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We report multistate optical switching among high-order bouncing-ball modes (“ripples”) and whispering-
gallery modes (“petals”) of exciton-polariton condensates in a laser-generated annular trap. By tailoring the
diameter and power of the annular trap, the polariton condensate can be switched among different trapped modes,
accompanied by redistribution of spatial densities and superlinear increase in the emission intensities, implying
that polariton condensates in this geometry could be exploited for an all-optical multistate switch. A model based
on non-Hermitian modes of the generalized Gross-Pitaevskii equation reveals that this mode switching arises from
competition between pump-induced gain and in-plane polariton loss. The parameters for reproducible switching
among trapped modes have been measured experimentally, giving us a phase diagram for mode switching.
Taken together, the experimental result and theoretical modeling advance our fundamental understanding of the
spontaneous emergence of coherence and move us toward its practical exploitation.
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I. INTRODUCTION

Strong coupling between cavity photons and excitonic
resonances of quantum wells (QWs) placed inside the cavity
leads to the formation of new mixed eigenstates known as
exciton-polaritons (hereafter simply polaritons). They behave
as bosons with extremely low effective mass and overall
repulsive interactions. The photonic and excitonic fractions
can be varied by adjusting the relative detuning of photon and
exciton resonances, typically by varying the cavity width in a
wedged sample structure. This allows direct control over the
polariton-polariton interaction strength, which increases with
the excitonic fraction.

Polaritons provide a unique testbed for the study and manip-
ulation of macroscopic quantum effects. Quantum phenomena
such as Bose-Einstein condensation have been reported from
liquid-helium temperature [1–3] up to room temperature [4–7]
in various systems. This not only allows the investigation of
quantum phenomena at elevated temperatures in a convenient
fashion, but also presents exciting opportunities to create
all-optical polaritonic devices. As a consequence, great efforts
have been devoted to the development of techniques for
manipulating the properties of microcavity polaritons [2,8–16].

Previous experiments on Bose condensation of polaritons
were usually performed with the photonic resonance close to
the excitonic resonance, which resulted in highly excitonic
characteristics of polaritons, namely, strong interactions with
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each other and with the lattice. Together with short cavity
lifetimes, this has limited the distance polaritons could prop-
agate [14–17]. The development of new structures with much
longer cavity photon lifetimes, from 20 to 30 ps [11] to well
over 100 ps [18–21], has allowed the possibility of polariton
propagation over macroscopic distances. This property was
recently used to measure the polariton-polariton interaction
strength in a region with no free excitons [22].

In the present work, we generated polaritons with high
photonic fractions by choosing a region of the wedged sample
with large negative cavity detuning. Their highly photonic
nature allowed the polaritons to propagate coherently over long
distances to form condensate states with radial extent up to
50 μm inside a trap formed by an annular pattern of excitation
light. While interactions of polaritons in this case are not
strong enough for them to thermalize into an equilibrium gas,
they still play an important role. The interactions of polaritons
with excitons in the pump region cause the polaritons to feel
a confining potential, which in turn allows them to undergo
Bose-Einstein condensation in the trap. Furthermore, nonlinear
polariton-polariton interactions result in switching and mixing
among different condensate modes at high pump powers. The
spatial distributions of these modes vary dramatically with very
small changes of the excitation densities and patterns, but are
temporally very stable as long as the excitation power is stable.
This stability has allowed us to map out the phase boundaries
between different modes in our optical trap. Upon state switch-
ing with increasing excitation power, the emission intensities
from the condensates also increase in a superlinear fashion. The
large changes not only allow us to experimentally distinguish
different quantum states, but also strongly suggests the use of
polaritons in all-optical multistate switching applications.
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Previous works have seen in some cases the “petal” struc-
tures described here [15,17], and other works have observed
the “ripple” structures described here [13,16,23] in structures
with shorter polariton lifetime, but no prior work has shown
how to switch between the two structures, or their intrinsic re-
lationship. Another study [11,24] also showed similar patterns
in a one-dimensional etched structure, but with multimode
behavior instead of stable switching between modes, possibly
due to shorter lifetimes. In Ref. [15], a channel formed by
two concentric rings of excitation light was used to generate
two counterpropagating condensates. We find that the same
patterns can be generated without the need for a channel. This
indicates that the competition between pump-induced gain
and in-plane polariton loss, without the need for a confining
channel, can control the petal patterns that emerge.

