . Supplementary Equation 9 enables us to introduce the measurement-induced decoherence
superoperator M:

Mρ̂MR = (1̂⊗ Î) ◦ ρ̂MR. (10)

Therefore, according to Supplementary Equation 8, the unconditional expectation E[Xn] =
∑

i1,··· ,ininPr[X1 = i1, · · · , Xn =

in] of the random variable Xn can be computed by contraction:

x(n) = E[Xn] =
∑

i1,··· ,in
inTr

(
P̂inUn

(
· · · U2

(
P̂i1

(
U1ρ̂

MR
0

)
P̂ †
i1

)
· · ·
)
P̂ †
in

)
= Tr

(
M̂
(
UnMUn−1 · · · U2MU1ρ̂

MR
0

))
. (11)
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where we used Supplementary Equation 10 and M̂ =
∑

in
inP̂in . This expression naturally leads to the identification of the term

in square brackets as the effective density matrix at time step n, ρ̂MR
n = UnM· · · U2MU1ρ̂

MR
0 , such that computing the trace

with respect to this density matrix provides any readout feature at time step n in the infinite sampling limit, x(n) = Tr(M̂ρ̂MR
n ).

The generalization to a QRC with L = M+R ≥ 3 and input sequence {un} is now straightforward: Un is replaced with U(un),
while the measurement-induced decoherence superoperator M generalizes to:

Mρ̂MR =
(
1̂⊗M ⊗ Î⊗R

)
◦ ρ̂MR. (12)

With these changes, the effective density matrix at time step n for the NISQRC framework without reset is given by

ρ̂MR
n = U(un)MU(un−1) · · · U(u2)MU(u1)ρ̂

MR
0 . (13)

Note that ρ̂MR
n accounts for both any time-dependent unitary dynamics via Un, as well as the role of repeated measurements via

recurrent applications of M.

a. Thermalization induced by repeated measurements without reset

We need to point out that even if the circuits have similar structures to those used in measurement-induced phase transition [3]:
at step n associated with unitary evolution Un, qubits indexed by a random subset In ⊆ [L] will be measured. In this scenario,
the effective state evolution is similar ρ̂MR

n = UnMIn−1
· · · U2MI1

U1ρ̂
MR
0 , the only difference is that measurement-induced

decoherence superoperator Mn now is no longer a time-independent map

MIn
ρ̂MR =

(
L⊗

i=1

Êi

)
◦ ρ̂MR, Êi =

{
Î , if i ∈ In,
1̂, if i /∈ In.

(14)

For any overall state ρ̂MR, the Frobenius distance
∥∥∥ρ̂MR − I⊗L

2L

∥∥∥
2

F
will never increase after either unitary evolution U or mea-

surement MI :
∥∥∥∥∥U ρ̂

MR − Î⊗L

2L

∥∥∥∥∥

2

F

=

∥∥∥∥∥U
(
ρ̂MR − Î⊗L

2L

)∥∥∥∥∥

2

F

=

∥∥∥∥∥ρ̂
MR − Î⊗L

2L

∥∥∥∥∥

2

F

, (15)

∥∥∥∥∥MI ρ̂
MR − Î⊗L

2L

∥∥∥∥∥

2

F

=

∥∥∥∥∥MI

(
ρ̂MR − Î⊗L

2L

)∥∥∥∥∥

2

F

≤
∥∥∥∥∥ρ̂

MR − Î⊗L

2L

∥∥∥∥∥

2

F

, (16)

where the proof employs that fully mixed state Î⊗L

2L
is the simultaneous fixed point of U and MI (equivalently, both maps are

unital CPTP map). The non-increasing purity implies that

lim
n→∞

ρ̂MR
n =

Î⊗L

2L
. (17)

The final QRC state therefore has no memory of the initial state ρ̂MR
0 . As a result, in previous works [2, 4] this type of evolution

has been employed to equip QRCs with the fading memory property. However, note that the final state is also entirely indepen-
dent of the input u(n), which renders it incapable of performing any useful computations on this input. Hence input-dependent
unitary evolution combined with readout only does not yield a useful QRC. We show next how a simple modification of the
measurement protocol can allow fading memory without yielding a trivial I/O map.

2. Quantum dynamics under measurement and reset

For notational simplicity, we once again analyze a system with M = 1 memory qubit and R = 1 readout qubit (namely
L = M + R = 2). We apply Pauli z measurement on the readout qubit at each QRC step, the corresponding observable is
M̂ = Î ⊗ |1⟩⟨1|. Since now we apply the conditional reset. The measurement process is described by a POVM measurement
(i = 0, 1):

K̂i = Î ⊗ |0⟩⟨i| , (18)
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Supplementary Figure 2. NISQRC readout features for a (2 + 1)-qubit QRC, under both finite sampling (dashed lines) and infinite sampling
(solid line and dots). The hyperparameters are Jmax = ηx = εxrms = ηz = εzrms = 1 in units of 1/τ . (Left) Without reset. (Right) With reset.
In both cases, with increasing shots, the finitely-sampled readout features become closer to the black dashed features under infinite shots,
as expected. However, without reset the readout features approach trivial values dictated by the effective density matrix of Supplementary
Equation 17 as n increases.

and thus when overall state ρ̂MR is measured, the post-measurement state should be K̂iρ̂
MRK̂†

i if the random readout index is i.
These two POVMs satisfy the completeness relation:

∑

i=0,1

K̂†
i K̂i =

∑

i=0,1

Î ⊗ |i⟩ ⟨i| = Î ⊗ Î . (19)

The NISQRC pipeline including reset can now be viewed schematically as:

ρ̂MR
0

U1,K̂i1−−−−→ ρ̂MR,cond
1

U2,K̂i2−−−−→ ρ̂MR,cond
2 · · · Un,K̂in−−−−−→ ρ̂MR,cond

n · · ·
⇓ ⇓ ⇓
X1 X2 Xn (20)

Proceeding as before, the conditional state with associated measurement record {X1 = i1, · · · , Xn−1 = in−1} is

