
Negative electrohydrostatic pressure between superconducting bodies

Thomas J. Maldonado,1, ∗ Dung N. Pham,1 Alessio Amaolo,2 Alejandro W. Rodriguez,1 and Hakan E. Türeci1
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Despite being largely limited to bulk phenomena, well-known theoretical models of superconduc-
tivity like the Bardeen–Cooper–Schrieffer and Ginzburg–Landau theories have played a key role in
the development of superconducting quantum devices. In this letter, we present a hydrodynamic
non-relativistic scalar electrodynamic theory capable of describing systems comprising supercon-
ducting materials of arbitrary shape and apply it to predict the existence of a negative (attractive)
pressure between planar superconducting bodies. For conventional superconductors with London
penetration depth λL ≈ 100 nm, the pressure reaches tens of N/mm2 at angstrom separations.

In conventional superconductors, steady-state bulk
phenomena are accurately described by both the
Bardeen-Cooper-Schrieffer (BCS) [1] and Ginzburg-
Landau (GL) [2] theories. The former provides a mi-
croscopic origin for superconductivity via the phonon-
mediated pairing of electrons into bosonic quasiparticles
known as Cooper pairs, while the latter provides a phe-
nomenological description of the resulting Bose-Einstein
condensate [3] with a macroscopic order parameter rep-
resenting its mean-field wave function. The two theories
were shown to be equivalent near the superconducting
critical temperature [4], and both reproduce the London
theory [5]. Though the BCS theory is sufficiently gen-
eral to predict time-dependent bulk phenomena, an effec-
tive macroscopic theory is desirable when such effects are
triggered by electromagnetic sources in spatially inhomo-
geneous domains. To this end, generalized GL equations
have been proposed to capture boundary and wave effects
present in complex geometries [6], but a consensus has
not been reached on their validity far below the critical
temperature, a regime all too familiar to the burgeoning
area of superconducting quantum devices [7].

In this letter, we present and explore predictions
offered by a hydrodynamic representation of non-
relativistic scalar electrodynamics applied to the super-
conducting order parameter at zero temperature. Few
attempts have been made to solve this model’s equations
of motion (EOM) exactly [8], but simplified versions have
been considered via relaxations of minimal coupling [9–
12] and can be credited as the underpinning of Josephson
phenomena and circuit quantum electrodynamics [13].
Such approximate descriptions of light-matter interac-
tions have enabled coveted numerical analyses of super-
conducting circuits embedded in electromagnetic reso-
nant structures [14, 15], but they rely on London-like
boundary conditions between superconducting and non-
superconducting domains that seem to harbor serious in-
consistencies [16]. Our goal is not to provide a rigorous
derivation of the theory (the literature contains some at-
tempts [17, 18]), but rather to demonstrate that its un-
approximated form circumvents spatial partitioning and

implies a pressure between planar superconducting bod-
ies that can be measured to determine its validity.
While our model shares similarities with the GL the-

ory in that it describes the superconducting condensate
with an order parameter, it differs in at least four im-
portant ways. First, in contrast to the diffusive time-
dependent GL equations, our model entails wave-like dy-
namics implied by Schrödinger’s equation. Second, we
employ minimal coupling to all electromagnetic degrees
of freedom, including the electric field via Gauss’s law
and Maxwell’s correction to Ampere’s law. Third, we in-
corporate arbitrary arrangements of both external drives
and ionic backgrounds via normal (non-superconducting)
source distributions. We take the latter to be static in
nature, akin to the Jellium model of a metallic conduc-
tor [19], but generalizable to include dynamical fluctu-
ations for effective descriptions of phononic excitations.
Fourth, in considering regimes far below the critical tem-
perature, we omit the self-interaction term that governs
the GL phase transition. In our model, nonlinear phe-
nomena arise instead from our more general treatment
of light-matter interactions, and the Higgs mechanism
that yields the condensate’s equilibrium number density
via spontaneous symmetry breaking of the U(1) gauge
group is replaced by requirement from the EOM that
the bulk superconducting charge density cancels the pre-
scribed ionic background.
Below, we present the Lagrangian and corresponding

EOM at the heart of our model, along with an electro-
hydrodynamic representation of the Hamiltonian. Lim-
iting our focus to electrostatic systems, we derive an
electrohydrostatic condition arising from a self-consistent
statement of Gauss’s law and solve it numerically in the
context of two planar superconducting bodies separated
by vacuum. By considering variations in the system’s
electrohydrostatic energy with respect to the separation
length, we find a negative (attractive) pressure between
the two bodies that peaks at an emergent healing length.
We conclude with a discussion of the length’s significance.
Throughout the text, we employ the covariant formu-

lation of electromagnetism with the Minkowski metric
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FIG. 1. The main result is summarized by a free body diagram (a) depicting the attractive force between two planar supercon-
ducting bodies. Calculation of this pressure begins with a numerical solution n̄ to the electrohydrostatic condition sourced by
two finitely separated ionic backgrounds n̄src. An example solution with separation length L = 4.8ξ is depicted in (b). We next
calculate the electrostatic distribution of the normalized number density (c), elastic energy density (d), and electric energy den-
sity (e) for a range of separation lengths specified by the color bar. Energy densities are plotted in units of u0 = ℏmc/

(
µ0q

2λ3
L

)

and are spatially integrated to find the energy per unit area (f) as a function of the separation length, whose negative derivative
with respect to L yields the pressure (g). We note that the electric pressure changes sign at L ≈ 4.8ξ.