II. EXPERIMENTAL OBSERVATIONS:
PETALS AND RIPPLES

The microcavity used in this work is a GaAs-based mi-
crocavity structure grown by molecular beam epitaxy. The
cavity has a large number of distributed Bragg reflector layers
that leads to cavity lifetime of 135 ps and polariton lifetime
of 270 ps at resonance [19,25]. This allows polaritons to
propagate over macroscopic distances of up to millimeters. The
sample was thermally attached to a cold finger in an open-loop
cryostat which was stabilized at 10 K. The excitation laser is
a continuous-wave (cw) laser, which was modulated by an
acousto-optic modulator at 1 kHz with a duty cycle of 0.5%
to prevent unwanted sample heating. The annular trap was
generated by shaping the phase front of the cw laser using
a high-resolution spatial light modulator (SLM). Because of
the eccentricity in the pump profile, which is approximately
0.3, the diameters reported here are geometric means of the
lengths of major and minor axes of the pattern. We find that
the symmetry-breaking direction of the pattern formation is
not related to the pump eccentricity. The photoluminescence
of polaritons was collected in a reflection geometry using an
objective lens with a numerical aperture of 0.28, and was relay
imaged to a spectrometer CCD. The energy-resolved emissions
were obtained by spectrally dispersing a specific slice of either
the far-field or near-field image selected by the entrance slit of
the spectrometer CCD.

Annular-shaped beams with diameters ranging from 21 to
54 μm were used to excite the high-Q microcavity structure.
The laser beam was tuned to about 140 meV above the band
gap of the GaAs QW; therefore, it essentially generated
free carriers, which subsequently relaxed down to exciton
and polariton states. The cavity detuning was h̄δ = Ecav(k =
0) − Eexc(k = 0) = −25 meV, which corresponds to lower
polaritons that are 6% excitonic and 94% photonic. Petals and
ripples were formed inside the excitation annulus, with radial
extent up to 50 μm. In theory, if not limited by the pump power,
higher-order condensate states with length scales on the order
of millimeters [19] could be realized in this high-Qmicrocavity
structure, making them entirely visible by eye.

“Petals” as defined here are whispering-gallery modes
in the annular trap, quantized in the azimuthal direction.
Figure 1 shows the emission patterns from an annular trap
with a diameter of 41 μm. Below the condensation threshold,
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FIG. 1. Petal with 28 lobes in an annular trap with a diameter
of 41 μm. (a), (b) Polariton density distribution below (a) and above
(b) condensation threshold. The white solid line in (a) indicates the
direction of the cavity energy gradient (photon energy decreasing
from bottom right to top left), and the white dashed line in (b)
shows the position of the annular pump. (c), (d) Polariton momentum
distribution below (c) and above (d) condensation threshold. (e),
(f) Energy-resolved polariton density distribution at x = 0 below
(e) and above (f) condensation threshold. (g), (h) Energy-resolved
polariton momentum distribution at kx = 0 below (g) and above (h)
condensation threshold. All results are normalized to 1 except for (a)
and (b).

polaritons remain in the vicinity of the pump region, as shown
in Fig. 1(a). The asymmetry in the density distribution is
largely due to inhomogeneity of the pump intensity profile.
Figure 1(c) shows the momentum distribution of the polaritons
below the condensation threshold. Because the photonic mode
in the microcavity has an energy gradient of 11 μeV/μm along
the white solid line in Fig. 1(a), there is a net flow of polariton
fluid along this energy gradient, as evidenced by the accu-
mulation of the polariton densities with in-plane wave-vector
components at (kx,ky) = (−1 μm−1,1 μm−1) in Fig. 1(c). The
cavity gradient can also be identified from the energy-resolved
emission profile in Fig. 1(e) at low pump powers. In this plot,
the x = 0 slice of Fig. 1(a) was projected onto the entrance slit
of the spectrometer CCD and then spectrally dispersed. The
propagation effect can also be identified in the energy-resolved
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FIG. 2. Ripple with seven lobes in an annular trap with a diameter
of 33 μm. (a), (b) Polariton density distribution below (a) and above
(b) condensation threshold. The white solid line in (a) indicates the
direction of the cavity energy gradient (photon energy decreasing
from bottom right to top left), and the white dashed line in (b)
shows the position of the annular pump. (c), (d) Polariton momentum
distribution below (c) and above (d) condensation threshold. (e),
(f) Energy-resolved polariton density distribution at x = 0 below
(e) and above (f) condensation threshold. (g), (h) Energy-resolved
polariton momentum distribution at kx = 0 below (g) and above (h)
condensation threshold. All results are normalized to 1 except for (a)
and (b).

k-space emission profile as a smeared dispersion, which has
been reported in Ref. [18] with the same sample structure.