ρ̂MR,cond
n =

Un

(
K̂in−1

· · · U2

(
K̂i1

(
U1ρ̂

MR
0

)
K̂†

i1

)
· · · K̂†

in−1

)

Tr
(
K̂in−1

· · · U2

(
K̂i1

(
U1ρ̂MR

0

)
K̂†

i1

)
· · · K̂†

in−1

) , (21)

and the probability of obtaining this measurement record {X1 = i1, · · · , Xn = in} is

Pr[X1 = i1, · · · , Xn = in] = Tr
(
K̂inUn

(
K̂in−1

Un−1

(
· · · K̂i1

(
U1ρ̂

MR
0

)
K̂†

i1
· · ·
)
K̂in−1

)
K̂†

in

)
. (22)

which are analogous to the previous results with the replacement P̂in → K̂in . Similar to Supplementary Equation 9, we can
verify that for any Â ∈ C4×4,

∑

i=0,1

K̂iÂK̂†
i = TrR(Â)⊗ |0⟩⟨0| . (23)

For a quantum reservoir, we let Un = U(un). A similar contraction as Supplementary Equation 11

∑

i

K̂iU(ρ̂M ⊗ |0⟩⟨0|)K̂†
i = TrR(U(ρ̂M ⊗ |0⟩⟨0|))⊗ |0⟩⟨0| (24)

gives the effective state evolution x(n) = Tr(M̂ρ̂MR
n ) where ρ̂MR

n = Un

((
Cn−1 · · · C1ρ̂M0

)
⊗ |0⟩⟨0|

)
and CnρM =

TrR
(
Un

(
ρ̂M ⊗ |0⟩⟨0|

))
.
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Also, for more general M > 1 and R > 1 we used in the main text, we can still introduce the effective density matrices ρ̂MR
n

in NISQRC having the same expression

ρ̂MR
n = U(un)

((
C(un−1) · · · C(u1)ρ̂

M
0

)
⊗ |0⟩⟨0|⊗R

)
. (25)

where C(u)ρ̂M = TrR

(
U(u)

(
ρ̂M0 ⊗ |0⟩⟨0|⊗R

))
. Hence, we finish deriving the expression of ρ̂MR

n .

Supplementary Note 3: Deriving the NISQRC quantum I/O map

In this Supplementary Note, we will derive the I/O map of the NISQRC framework, ultimately arriving at the results presented
in Eq. (1) of the main text.

1. Technique of u-expansion and Rk and Pk superoperators

In Supplementary Note 2, we have obtained concise formula Supplementary Equation 25 for evaluating the infinitely-sampled
readout features xj(n) under a general superoperator U(n) and a simple quantum measurement and reset scheme. However,
the explicit dependence of these readout features on the input u(n) - which defines the I/O map implemented by the NISQRC
scheme - is not yet apparent.

Uncovering this dependence requires addressing two complex, and in our framework, related issues. First, the I/O map is
generally nonlinear in the input space. For example, in the Hamiltonian model we consider in main text, even if both the
Hamiltonian encoding Ĥ(u) = Ĥ0 + u · Ĥ1 in Supplementary Equation 1 and readouts ⟨M̂w⟩ρ̂MR

n
are linear, the evolution

defined by Û(u) = e−iτĤ(u) will clearly lead to a nonlinear dependence on the inputs at every time step. Secondly, the map
also extends over past inputs: the NISQRC framework has memory. The dependence on past input history must be extricated by
unraveling the recurrent structure of, for example, Supplementary Equation 25, necessitated by the multi-step nature of NISQRC
for temporal data processing. We will show that both these complications are addressable within a unified framework using a
Volterra series description.

The key theoretical tool we employ to achieve this is referred to as the u-expansion: an expansion of the superoperators
governing dynamics in the NISQRC framework, including measurement and reset, in powers of the input u. More precisely, we
wish to expand the superoperators U(u) and C(u) in terms of the monomial uk:

U(u)ρ̂MR =
∞∑

k=0

ukRkρ̂
MR, (26)

C(u)ρ̂M =

∞∑

k=0

ukPkρ̂
M. (27)

for some superoperators {Rk}, {Pk} respectively.

Regardless of the exact expression of u-expansion of the other dynamical superoperator, C(u)ρ̂M, the relationship between
U(u) and C(u) means that the u-expansion of the latter may be directly derived from the u-expansion of the former. In particular,

C(u)ρ̂M = TrR

(
U(u)

(
ρ̂M ⊗ |0⟩⟨0|⊗R

))
=

∞∑

k=0

ukTrR

(
Rk

(
ρ̂M ⊗ |0⟩⟨0|⊗R

))
. (28)

where we have used Supplementary Equation 26. The final expression is exactly the desired form of Supplementary Equation
27, provided we make the identification

Pkρ̂
M = TrR

(
Rk

(
ρ̂M ⊗ |0⟩⟨0|⊗R

))
. (29)

If k = 0, then in the main text we have already pointed out that the null-input superoperator P0 = C(0) is a CPTP map.
Furthermore, notice the expansion identity:

C(u)ρ̂M = P0ρ̂
M +

∞∑

k=1

ukPkρ̂
M, (30)
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the trace-preserving nature, namely Tr(C(u)ρ̂M) = Tr(P0ρ̂
M) ≡ 1, implies the tracelessness of Pk for all k ≥ 1, i.e.

Tr(Pkρ̂
M) = 0. (31)

If we take Pkρ̂
M =

∑4M

α=1 c
(k)
α ϱ̂Mα , where ϱ̂Mα are the eigenmatrices of superoperators P0ϱ̂

M
α = λαϱ̂

M
α . The decomposition

coefficient c(k)1 is the most different one since its associated matrix ϱ̂M1 = ρ̂MFP will remain unchanged when applied by P0 while
other modes decay to zero: limn→∞ Pn

0 Pkρ̂
M
0 = c

(k)
1 ρ̂MFP. As a result,

c
(k)
1 = c

(k)
1 Tr(ρ̂MFP) = lim

n→∞
Tr(Pn

0 Pkρ̂
M
0 ) = lim

n→∞
Tr(Pkρ̂

M
0 ) = 0. (32)

Therefore, we conclude a very useful property that

Pkρ̂
M =

4M∑

α=2

c(k)α ϱ̂Mα (33)

for any memory density matrix ρ̂M and any k ≥ 1.