ηµν = diag(+,−,−,−)µν , and we refer to the compo-
nents of a four-vector as Xµ ≡ (X0,X)

µ
. Though the

model describes non-relativistic charged superfluids, we
find that a relativistic notation provides useful physical
insight. We assume the effective Lagrangian governing
the evolution of the order parameter ψ ≡ √

neiθ and the
electromagnetic four-potential Aµ is given by the non-
relativistic theory of scalar electrodynamics under mini-
mal light-matter coupling,

L = ψ∗
(
iℏ
∂

∂t
− qcA0 −

1

2m

(
ℏ
i
∇− qA

)2
)
ψ

− 1

4µ0
FµνFµν −Aµjµ,

(1)

where Fµν ≡ ∂µAν−∂νAµ is the electromagnetic tensor,
jν is the four-current generated by normal charges, and
q and m are the charge and mass of the superconducting
charge carriers, respectively. The resulting set of EOM
for the light-matter field arising from this Lagrangian
couple Maxwell’s equations for the four-potential and
Schrödinger’s equation for the order parameter,

∂µF
µν = µ0 (J ν + jν) (2a)

iℏψ̇ =

((
ℏ
i
∇− qA

)2

+ qcA0

)
ψ, (2b)

where J ν ≡ qn (c,v)
ν
is the four-current generated by

superconducting charges with number density n and fluid

velocity v ≡ (ℏ∇θ − qA) /m. As derived in the Supple-
mental Material (SM) [20], the system’s Hamiltonian can
be expressed in an electrohydrodynamic form as

H =
ϵ0
2
|E|2+ 1

2µ0
|B|2+n

(
1

2
mv2

)
+

ℏ2

8m
n|∇ lnn|2, (3)

with E = −c∇A0 − Ȧ the electric field, B = ∇×A the
magnetic field, n the superconducting number density,
and v ≡ |v| the fluid speed. Eq. (3) represents a decom-
position of the total energy density into electric, mag-
netic, kinetic, and elastic components, respectively [21].
We now limit our focus to electrostatic systems,

which are recovered by enforcing that all currents vanish
J = j = 0. We first introduce the bulk superconduct-
ing number density ns and two important length scales:
the London penetration depth λL =

√
m/ (µ0q2ns) and

the Compton wavelength λC = h/(mc). In terms of the
normalized number densities n̄ ≡ n/ns = J0/(cqns) and
n̄src ≡ −j0/(cqns), Eqs. (2) reduce to the electrohydro-
static condition,

n̄+ 2ξ4∇2∇2
√
n̄√
n̄

= n̄src, (4)

revealing the healing length ξ given by

ξ ≡
√
λLλC
4π

. (5)

As shown in the SM [20], Eq. (4) is a self-consistent state-
ment of Gauss’s law that expresses the balance between
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electric and elastic forces in the electrostatic distribution
of the fluid: qE = ∇Q with Q = −ℏ2

(
∇2

√
n/

√
n
)
/(2m)

the well-known quantum potential [22]. Because of the
nonlinear term, proving the existence or uniqueness of
solutions n̄ is nontrivial and remains an open problem.
Moreover, for general source distributions n̄src, solutions
are most attainable by numerical methods, which can
exhibit instabilities stemming from the potential diver-
gence of the nonlinear term as the density approaches
zero. We may nonetheless make some qualitative ob-
servations regarding solutions to Eq. (4). First, we an-
ticipate the asymptotic behavior n̄ → n̄src = 1 in the
bulk. Second, spatial derivatives in the nonlinear term
ensure C4 continuity of n̄ over all spatial coordinates. To
avoid introducing additional length scales, we focus here
on piecewise-constant sources n̄src that take values zero
outside and one inside the superconducting material.