When the excitation density is above the condensation
threshold, polaritons propagate toward the center of the trap
and form the petal state inside the excitation ring. The position
of the pump annulus is plotted in Fig. 1(b) as the white dashed
line. The petals demonstrate nodal structures similar to those
of the high-order whispering-gallery modes in lasers, with
the density accumulation at (kx,ky) = (−1 μm−1,1 μm−1).
The petal structure is also observed in momentum space as
expected since the condensate is a coherent state and the
density distributions in position space and momentum space
are Fourier-transform related. The real-space emission from
the (x,y) = (0 μm, 17 μm) region, for example, corresponds
to the emission at (kx,ky) = (±0.83 μm−1,0 μm−1) in k space.

The real-space distance between the lobes of the petal struc-
ture matches the period of the interference pattern given by
d = 2π/�kx = 3.8 μm. The energy-resolved measurements
show narrower emission spectra from the condensates than
from polaritons below the condensation threshold. Above the
threshold, the energy of emission from petals is higher than
emission from uncondensed polaritons that have flowed to the
center of the annular trap, as seen in Fig. 1(f).

Unlike petals, “ripples” as defined here are radially confined
bouncing-ball modes in the annular trap. In Fig. 2(a), we plot
the emission profiles observed when an annulus with a diameter
of 33 μm was used to excite the microcavity. Below the con-
densation threshold, the distributions of polaritons in real and
momentum space show very similar signatures to those in the
previous case. Confined ripples appear above the condensation
threshold, as shown in Fig. 2(b). Similar patterns have been
studied in quantum chaotic systems where they were termed
as bouncing-ball modes [26]. In k space, we observed two large
populations of polaritons at kx = ±0.73 μm−1 indicative of the
ripple mode, together with several other k states with a smaller
but not negligible amount of polaritons. This suggests that the
ripple pattern in Fig. 2(b) can be seen as the interference of
paired momentum states, where the period of the interference
pattern is given by d = 2π/�kx = 4.3 μm, matching the real-
space distance between the lobes of the ripple. Figures 2(f)
and 2(h) show energy-resolved emission along the vertical
slices x = 0 and kx = 0 in Figs. 2(b) and 2(d), respectively.

In this work, higher-order condensate states appear at a
lower threshold than the lowest-order condensate state at
(x,y) = (0,0) and (kx,ky) = (0,0), unlike the case in Ref. [22]
where the polaritons had higher exciton fractions of 20%–80%,
compared to 6% in this work. In that case the balance among
stronger interactions, slower transport, and longer lifetimes
favors the lowest-order spatial profile. In the present work, the
balance between polariton leakage from the pump region and
polariton gain from the reservoir determines whether ripples or
petals will define the lowest-threshold mode; this is expanded
in Sec. IV.

III. PHASE DIAGRAM OF CONDENSATE MODES

The condensate can be switched among various petal and
ripple states by varying the pump power and diameter. In the
top panel of Fig. 3, we show the integrated emission intensity
in the field of view as a function of the laser pump power.
The emission intensity undergoes several distinct sharp jumps,
which are marked by the red lines, and increases by five orders
of magnitude when the pump power is increased by only
an order of magnitude. The real-space density distributions
corresponding to the green dots in the top panel are shown in
Figs. 3(a)–3(f). We clearly identify that the jumps in emission
intensity are accompanied by redistributions of the real-space
densities, that is, by mode switching.

In Fig. 3(a), the excitation level is below the condensation
threshold, and the polariton distribution follows the excitation
pattern, similar to those in Figs. 1(a) and 2(a). Figure 3(b)
shows just below the onset of a higher-order state. In Fig. 3(c),
a three-lobe ripple mode appears. Figures 3(d) and 3(e) show
mixtures of both petals and ripples. Numerical simulations
discussed in Sec. IV suggest that petals and ripples coexist
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FIG. 3. Mode switching in an annular trap with a diameter of
21 μm. Top panel: integrated emission intensity as a function of the
laser pump power. Pump power at the sample is reduced to 36% of the
power reported in the horizontal axis due to the overall efficiency from
optics and SLM. The red lines indicate boundaries between different
modes. The green circles are selected pump power levels for which
the real-space density distributions of the modes are shown in (a)–(f).

at this power due to interactions between these states. As
shown in Fig. 3(f), when the system was pumped very hard,
the lowest-order condensate mode has the lowest threshold
and is dominantly occupied over all other modes. This power
tunability of mode switching not only allows us to distinguish
different high-order modes, but also suggests that polariton
condensates in the annular trap can be implemented in device
applications for a stable multistate switch. With finer control
of the pump power and diameter, we believe more states can
be accessed independently.