2. Rk and Pk for linear Hamiltonian encoding scheme by regrouping the BCH formula

We now evaluate the u-expansion of U(u)ρ̂MR = e−iτĤ(u)ρ̂MReiτĤ(u). Central to this expansion is the Baker-Campbell-
Hausdorff (BCH) formula, which allows us to write this expression in the series form

e−iτĤ(u)ρ̂MReiτĤ(u) =
∞∑

q=0

(−iτ)q

q!
[Ĥ(u), [· · · [Ĥ(u), ρ̂MR] · · · ]] (34)

Using the explicit form Ĥ(u) = Ĥ0 + uĤ1, we can compute the superoperator coefficient of any term in the series:

(−iτ)1

1!
: [Ĥ(u), ρ̂MR] =[Ĥ0, ρ̂

MR] + u1[Ĥ1, ρ̂
MR],

(−iτ)2

2!
: [Ĥ(u), [Ĥ(u), ρ̂MR]] =[Ĥ0, [Ĥ0, ρ̂

MR]] + u1
(
[Ĥ0, [Ĥ1, ρ̂

MR]] + [Ĥ1, [Ĥ0, ρ̂
MR]]

)
+ u2[Ĥ1, [Ĥ1, ρ̂

MR]],

(−iτ)3

3!
: [Ĥ(u), [Ĥ(u), [Ĥ(u), ρ̂MR]]] =[Ĥ0, [Ĥ0, [Ĥ0, ρ̂

MR]]]+

+ u1
(
[Ĥ0, [Ĥ0, [Ĥ1, ρ̂

MR]]] + [Ĥ0, [Ĥ1, [Ĥ0, ρ̂
MR]]] + [Ĥ1, [Ĥ0, [Ĥ0, ρ̂

MR]]]
)

+ u2
(
[Ĥ1, [Ĥ1, [Ĥ0, ρ̂

MR]]] + [Ĥ1, [Ĥ0, [Ĥ1, ρ̂
MR]]] + [Ĥ0, [Ĥ1, [Ĥ1, ρ̂

MR]]]
)

+ u3
(
[Ĥ1, [Ĥ1, [Ĥ1, ρ̂

MR]]]
)
,

...

Note that each term in the series can be viewed as a series in uk instead. Furthermore, each appearance of uĤ1 in Ĥ(u)
contributes exactly one factor of u. This allows us to determine the coefficient of uk in the qth term:

uk × (−iτ)q

q!

∑

{Ĉ1,Ĉ2,··· ,Ĉq}

[Ĉ1, [Ĉ2, [· · · , [Ĉq, ρ̂
MR] · · · ]]] (35)

Here, the summation is over all
(

q
k

)
possible combinations {Ĉ1, Ĉ2, · · · , Ĉq} which is an ordered set with k instances of Ĥ0

and (q− k) instances of Ĥ1. This expression allows us to regroup the BCH formula not by the parameter q as in Supplementary
Equation 34, but by powers uk of the input. We therefore arrive at the desired form of Supplementary Equation 26,

U(u)ρ̂MR =
∞∑

k=0

ukRkρ̂
MR, (36)
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with

Rkρ̂
MR =

∞∑

q=k

(−iτ)q

q!

∑

{Ĉ1,Ĉ2,··· ,Ĉq}

[Ĉ1, [Ĉ2, [· · · , [Ĉq, ρ̂
MR] · · · ]]]. (37)

3. Functional I/O map: time-invariance and Volterra kernels

Our work in the previous subsection allows us to express the action of individual superoperators U(u) and C(u) on a general
ρ̂MR as a u-expansion at every time step. The dynamical map defined by our time-dependent NISQRC framework involves the
repeated application of these superoperators for distinct inputs un, so that the output at time step n may have a complicated
dependence on prior inputs u≤n. We are now in a position to extract this dependence explicitly. To do so, we simply substitute
our u-expansions for the superoperators U(u) and C(u) into the evolution equation Supplementary Equation 25 defining ρ̂MR

n at
an arbitrary time step n, i.e. ρ̂MR

n = U(un)
((

C(un−1) · · · C(u1)ρ̂
M
0

)
⊗ |0⟩⟨0|⊗R

)
. Then, the density matrices at time step n

attain the formal expression:

ρ̂MR
n =

∞∑

k1,··· ,kn=0

uk1
1 · · ·ukn−1

n−1 ukn
n ×Rkn

((
Pkn−1

· · · Pk1
ρ̂M0
)
⊗ |0⟩⟨0|⊗R

)
(38)

Before evaluating the readout features xj(n), we need to simplify Supplementary Equation 38 as much as possible. The start-
ing point is first looking at the simplest contribution from term un−1 to ρ̂MR

n (namely the one-step backwards linear contribution).
This means that we can let k1 = · · · = kn−2 = kn = 0 and kn−1 = 1. The associated prefactor is

R0

((
P1Pn−2

0 ρ̂M0
)
⊗ |0⟩⟨0|⊗R

)
, (39)

Similarly, analyzing contribution from term un to ρ̂MR
n+1 (that is, let k1 = · · · = kn−1 = kn+1 = 0 and kn = 1) gives associated

prefactor

R0

((
P1Pn−1

0 ρ̂M0
)
⊗ |0⟩⟨0|⊗R

)
. (40)

In principle, Pn−2
0 ρ̂M0 ̸= Pn−1

0 ρ̂M0 and therefore term Supplementary Equation 39 and Supplementary Equation 40 are analyti-
cally different. However, with the existence of fixed point state

lim
n→∞

Pn
0 ρ̂

M
0 = ρ̂MFP, (41)

it ensures the approximation

Pn−2
0 ρ̂M0 ≈ ρ̂MFP ≈ Pn−1

0 ρ̂M0 , (42)

and hence Supplementary Equation 39 and Supplementary Equation 40 are asymptotically the same. Such property is usually
referred as (asymptotic) time-invariance. In fact, we can further weaken this requirement that all peripheral spectrum λα (namely
those eigenvalue with magnitude |λα| = 1) are λα = 1. For example, for a fully connected quantum reservoir with M+R qubits,
if Ji,i′ are constant for every coupling pair and ηxi , η

z
i are also constant for every qubit, then the numerical results show that the

fixed points of ρ̂M0 will have a degeneracy of Catalan numbers (2M)!
M !(M+1)! . In this case, the fixed point limn→∞ Pn

0 ρ̂
M
0 = ρ̂MFP

still exists but will depend on initial state ρ̂M0 .

The above calculation works for any contribution terms in ρ̂MR
n . This establishes all analytical expressions of Volterra series

kernels. The leading order kernels can be written down compactly:

• The zero-th order Volterra kernel:

h
(j)
0 = Tr

(
M̂jR0

(
ρ̂MFP ⊗ |0⟩⟨0|⊗R

))
, (43)

• The first order Volterra kernel (n1 ≥ 0):

h
(j)
1 (n1) =





Tr
(
M̂jR1

(
ρ̂MFP ⊗ |0⟩⟨0|⊗R

))
, if n1 = 0,

Tr
(
M̂jR0

((
Pn1−1
0 P1ρ̂

M
FP

)
⊗ |0⟩⟨0|⊗R

))
, if n1 ̸= 0,

(44)
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• And the second order Volterra kernel (n2 ≥ n1 ≥ 0):

h
(j)
2 (n1, n2) =





Tr
(
M̂jR2

(
ρ̂MFP ⊗ |0⟩⟨0|⊗R

))
, if n1 = 0, n2 = 0,

Tr
(
M̂jR1

((
Pn2−1
0 P1ρ̂

M
FP

)
⊗ |0⟩⟨0|⊗R

))
, if n1 = 0, n2 > 0,

Tr
(
M̂jR0

((
Pn2−1
0 P2ρ̂

M
FP

)
⊗ |0⟩⟨0|⊗R

))
, if n1 = n2 > 0,

Tr
(
M̂jR0

((
Pn1−1
0 P1Pn2−n1−1

0 P1ρ̂
M
FP

)
⊗ |0⟩⟨0|⊗R

))
, if 0 < n1 < n2.

(45)

These kernel expressions show that if the reservoir output nontrivially depends on the history, then Pkρ̂
M
FP ̸= 0 for some k ≥ 1.

Equivalently, if Pkρ̂
M
FP = 0 for all k ≥ 1, then h

(j)
k (n1, n2, · · · , nk) ̸= 0 only if n1 = n2 = · · · = nk = 0.

We emphasize that even though h
(j)
k (n1, n2, · · · , nk) (e.g., Supplementary Equation 43-45 are kernels of real values xj(n),

these kernels all take the form of Tr(M̂j · ), where “ · ” are always quantum operators which expand ρ̂MR
n . Therefore, it is intuitive

to write these quantum operators into

ρ̂MR
n =

∞∑

k=0

∞∑

n1=0

· · ·
∞∑

nk=nk−1

ĥk(n1, · · · , nk)

k∏

κ=1

un−nκ . (46)

Those quantum operators ĥk are the central objects in the u-expansion and all classical kernels in Eq. (1) are h
(j)
k = Tr(M̂j ĥk),

justifying the nomenclature of Quantum Volterra Theory used for the entire framework in the main text.

We note that as we proved in Supplementary Equation 17, limn→∞ ρ̂MR
n = Î⊗L

2L
. This can also be understood through the

Volterra expansion. Recall Supplementary Equation 13, i.e. ρ̂MR
n = U(un)M· · · U(u2)MU(u1)ρ

MR
0 . By plugging Supplemen-

tary Equation 26 and Supplementary Equation 27, we get

ρ̂MR
n =

∞∑

k1,k2,··· ,kn=0

uk1
1 uk2

2 · · ·ukn
n RknMRkn−1 · · ·MRk2MRk1 ρ̂

MR
0 (47)

All Pkρ̂
M in previous Volterra analysis must be replaced with MRkρ̂

MR. However, MR0ρ̂
MR
FP = ρ̂MR

FP implies ρ̂MR
FP = Î⊗L

2L
,

and thus all Volterra kernels must vanish, since the identity makes all commutator terms in Supplementary Equation 37 vanish
exactly. This reproduces the null response of a NISQRC architecture in the absence of the reset operation.

4. u-expansion and Volterra kernels for dissipative quantum systems

Thus far, we have demonstrated how the u-expansion can be performed for a CPTP map without explicit dissipative evolution.
In this subsection, we extend this analysis to account for dissipative quantum systems, as is relevant for practical NISQRC
implementations.

In particular, we wish to now consider the evolution governed by the general CPTP map eτL(u)ρ̂MR, where L is the Liouvillian
superoperator, for example of the type introduced in Eq. (6) of the main text. We first note that the BCH formula of Supplemen-
tary Equation 34 can be rewritten compactly in the dissipation free case by first introducing the adjoint action [X̂, Ŷ ] = adX̂ Ŷ

for arbitrary matrices X̂, Ŷ . With this notation, the BCH formula becomes:

e−iτĤ(u)ρ̂eiτĤ(u) = e−iτ [Ĥ(u), · ]ρ̂ =

∞∑

q=0

(−iτ)q

q!
adq

Ĥ(u)
ρ̂. (48)

In presence of dissipation, the adjoint action allows us to write the operation of the Liouvillian L(u), eτL(u)ρ̂MR, in the form:

eτL(u)ρ̂MR =e
−iτ

((
adĤ0

+iDT

)
+u adĤ1

)
ρ̂MR

=ρ̂MR +
(−iτ)1

1!