In order to fully characterize the phase boundaries between
different quantum states, we recorded the real-space polariton
density distributions with excitation ring diameters ranging
from 21 to 54 μm and the laser pump powers ranging from
50 mW to 1 W (18 to 360 mW at the sample due to the overall
efficiency from optics and SLM). Because of the stability of
the distributions and the superlinear increase in the emission
intensities as shown in Fig. 3, we were able to classify different
quantum states at different pump conditions. The resulting
phase boundaries are shown in Fig. 4(a). In this plot, different
colors are assigned to different types of states with distinct
spatial distributions: the white region represents uncondensed
polaritons; purple and blue stand for pure ripples and ripples
mixed with petals, respectively; pure petals are shown in red,
while petals mixed with ripples are in red-orange; filled plateau
states, where polaritons fill in the entire trap area with relatively
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FIG. 4. (a) Phase diagram of condensate modes in an annular
trap. Different colors correspond to different types of state (separated
approximately by black lines, which are continuous although the
data set is discrete): pure ripples are in purple, ripples mixed with
petals are in blue, pure petals are in red, petals mixed with ripples
are in red-orange, filled plateau states are in orange-yellow, and
single-mode condensate is in yellow, as depicted in the color bar. The
white region represents uncondensed polaritons. The two color bars
represent the two halves of the figure, separated by the vertical dashed
line (the accompanying yellow line is an artifact of color averaging).
Representative spatial distributions indicated by white dots in (a) are
shown in (b)–(e).

even density distribution (but with negligible densities at and
outside the pump region), are represented by the yellow-orange
region. Based on our numerical simulations, mixed modes are
a direct consequence of the interaction between high-order
modes with very close thresholds, rather than being artifacts
from time-integrated measurements. The lowest-order single-
mode condensate states, coded as yellow, occupy the top left
region of the phase diagram. The artificial yellow vertical line at
33 μm pump diameter is due to averaging of the different color
settings [left and right color bars in Fig. 4(a)], which shows
that ripple modes are favored below 33 μm, while petal modes
are formed first above 33 μm. Black lines show approximate
phase boundaries, which are continuous although the data set
is discrete. Both petals and ripples exist in a narrow range of
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the phase diagram because of an abrupt increase in polariton
densities within a small increase of pump power. This indicates
that switching among polariton condensate states in the optical
trap is very sensitive, i.e., a very low power is needed to switch
between the high-order states.

Based on this phase diagram, we can identify that for a
given pump power, ripples and petals will show up successively
as the lowest-threshold modes by increasing the size of the
ring, and the phase boundary for the lowest-threshold modes
is approximately linear, both of which will be explained in the
following theory section. The condensate mode can be easily
tuned by changing the pump diameter and/or the pump power,
as shown in Figs. 4(b)–4(e). The measured phase boundaries
should serve well to calibrate the implementation of an exciton-
polaritonic multistate switch by making use of the high-order
quantum states.

IV. THEORY AND NUMERICAL SIMULATION
OF PATTERN FORMATION

The dynamics of polariton condensate under incoherent
pumping can be described using a Gross-Pitaevskii equation
(GPE) for the condensate wave function �(r,t), together with
a dynamical equation for the density of the pump-generated
exciton reservoir nR(r,t), a complex system of coupled nonlin-
ear partial differential equations (PDEs). For pumping below
threshold, however, where no stable condensate mode exists, it
suffices to study the GPE linearized in the condensate density;
using further the steady-state result for the reservoir density,
this leads us to the linear dynamical equation (for details, see
Appendix A):

i
∂�

∂t
=

[
− ∇2

2m
+ gR

γR

Pf (r) + i

2

(
R

γR

Pf (r) − γc

)]
�

≡ HL(P )�, (1)

whereHL(P ) is the linear, non-Hermitian generator describing
condensate dynamics. Its non-Hermiticity arises from polari-
ton decay (rate γc) and gain through stimulated scattering from
the pump-generated reservoir (rate R), while the real-valued
potential represents reservoir-condensate repulsion (∝gR). P

and f (r) are, respectively, the strength (related to exciton
generation rate) and spatial profile of the pump. Eigenmodes
of HL(P ) represent fluctuations around the uncondensed state
at pump power P , and the imaginary parts of their eigenvalues
describe the net polariton gain [27]. For the nth mode, beyond
a power Pn its eigenvalue acquires a positive imaginary part:
gain overcomes polariton loss and the fluctuations are unstable,
corresponding to a condensing mode with frequency given by
the real part of its eigenvalue. By varying the pump power, a
set of such spatial modes {ϕn(r; Pn,ωn)} can be obtained, with
linearized power thresholds {Pn} and real frequencies {ωn}.