((
adĤ0

+ iDT

)
+ u adĤ1

)
ρ̂MR +

(−iτ)2

2!

((
adĤ0

+ iDT

)
+ u adĤ1

)2
ρ̂MR + · · · . (49)

where we have also used the explicit form of Ĥ(u) = Ĥ0 + uĤ1, and where DT describes T1 decay of all qubits in the QRC
with a rate γ, see Eq. (6) of the main text.



10

Supplementary Figure 3. The first and second order Volterra Kernel example in a (2 + 1)-qubit quantum reservoir with fundamental decay
γ. The parameters are chosen to be constant Ji,i′ = ηx

i = ηz
i = 1.3 (in unit 1/τ ) for simplicity. (The same as Fig. 2 of the main text). (a)

The first order kernel h(1)
1 (n1), with decay rate γ = 0 (no decay, in red), 0.01Jmax (in blue), 0.1Jmax (in green). (b) The second order kernel

h
(1)
2 (n1, n1), with decay rate γ = 0 (no decay, left), 0.01Jmax (middle), 0.1Jmax (right). The first and second order kernel without decay is

exactly the kernel in Fig. 2(a) of the main text.

Based on this formalism, we are now able to read off the u-expansion for the CPTP map eτL(u)ρ̂MR by regrouping modified
BCH formula:

eτL(u)ρ̂MR =
∞∑

k=0

ukQkρ̂
MR, (50)

where the superoperators are defined as

Q0ρ̂
MR = ρ̂MR − iτ

(
adĤ0

+ iDT

)
ρ̂MR − τ2

2!

(
adĤ0

+ iDT

)2
ρ̂MR + · · ·

= ρ̂MR − iτ
(
[Ĥ0, ρ̂

MR] + iDTρ̂
MR
)
− τ2

2!

(
[Ĥ0, [Ĥ0, ρ̂

MR]] + i[Ĥ0,DTρ̂
MR] + iDT[Ĥ0, ρ̂

MR]−D2
Tρ̂

MR
)
+ · · ·

≡ eτL(0)ρ̂MR,

Q1ρ̂
MR = −iτadĤ1

ρ̂MR − τ2

2!

((
adĤ0

+ iDT

)
adĤ1

+ adĤ1

(
adĤ0

+ iDT

))
ρ̂MR + · · · ,

= −iτ [Ĥ1, ρ̂
MR]− τ2

2!

(
[Ĥ0, [Ĥ1, ρ̂

MR]] + [Ĥ1, [Ĥ0, ρ̂
MR]] + iDT[Ĥ1, ρ̂

MR] + i[Ĥ1,DTρ̂
MR]
)
+ · · · ,

Q2ρ̂
MR = −τ2

2!
ad2

Ĥ1
ρ̂MR + · · · = −τ2

2!
[Ĥ1, [Ĥ1, ρ̂

MR]] + · · · .
...

The knowledge of superoperators {Qk} therefore allows us to compute the Volterra kernels for NISQRC in the presence
of dissipation. Some numerical simulations of the first- and second-order kernels are shown in Supplementary Figure 3, with
increasing decay rate γ (for other QRC parameters, see caption). We see that dissipation can reduce the amplitude of the QRC
response to the input - governed by the amplitude of the kernels - in particular to past inputs indicated by increasing values of
n1, n2. Hence dissipation can reduce the memory of the NISQRC framework. However, even for modest amounts of dissipation
smaller than the strength of Hamiltonian terms, the kernels are certainly far from trivial, retaining their qualitative features with a
non-zero memory term. This indicates the applicability of the NISQRC framework to contemporary dissipative quantum systems
used as QRCs.

Supplementary Note 4: Fading memory modes

For any k ≥ 1, we define for each α′ ∈ N

Pkϱ̂
M
α′ =

4M∑

α=2

c
(k)
αα′ ϱ̂

M
α . (51)
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Supplementary Figure 4. 4M −1 = 15 internal features Fα(u) in a (2+1)-qubit QRC. The hyperparameters are (Jmax; η
x, εxrms; η

z, εzrms) =
(1; 3, 1; 4, 2) in unit 1/τ . Fα(u) is potentially a complex-valued function. The eigenvalues of P0 appears in pair: λα being an eigenvalue
implies λ∗

α also being an eigenvalue. Therefore, both function Fα(u) and its conjugate Fα(u)
∗ are internal features. So the of 4M − 1 internal

feature functions contains exactly 4M − 1 independent real-function. They are plotted separately in sense of of real part (red solid lines) and
imaginary part (purple solid lines). The darker the line is, the larger the corresponding eigenvalue norm |λα| is and the slower this internal
feature fades.

Notice that c(k)1α′ ≡ 0 for any k ≥ 1 due to the tracelessness of Pk (recall ϱ̂M1 = ρ̂MFP by definition), thus the summation begins
with α = 2. Contributions from (un−n1

, un−n2
, · · · , un−nP

), where 0 < n1 < n2 < · · · < nP , is given by

∞∑

k1,··· ,kP=1

h
(j)
k1+···+kP

(n⊗k1
1 , · · · , n⊗kP

P )× uk1
n−n1

· · ·ukP
n−nP

=

∞∑

k1,··· ,kP=1

Tr
(
M̂jR0

(
Pn1−1
0 Pk1 · · · P

nP−nP−1−1
0 PkP

ρ̂MFP ⊗ |0⟩⟨0|⊗R
))

× uk1
n−n1

· · ·ukP
n−nP

=

∞∑

k1,··· ,kP=1

Tr


M̂jR0


Pn1−1

0 Pk1 · · · P
nP−nP−1−1
0




4M∑

αP=2

c
(kP )
αP 1 ϱ̂

M
αP


⊗ |0⟩⟨0|⊗R




× uk1

n−n1
· · ·ukP

n−nP

...

=
∞∑

k1,··· ,kP=1

4M∑

α1,··· ,αP=2

Tr
(
M̂jR0

(
λn1−1
α1

c(k1)
α1α2

· · ·λnP−nP−1−1
αP

c
(kP )
αP 1 ϱ̂

M
α1

⊗ |0⟩⟨0|⊗R
))

× uk1
n−n1

· · ·ukP
n−nP

=
4M∑

α1,··· ,αP=2

λn1−1
α1

· · ·λnP−1
αP

∞∑

k1,··· ,kP=1

c(k1)
α1α2

· · · c(kP )
αP 1Tr

(
M̂jR0

(
ϱ̂Mα1

⊗ |0⟩⟨0|⊗v
))

× uk1
n−n1

· · ·ukP
n−nP

. (52)

Namely, we can decompose the contributions from (un−n1
, un−n2

, · · · , un−nP
) to xj(n) into (4M − 1)P memory modes of

internal features:

xj(n) =
4M∑

α1,α2,··· ,αP=2

ν(j)α1
λn1−1
α1

λn2−n1−1
α2

· · ·λnP−nP−1−1
αP

× Fα1,α2,··· ,αP
(un−n1 , un−n2 , · · · , un−nP

) + · · · (53)

where the cross-step internal features

Fα1,α2,··· ,αP
(un−n1 , un−n2 , · · · , un−nP

) =

∞∑

k1,k2··· ,kP=1

c(k1)
α1α2

c(k2)
α2α3

· · · c(kP )
αP 1 u

k1
n−n1

uk2
n−n2

· · ·ukP
n−nP

. (54)

Thanks to the fading memory property, namely that λn
α converges to zero if α ≥ 2, the more history steps one monomial

term in Volrerra series Eq. (1) involves, the less it contributes to the current-time readout features xj(n). Therefore, it will be
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illustrative for this Supplementary Note to mostly be concerned with a single past time step’s contribution. To be more specific,
if we focus on the contribution from un−p to xj(n) (where p ≥ 1). For this history record contribution,

∞∑

k=1

h
(j)
k (p⊗k)uk

n−p =

4M∑

α=2

ν(j)α λp−1
α Fα(un−p). (55)

Each coefficient ν(j)α = Tr
(
M̂jR0

(
ϱ̂Mα ⊗ |0⟩⟨0|⊗R

))
characterizes a different observable M̂j’s response to different internal

features Fα(u) where

Fα(u) =

∞∑

k=1

c
(k)
α1 u

k. (56)

Especially, if α = 1, then c
(k)
α1 = 0 for any k ≥ 1, according to Supplementary Equation 32. That is why the summation over α

starts from α = 2, and it only gives us 4M − 1 internal features (see Supplementary Figure 4 as an example).

Supplementary Note 5: Relation between functional-independence and Jacobian rank

In this Supplementary Note we analyze the functional-independence of readout features in the NISQRC framework. Assuming
a finite-dimensional input space u = (u1, u2, · · · , uN ), then NISQRC readout features define K finite-dimensional functions
(assuming K ≤ N ), xk(u1, u2, · · · , uN ), k ∈ {0, · · · ,K − 1}. An important question is whether these K functions are in
fact functionally-independent from one another, since their inter-dependence can impose a limitation on their usefulness for
functional approximation using the NISQRC framework.

If the K functions are functionally-dependent, namely there exists some K-variate function G such that:

G(x0(u), x1(u), · · · , xK−1(u)) ≡ 0. (57)

Take gradients



∂G
∂u1

(u)
∂G
∂u2

(u)
...

∂G
∂uN

(u)


 =




∂x0

∂u1
(u) ∂x1

∂u1
(u) · · · ∂xK−1

∂u1
(u)

∂x0

∂u2
(u) ∂x1

∂u2
(u) · · · ∂xK−1

∂u2
(u)

...
...

. . .
...

∂x0

∂uN
(u) ∂x1

∂uN
(u) · · · ∂xK−1

∂uN
(u)







∂G
∂x0

(x0, x1, · · · , xK−1)
∂G
∂x1

(x0, x1, · · · , xK−1)
...

∂G
∂xK−1

(x0, x1, · · · , xK−1)




= 0, (58)

then gradients ∇ux0(u), ∇ux1(u), · · · ,∇uxK−1(u) must be linearly dependent at all points. Therefore, if {xj(u)}j∈[K] are
functionally-dependent, then the gradients {∇uxj(u)}j∈[K] must be linearly-dependent. Equivalently, it suffices to prove the
functional-independence of {xj(u)}j∈[K] by showing that {∇uxj(u)}j∈[K] are linearly-independent at almost all points u.

Now we argue by contradiction that K − 1 gradients of readout features xj(n) = Tr
(
M̂j ρ̂

MR
n

)
are functionally-independent

if there is no particular symmetry in the reservoir. We first select {M̂j} as the moment representation to remove the triv-
ial functional dependence that their summation is constant. Suppose there exists coefficients c1, c2, · · · , cK−1 such that∑K−1

j=1 cj∇Fj(u≤n) = 0. Notice that

∂xj

∂un−p
= Tr

(
M̂j

∂ρ̂MR
n

∂un−p

)
, (59)

then
∑K−1

j=1 cj∇Fj(u≤n) = 0 implies that

K−1∑

j=1

cjTr

(
M̂j

∂ρ̂MR
n

∂un−p

)
= Tr






K−1∑

j=1

cjM̂j


 ∂ρ̂MR

n

∂un−p


 ≡ 0, (60)

for all non-negative integer p ∈ N. For generic input sequence {u−∞, · · · , un−1, un}, there doesn’t exists such observable∑K−1
j=1 cjM̂j such that expectations of ∂ρ̂MR

n

∂un−p
for any p ∈ N always vanish, which is a contradiction.

This results shows that in principle, the linear combination of quantum probability readout will yield a function family whose
gradient space is much more abundant, because usually the feature number K − 1 is much larger than the readout qubit number
R.
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Supplementary Note 6: Channel equalization: background and training details

In this Supplementary Note, we provide some more details of the channel equalization task used as an example of time-
dependent processing.