This linearization is exact until condensation first occurs,
and thus the linearized mode with lowest threshold holds
special significance: it is the actual mode first seen upon
condensation. Naturally, the following question arises: what
determines the spatial mode with lowest condensation thresh-
old? Using a continuity equation for the condensate density
derived from the GPE, it is possible to arrive at a simple formula
for the linearized threshold Pn for condensation of the nth
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FIG. 5. (a) Ratio of power thresholds for the lowest threshold
ripple mode to the lowest threshold petal mode; when the ratio is
less than one (green shaded region) the ripple mode is the lowest
threshold mode. Top panel: chosen linear threshold modes (petal and
ripple modes), for which, as a function of pump diameter, we plot (b)
linear threshold power P/P0Am where Am is the area of the largest
trap used in the experiment, (c) overlap Gn, and (d) relative loss γn/γc.
White dashed line in the top panel indicates the pump boundary ∂P .

mode [28]:

Pn

P0
= 1 + γn/γc

Gn

, P0 = γcγR

R
, (2)

where

γn

γc

∝
∫

∂P
�j · d�s, Gn ∝

∫
P

|ϕn(r)|2f (r)d2r. (3)

For a given mode, the threshold is determined by (i) in-plane
loss γn relative to mirror loss γc, the former being the flux of
probability current �j flowing out across the outer pump edge
∂P [see Fig. 5(a)], and (ii) Gn, a dimensionless measure of the
overlap between the mode and the pump within the region P
enclosed by this pump edge. We choose

∫
P |ϕn(r)|2 = 1; the

resultant scaling of ϕn(r) means both γn/γc and Gn decrease
with pump size. Also, f (r) is normalized such that Pf (r) is
the pump density in area P . The mode with lowest threshold
minimizes Eq. (2) by maximizing overlap with the pump to
benefit from amplification, while still having low density near
∂P to reduce the relative loss. Note that for modes with smaller
relative loss γn/γc, the overlap becomes more important in
determining the threshold.

We study the linear modes of HL(P ) for a range of pump
diameters of the experimental profile. We plot the ratio of linear
thresholds for the lowest threshold petal mode to the lowest
order ripple mode in Fig. 5(a). Below a critical pump diameter
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(∼28 μm in the simulation and ∼33 μm in the experiment), the
lowest threshold mode is a ripple mode [green shaded region
in Fig. 5(a)], while beyond this pump diameter, petal modes
are favored for condensation over ripple modes.

To understand this observation, we study the difference
between the two types of observed condensate modes. We
focus on one low-order and one higher-order mode of each
type; these are shown in the top panel of Fig. 5. The two
petal modes are labeled Petal 8 and Petal 14, indicating the
number of lobes in each mode’s spatial distribution; similarly
chosen ripple modes are labeled Ripple 3 and Ripple 6. For
these modes, we plot their linear thresholds in Fig. 5(b), and
the overlap and relative loss characteristics in Figs. 5(c) and
5(d), respectively, all as a function of pump diameter. We find
that in general, petal modes have both stronger overlap with
the pump-generated reservoir, and stronger in-plane loss; this
makes intuitive sense, since these modes are more localized
near the pump boundary. However, we see that relative loss
for all modes decreases with an increase in pump diameter, as
shown in Fig. 5(c); physically, this signifies that in-plane loss
at the pump edge (which scales with circumference) becomes
increasingly less important relative to the total mirror loss
(which scales with condensate area). Due to this scaling, there
exists for each mode a large enough pump diameter at which its
relative loss is small, and hence where its overlap Gn primarily
determines its threshold; in this competition, petal modes have
an advantage over ripple modes.

We can now explain the transition in thresholds seen in
Fig. 5(a). For small enough pump diameters, γn/γc for all petal
states is large enough for them to have higher thresholds than
a ripple mode, even though their pump overlap is stronger.
As pump diameter increases, γn/γc decreases; at a critical
pump diameter, some petal mode has low enough loss for
the stronger overlap to pull its threshold down below that of
the competing ripple mode. For annular profiles, a transition
diameter will always exist due to the scaling of in-plane loss
relative to mirror loss described earlier; the particular diameter
depends on details of the profile. A similar explanation applies
for higher-order states: these tend to have stronger overlap but
also higher relative loss, so that larger pump diameters are
needed until γn/γc is small enough for the strong overlap to
encourage condensation into these modes. Finally, we note that
overlap Gn decreases as pump diameter increases [Fig. 5(b)]
since the pump density Pf (r) in regionP goes down for a fixed
annular pump width. From Eqs. (2) and (3), this decrease in Gn

increases Pn with pump diameter; we find the simulated lowest
threshold boundary is in good agreement with the experimental
phase diagram [Fig. 4(a)].

Going beyond the condensation threshold, where lineariza-
tion is no longer strictly valid, requires full simulation of
the coupled nonlinear PDEs over a large spatiotemporal grid;
the large condensate sizes (up to ∼50 μm) observed in the
current work, together with polariton wavelengths (∼1 μm)
that demand fine spatial (and hence temporal) resolution,
make such simulations very computationally expensive here.
We circumvent this issue by expanding the condensate wave
function in a pump-power-dependent, non-Hermitian basis,
with time-dependent coefficients. Integrating out the spatial
dependence then reduces the full nonlinear GPE and reservoir
dynamical equation to a set of coupled ordinary differential
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FIG. 6. Simulations including nonlinear interactions and pump
depletion, based on a modal expansion of the Gross-Pitaevskii
equation. Plotted is the time-averaged condensate density as a function
of increasing pump power from left to right. Note the different color
scale in each plot, indicating increasing condensate density with pump
power.

equations, an effective nonlinear coupled mode theory for
condensate and reservoir dynamics. In comparison to the usual
Fourier split-step spatiotemporal integration of the GPE, this
represents a substantial simplification [29]. For the choice of
basis, it makes sense to use the computed linear threshold
modes {ϕn(r; Pn,ωn)} that are in a quantifiable sense the
preferred configurations by the polaritons for a given f (r).
We use these modes to construct a complete, biorthogonal,
non-Hermitian basis set {φn(r; P )} that accounts for all the
spatial complexity of the linearized condensate problem.
Applying to the specific case of a pump of diameter 26 μm,
we employ this coupled mode theory and compute the time-
averaged condensate density 〈|�|2〉t . The results are plotted
as a function of increasing pump power from left to right
in Fig. 6. Our simulations reveal mixing of lowest-threshold
modes beyond threshold, when polariton-polariton interactions
within the condensate become important; in particular, we
reproduce qualitatively similar results to the experimentally
observed coexistence of petal and ripple states shown in Fig. 3.
Simulations for even the smallest pump diameter become
resource intensive when many modes start interacting, with
increasing pump power.

We emphasize that both the linear theory and its predicted
transition diameter from ripple to petal modes, as well as
the nonlinear simulations depend on precise details of the
experimental system and pump profile, as well as interaction
parameters such as reservoir repulsion strength gR and am-
plification rate R. Furthermore, the nonlinear theory is also
found to be rather sensitive to the polariton-polariton repulsion
strength and reservoir relaxation rate γR . Uncertainties in these
quantities mean that we can only reasonably expect to capture
qualitative details of the experiment, as shown here.

V. CONCLUSION AND OUTLOOK

We have seen the stable formation of high-order quantum
states under nonresonant excitation, including ripples, petals,
and their mixtures, with a well-defined phase diagram in the
pump parameter space. Petals are whispering-gallery modes
while ripples are confined bouncing-ball modes in the annular
trap. The all-optical trapping allows facile switching among
these condensate states in the trap, accompanied by superlinear
increases in the emission intensities.
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The measured patterns bear some similarity to the multiple
modes seen in standard vertical-cavity surface-emitting lasers
(VCSELs), e.g., the petal patterns seen in Ref. [30]. However,
in typical lasers and VCSELs, the system hops uncontrollably
between different modes, leading to unwanted noise (e.g.,
Ref. [31]). The nonlinear interactions in the polariton conden-
sate system stabilize the modes to resist multimode behavior.
This means that this system acts effectively as a multistable
optical switch, in which transitions between states can be
controlled by small changes of the input light beam.
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APPENDIX A: GROSS-PITAEVSKII EQUATION
AND LINEARIZATION

We use a generalized GPE to describe the dynamics of
microcavity exciton-polaritons under incoherent pumping. In
this standard approach [32], the nonlinear interactions of
polaritons within the condensed fraction are treated at the
mean-field level, while pumping and losses are introduced as
complex-valued terms, so that the generalized GPE for the
dynamics of the condensate wave function �(r,t) has the form

i
∂�

∂t
=

[
− ∇2

2m
+ gRnR + i

2
(RnR − γc) + g|�|2

]
�, (A1)

where for clarity we have suppressed the (r,t) dependence
of the polariton wave function and the density nR of the
pump-generated exciton reservoir. This reservoir gives rise
to a repulsive term describing the interaction of condensate
polaritons with reservoir excitons, with strength gR , together
with an amplification of the condensed fraction via stim-
ulated scattering from the reservoir at rate R. This latter
gain contribution together with the inclusion of polariton
mirror loss at rate γc make the effective generator describing
condensate dynamics non-Hermitian in this case. Finally, the
polariton-polariton repulsion within the condensate appears as

the nonlinear term ∝g at the mean-field level. The dynamics
of the pump-induced reservoir must also be accounted for by
a dynamical equation of the form