Supplementary Figure 5. Schematic of the goal of the channel equalization task, and a representative implementation using a QRC under the
NISQRC framework.

As mentioned in Results’ subsection “Practical machine learning using temporal data” of the main text, the channel equaliza-
tion task requires accurately reconstructing a temporally-varying message m(n) from its corrupted copy u(n) after transmission.
For the instance we consider, the distortion of the transmitted signal is modeled via the action of a linear kernel h(n), nonlinear
mixing f and additive Gaussian noise ϵ0:

u(n) = f

(
7∑

n1=0

h(n1)m(n− n1)

)
+ ϵ0. (61)

We choose a kernel h ∈ R8, whose elements we now specify as h = [1.0, 0.18,−0.1, 0.091,−0.05, 0.04, 0.03, 0.01]. The
nonlinear distortion is modeled by the polynomial f(x) = x + 0.06x2 − 0.01x3, while the additive noise is parameterized as
ϵ0 ∈ N

(
0, 10

−SNR
10

)
. The coefficients in h and f are from the channel equalization task presented in Ref. [5]. We remove

the leading two coefficients of h which represent dependence on future two steps of message symbols. We also increase the
nonlinearity in quadratic part of f to make it non-invertible. Recovering m(n) from u(n) therefore requires a nonzero memory
time (to undo the linear kernel), nonlinear processing (to undo the polynomial f ), and filtering (to remove added noise). In this
simulated scenario where h(n) and f(x) are known, the distortion can be inverted up to the additive noise ϵ0, thus providing a
theoretical bound on the minimum achievable error rate.

We select a (2+4) qubit reservoir, namely with M = 2 memory qubits and R = 4 readout qubits. The NISQRC Hamiltonian
is as given in Eq. (7). We now also detail hyperparameters defining this Hamiltonian for the instance analyzed in Fig. 3 of the
main text. In unit of 1/τ , the single-qubit terms are defined by hyperparameters ηz = εzrms = 0.5 and ηx = εxrms = 2. The
interaction strengths Ji,i′ are uniformly sampled from [0, 1], but individual couplings are turned off when analyzing the different
QRC connectivities.

Finally, the R = 4 readout qubits imply that at each time step n we acquire K = 24 = 16 readout features {X̄j(n)}j∈[K]. A
final processing step is the application of a logistic regression layer to these QRC readout features,

yn = argmax
m∈{−3,−1,1,3}

σ(wm · X̄(n)). (62)

for computing and minimizing the cross-entropy loss, where w ∈ R4×K and X̄(n) ∈ RK . The results of testing using this
scheme are depicted in Fig. 3 of the main text.

We compare NISQRC error rates with two meaningful bounds in Fig. 3(a), those derived from the theoretical direct inverse
and numerical logistic regression. The lowest possible error rate is that achievable with the direct inverse, which assumes one
knows the distorting channel exactly: yDI,n =

∑
n1

h−1(n1)f
−1(u(n− n1)), where h−1 is the inverse of linear transformation

h. The noise term ϵ0 in Supplementary Equation 61 leads to a non-zero error rate for direct inverse.
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Supplementary Figure 6. Testing error rates for the CE task in the main text, Fig. 4 as a function of number of shots S using simulations of the
ibm algiers, now for varying qubit coherence times. Details on coherence time values are provided in the text. For comparison, we plot the
testing error rate of logistic regression (yellow line), as well as random guessing (black dashed line).

As an upper bound we consider classical logistic regression applied to the current input value u(n), equivalent to a one-layer
perceptron with a softmax activation function. Specifically, we the output is yLR,n = argmaxm σ(wLR,m ·u(n)), where weights
{wLR,m}m∈{±1,±3} are trained by minimizing the cross-entropy loss over the same training set used for NISQRC. Since this
results in a linear and memory-less map, improvements in error-rate beyond this upper-bound indicate useful processing done
through NISQRC.

Supplementary Note 7: IBM Device simulations as a function of qubit coherence times

In this Supplementary Note we provide supplementary simulation results for the IBM device analyzed in the main text. From
Fig. 4(b) in the main text, we found that actual device results matched ideal results (in the absence of any losses) very well. Since
we are primarily interested in the role of finite qubit coherence times, we now consider the role of a loss model that accounts for
finite qubit T1 and T2 times. In particular, we consider normal distributions T1 ∈ N (⟨T1⟩, σT1

). and T2 ∈ N (⟨T2⟩, σT2
) for the

L = 7 qubit chain. We start with an initial distribution of coherence times consistent with the actual ibm algiers device from
which experimental results are shown in the main text; here ⟨T1⟩ ≃ 100 µs, ⟨T2⟩ ≃ 170 µs, and σT1

= σT2
= 10 µs. We then

vary the average coherence times across four orders of magnitude (the standard deviations are also scaled by the same factor),
and simulate performance of the CE task analyzed in the main text; the resulting error rates are plotted in Supplementary Figure
6.

We note that for coherence times that are an order of magnitude shorter than the typical device coherence times, the CE
task performance is essentially unaffected. In fact, even for very low coherence times of ⟨T1⟩ ≃ 1 µs, around two orders of
magnitude shorter than device lifetimes, a nontrivial I/O map is retained by the NISQRC algorithm and the considered instance
of the CE task can still be performed (albeit with a testing error rate that now is marginally worse than that of single-step logistic
regression). For even lower coherence times the I/O map will ultimately become trivial as errors uncorrelated with the input
encoding start to overwhelm the dynamics of the system, and hence any outputs extracted from it.

Supplementary Note 8: IBM Device experiments under controlled delays

Fig. 4 of the main test shows the results of performing the CE task on the IBMQ device ibm algiers. With the circuit we have
employed, the total run time Trun approaches the average qubit T1 times on this device. In principle, the NISQRC algorithm
enables Trun to exceed T1 indefinitely provided T1 > n0

M required for the specific instance of the CE task. However, due to
limitations on the classical processing backend, the experiments are unable to be run for longer messages than N = 20 as of
present, so that Trun cannot be increased naturally by increasing N .