∂nR

∂t
= Pf (r) − RnR|�|2 − γRnR. (A2)

P and f (r) are the pump strength and spatial profile as
described in the main text, the source of the exciton reservoir.
The aforementioned scattering from the exciton reservoir into
the condensate at the rate R causes a depletion of the reservoir,
which is encapsulated in the second term on the right-hand
side. Reservoir losses that occur via mechanisms other than
scattering into the reservoir (e.g., recombination losses) are
described by γR .

For pumping below the condensation threshold, the system
has a steady state with a pump-generated exciton density and an
uncondensed polariton state. The steady-state reservoir density
in this regime can be obtained after linearizing Eq. (A2) by
dropping nonlinear terms of order |�|2; in this steady-state
regime the exciton reservoir density adiabatically follows the
pump:

nR(r,t → ∞) = P

γR

f (r). (A3)

Below threshold, a linearization of the GPE is also valid; we can
replace nR(r,t) by its linearized steady-state value, and neglect
the nonlinear polariton-polariton interactions ∝g. This yields
the linearized GPE for condensate dynamics, Eq. (1) of the
main text.

We now analyze steady-state condensate formation in the
linearized regime. In particular, if we consider a single fre-
quency steady-state ansätz for the condensate wave function,

�(r,t) = ϕn(r)e−iωnt , (A4)

the linearized GPE in Eq. (1) of the main text becomes

HL(P )ϕn(r) =
[
− ∇2

2m
+ gR

γR

Pf (r) + i

2

R

γR

Pf (r) − i

2
γc

]

ϕn(r) = ωnϕn(r). (A5)

The condensate wave function for a single-frequency ωn

condensate is therefore the nth eigenmode of the generator
of linearized dynamics, HL(P ). We require ωn to be a purely
real frequency for the steady-state solution to correspond to
a nontrivial condensate mode; we will now discuss how this
requirement determines the power threshold for a given spatial
mode. For simplicity, we rewrite the above eigenproblem in
the form

[−∇2 + sPf (r)]ϕn(r) = q2ϕn(r) (A6)

where we have introduced the pump-induced potential s

s

2m
= 1

γR

(
gR + i

2
R

)
(A7)

and the “wave vector” q(ωn) is defined by

q2(ωn)

2m
≡ ωn + i

2
γc. (A8)

To determine the eigenmodes of HL(P ), the above eigenprob-
lem must be formulated as an appropriate boundary value
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FIG. 7. Flow of (complex) eigenvalues of the linear non-
Hermitian generator HL(P ) as a function of pump power P across
the complex plane, computed for a fixed outgoing frequency �. The
flow direction is indicated by the arrow; eigenvalues approach the real
axis from below as the pump power is increased. The lowest-threshold
mode is indicated in blue. It reaches the real line for the smallest pump
power, and has a real frequency ωn equal to the imposed outgoing
frequency �.

problem (BVP); we make the following choice:

[−∇2 + sPf (r)]ϕn(r) = q2(ωn)ϕn(r), r ∈ P,

−∇2ϕn(r) = q2(ωn)ϕn(r), r /∈ P, (A9)

where P is the region enclosed by the outer edge ∂P of
the pump, as defined in the main paper. Note here that we
impose an “outgoing” boundary condition with wave vector
q(ωn) at the pump edge ∂P , as opposed to the more usual
case of considering a boundary far from the pump where the
condensate wave function is vanishingly small and standard
Dirichlet boundary conditions can be employed. For the large
condensate sizes considered here, the latter approach would
require simulating a very large spatial grid, making computa-
tion times inconveniently long. Our approach allows the use
of a minimally relevant grid size. This occurs at a relatively
minor expense: the outgoing wave vector imposed via this
boundary condition depends on the unknown eigenvalue ωn,
and this BVP therefore needs to be solved self-consistently. To
do so, we fix the outgoing wave vector by choosing an outgoing
frequency �:

[−∇2 + sPf (r)]ϕn(r) = q2(ωn)ϕn(r), r ∈ P,

−∇2ϕn(r) = q2(�)ϕn(r), r /∈ P . (A10)