In this Supplementary Note, we present the results of an experiment used to artificially lengthen the total circuit run time
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Supplementary Figure 7. (a) Experimental testing error rates for the CE task in the main text, Fig. 4 under the inclusion of controlled delays to
increase total circuit run time much beyond individual qubit T1 times, Trun ≫ T1. Experiments are once again run on ibm algiers, with mean
qubit T1 times of ⟨T1⟩ = 155 µs. (b) For comparison, we plot the testing error rate of logistic regression (yellow line).

Trun by introducing controlled delays to the circuit. The circuit schematic we implement is shown in Supplementary Figure
7(a), with the grey block indicating delays added after each set of gate applications, measurement, and reset operations, except
after the final measurement. We consider delays that are typically much larger than the total time τ in each unit of evolution
under NISQRC. We emphasize that during the delay time, the qubits forming the QRC can experience decay due to their finite
lifetime. In the absence of delays, the circuit run time is Trun = 117 µs, as indicated in the main text. By introduce a delay of
Tdelay = 20 µs or Tdelay = 40 µs per unit (significantly longer than the unit evolution time τ ), the run time can be extended to
Trun = 497 µs or Trun = 877 µs respectively; the latter is almost an order of magnitude larger than the mean T1 = 155 µs.

The testing error rate achieved is shown in Supplementary Figure 7(b). Here we show the performance cumulatively aver-
aged over P permutations of the training and testing datasets, a standard cross-validation technique to remove fluctuations in
performance when having access to only small datasets, and one we use for all results in the main text. We note that even with
significantly longer run times, the device is able to beat logistic regression at the CE task. Increasing the delay from 20 µs to
40 µs per unit also does not significantly effect the performance, further highlighting the ability of NISQRC to overcome T1

limitations on run time.

We note that the absolute performance shown in Supplementary Figure 7(b) is achieved with a larger S ≃ 216 than the largest
value shown in Fig. 4 of the main text. The results in this Supplementary Note are calculated using data obtained several months
after the data in Fig. 4 of the main text. The slight reduction in performance observed can be attributed to drift in the device over
this time frame.

Supplementary Note 9: Lists of device parameters

Here we list device parameters used for producing Fig. 4(b) in the main text. All Rz gates are implemented as error-free
virtual rotation z gates. Since all qubits used form a line, all the CNOT gate errors in the table are indexed by the qubits with
small numbering in each control-target pair, therefore CNOT error is not applicable to the qubit 22. The averaged T1, T2 time
over the three experiments are T1 ≈ 124 µs and T2 ≈ 91 µs.
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Qubit 5 8 11 14 16 19 22
T1 (µs) 159± 43 142± 29 144± 32 164± 20 160± 35 127± 38 147± 42
T2 (µs) 96± 34 231± 30 32± 7 97± 4 68± 1 29± 7 163± 28√

X error (%) 0.026± 0.006 0.043± 0.027 0.081± 0.060 0.037± 0.018 0.037± 0.005 0.050± 0.016 0.020± 0.005
CNOT error
to next (%) 0.936± 0.571 1.028± 0.569 0.762± 0.228 6.850± 0.980 not reported 1.162± 0.251 N/A

Readout
error (%) 0.746± 0.150 0.855± 0.093 1.412± 0.617 1.865± 0.528 26.292±19.676 9.675± 0.789 1.129± 0.274

Readout
length (µs) 0.857\0.910 0.857\0.910 0.857\0.910 0.857\0.910 0.857\0.910 0.857\0.910 0.857\0.910

Supplementary Table 1. Device parameters for connected QRC with mid-circuit measurement and deterministic reset (purple line in Fig. 4(b) of
the main text). The calibrations to the CNOT gates between qubit 16 and qubit 19 are not successfully fitted, hence not reported by ibqm algiers
device. The re-calibration of readout length on July 14th, 2023, caused the pre\post values 0.857\0.910 µs, therefore the experiments for
different shots S have different readout lengths.

Qubit 5 8 11 14 16 19 22
T1 (µs) 63± 22 125± 29 115± 25 139± 32 90± 17 102± 19 120± 24
T2 (µs) 93± 12 192± 52 26± 2 66± 16 9± 1 51± 3 146± 32√

X error (%) 0.028± 0.005 0.020± 0.002 0.067± 0.025 0.028± 0.013 0.070± 0.010 0.030± 0.006 0.017± 0.001
CNOT error
to next (%) 0.591± 0.074 2.255± 1.018 2.256± 1.139 1.655± 0.254 3.386± 0.491 0.848± 0.058 N/A

Readout
error (%) 0.803± 0.108 0.771± 0.051 1.314± 0.349 3.561± 0.282 6.053± 1.643 2.546± 0.097 0.710± 0.084

Readout
length (µs) 0.910 0.910 0.910 0.910 0.910 0.910 0.910

Supplementary Table 2. Device parameters for split QRC with mid-circuit measurement and deterministic reset (brown line in Fig. 4(b) of the
main text).



17

Qubit 5 8 11 14 16 19 22
T1 (µs) 63± 29 137± 15 118± 20 154± 26 114± 13 85± 25 133± 13
T2 (µs) 75± 21 205± 39 26± 2 76± 8 10± 1 47± 7 159± 30√

X error (%) 0.035± 0.010 0.018± 0.001 0.072± 0.054 0.017± 0.002 0.075± 0.019 0.030± 0.002 0.017± 0.002
CNOT error
to next (%) 0.742± 0.321 0.954± 0.320 1.020± 0.264 1.564± 0.156 3.532± 0.605 0.840± 0.058 N/A

Readout
error (%) 1.014± 0.464 0.770± 0.088 1.299± 0.183 3.438± 0.418 5.556± 1.982 2.473± 0.133 0.818± 0.142

Readout
length (µs) 0.910 0.910 0.910 0.910 0.910 0.910 0.910

Supplementary Table 3. Device parameters for connected QRC with mid-circuit measurement, but without deterministic reset (green line in
Fig. 4(b) of the main text).
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