It is now a straightforward matter to solve this BVP for a
range of (increasing) values of the pump power at a fixed
�; as a result, one obtains a set of eigenmodes {ϕn(r)} and
eigenfrequencies {ωn(P )} of HL(P ). These generally complex
frequencies {ωn(P )} flow across the complex plane as the
pump power is varied; an example of this flow is shown in
Fig. 7. For a certain pump power Pn, the nth eigenfrequency
ωn crosses the real axis (becomes real). The imaginary part
of ωn represents net loss, so its becoming zero implies that
gain overcomes polariton loss at this pump power, and the
associated eigenmode is an unstable fluctuation around the
uncondensed polariton state. Furthermore, if the (now real)

frequency is also equal to the imposed outgoing frequency,
that is, ωn = �, the wave vector q(ωn) is equal both inside and
outside the pump region P . The self-consistency condition is
therefore simultaneously fulfilled, and the corresponding nth
eigenmode ϕn(r; ωn,Pn) represents a true condensate mode
with real frequency ωn and linearized power threshold Pn. By
varying the outgoing frequency �, and computing eigenvalues
as a function of pump power, a set of such linear threshold
modes {ϕn(r; ωn,Pn)} can be obtained.

APPENDIX B: CONTINUITY EQUATION
AND LINEAR THRESHOLD FORMULA

From the linearized dynamical equation for the condensate
wave function, it is possible to obtain an equation for the
dynamics of the condensate density, |�|2. In particular,

∂|�|2
∂t

= �∗ ∂�

∂t
+ c.c. (B1)

From the generalized GPE [Eq. (A1)], it is easily found that

�∗ ∂�

∂t
= i

2m
�∗∇2� +

{
−igRnR − ig|�|2

+ 1

2
(RnR − γc)

}
|�|2, (B2)

and so

∂|�|2
∂t

= i

2m
(�∗∇2� − �∇2�∗) + RnR|�|2 − γc|�|2.

(B3)

The first term on the right-hand side has the form of the
divergence of a probability current; this can be made more
explicit by defining the probability current �j as

�j = i

2m
(� �∇�∗ − c.c.) (B4)

following which the condensate density dynamics is governed
by the equation

∂|�|2
∂t

= RnR|�|2 − ∇ · �j − γc|�|2, (B5)

which has the well-defined form of a continuity equation. In
particular, the above equation can be put into a more practical
form by integrating over the area P of the region enclosed by
the outer pump edge,

∂

∂t

∫
P

d2r|�|2 = R

∫
P

d2r nR|�|2

−
∮

∂P
�j · d�s − γc

∫
P

d2r|�|2, (B6)

where the divergence theorem allows the term involving �j
to be rewritten as a flux integral. This equation has a simple
interpretation: any increase in the total number of polaritons (∝∫
P d2r|�|2) within the pump region comes from amplification

via the exciton reservoir, at rate R. Losses to the polariton
number can be attributed to either the mirror loss γc, or a
leakage of the condensate from the pump edge. Since we are
integrating within the outer pump edge ∂P , beyond which by
definition no source of polariton production exists, there can
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be no incoming probability current that would increase the
polariton number within the pump region.

Now, we narrow our focus to the linearized regime, where
the reservoir density nR = Pf (r)/γR as shown earlier. Further-
more, we consider a single-mode solution such that �(r,t) =
ϕn(r; ωn,Pn)e−iωnt , where ϕn(r; ωn,Pn) is the eigenmode of
HL(Pn) that has (real) eigenfrequency ωn. For simplicity, we
suppress the parameters defining ϕn in what follows. With
this ansätz, the condensate density is time independent and
the above continuity equation reduces to

R

γR

P

∫
P

d2r f (r)|ϕn|2 =
∮

∂P
�j [ϕn] · d�s + γc

∫
P

d2r|ϕn|2.
(B7)

Here, the probability current �j [ϕn] is now evaluated for
the eigenmode ϕn, as in the main text. Now, defining the
condensate density ρn, pump overlap Gn, and in-plane loss γn,

respectively, as in the main paper,

ρn =
∫
P

d2r|ϕn|2, (B8)

Gn = 1

ρn

∫
P

d2r f (r)|ϕn|2, (B9)

γn =
∮

∂P
�j [ϕn] · d�s, (B10)

we can recover the linear threshold formula [Eq. (2) of the
main text]:

Pn

P0
= 1 + γn/(ρnγc)

Gn

≡ 1 + 
n

Gn

(B11)

with Pn being the linear threshold power for the nth mode and
P0 = (γcγR)/R.
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