To obtain the electrohydrostatic pressure between two
planar superconducting bodies, we first solve the elec-
trohydrostatic condition sourced by two finitely sepa-
rated ionic backgrounds. For each separation length
L ∈ [0, 20ξ], we then integrate the resulting electrohy-
drostatic energy density,

H =
ϵ0
2

∣∣∣∣
ℏ2

2mq
∇∇2

√
n√
n

∣∣∣∣
2

︸ ︷︷ ︸
uelectric

+
ℏ2

8m
n|∇ lnn|2

︸ ︷︷ ︸
uelastic

, (6)

over all space V and compute the pressure P =
−∇L

´

V
Hdx. Details of the calculation are provided in

Fig. 1, with the main conclusion being the existence of
a negative (attractive) pressure between plates that van-
ishes in the limit of zero or infinite separation and reaches
a peak for L ≈ ξ. Since C4 continuity of the number den-
sity is guaranteed by the nonlocal quantum potential [23],
all contributions to the electrohydrostatic energy density
are finite. Consequently, unlike other quantum forces
such as the Casimir pressure [24], the electrohydrostatic
pressure does not exhibit a divergence for infinitesimal
separations. Though the total pressure is strictly nega-
tive, the electric pressure exhibits a zero-crossing which
can be understood perturbatively as a screening effect.
As derived in the SM [20], for source distributions repre-
senting small perturbations from a uniform background,
n̄src = 1 + δn̄src with |δn̄src| ≪ 1, the electrohydrostatic
condition reduces to a self-sourced version of the inhomo-
geneous biharmonic equation arising in linear elasticity
theory [25],

δn̄+ ξ4∇4δn̄ ≈ δn̄src, (7)

with δn̄ ≡ n̄−1 the first order perturbation in the number
density and ∇4 ≡ ∇2∇2 the biharmonic operator. In
contrast to the Yukawa potential arising from Thomas-
Fermi screening [26], the Green’s function for Eq. (7),

G (x,x′) =
1

2π
(
ξ
√
2
)3 sinc

( |x− x′|
ξ
√
2

)
e
−|x−x′|

ξ
√

2 , (8)

exhibits both decaying and oscillatory behavior on the
length scale of the healing length. The oscillatory com-
ponent of the bulk response to a point source necessarily
gives rise to interference effects during the screening of
more general defect distributions. We can thus attribute
increases (decreases) in electric energy density to con-
structive (destructive) interference of screening charges.
In the electrostatic limit, the healing length represents

the scale on which the superconducting number density
varies in response to changes in the background. While
this interpretation might suggest analogies with the well-
known GL coherence length, as seen from Eq. (5), the
healing length and the London penetration depth are not
independent parameters. As shown in the SM [20], the
few known sources tabulating GL parameters from inde-
pendent experiments indicate that our healing length and
the GL coherence length are in poor agreement for most
type-I superconductors but only differ by about one or-
der of magnitude for many type-II superconductors [27].
This trend lends further support to the notion that the
hydrodynamic model is likely most valid at temperatures
far below the critical temperature, making type-II super-
conductors ideal candidates for experimental validation
of the theory. Furthermore, since the healing length sets
the scale underlying pressure variations, materials with
large London penetration depths are desirable. For a
conventional (m = 2me, q = 2e) superconductor with
λL ≈ 100 nm, the pressure achieves a maximum value of
≈ 40 N/mm

2
for separations on the order of 1 Å.

The healing length can also be understood as the
matter-like counterpart to the London penetration depth.
As shown by way of perturbation theory in the SM [20],
a uniform medium’s first order response to a low-power
drive supports the propagation of both longitudinal k∥
and transverse k⊥ plane waves in the fluid velocity field
v ∼ k∥,⊥ei(k·x−ω∥,⊥t), with frequencies ω∥,⊥(k) charac-
terized by two different dispersions,

ω|| = ωp

√
1 + (kξ)

4
(9a)

ω⊥ = ωp

√
1 + (kλL)

2
, (9b)

where ωp ≡ c/λL is the plasma frequency and k ≡ |k|
the wavenumber. The high-frequency limits ω∥,⊥ ≫ ωp

of these relations manifest the longitudinal plane waves as
matter-like polaritons ω∥ ≈ ℏk2/(2m) and the transverse
plane waves as light-like polaritons ω⊥ ≈ ck. With this
insight, we can thus identify the quasistatic ω∥,⊥ ≪ ωp

decay length of matter-like excitations with the healing
length ξ ≈ 1/ Im[k(ω∥)] and light-like excitations with
the London penetration depth λL ≈ 1/ Im[k(ω⊥)].
To summarize the results of this study, we have pre-

sented a theory of superconductivity akin to the GL the-
ory that is capable of describing the dynamics of super-
conducting quantum devices well below the critical tem-
perature, and we have used the theory to predict a neg-
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ative electrohydrostatic pressure between superconduct-
ing bodies. Moreover, we have identified an emergent
healing length at which this pressure becomes relevant
and shown that it is similar to the GL coherence length
but represents the matter-like counterpart to the London
penetration depth. This work naturally motivates an ex-
perimental demonstration of the pressure to determine
the theory’s validity, but the viability of such an observa-
tion requires understanding the magnitude of other forces
present at this scale (e.g., Casimir and van der Waals in-
teractions [24]), which is left to future work. Our formu-
lation may also be applied to the analysis of magneto-
static systems, such as vortices, and dynamical systems,
such as excited Josephson junctions. Finally, the theory
may be further developed via second quantization and
expanded to incorporate quasiparticle dynamics.
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ELECTROHYDRODYNAMIC REPRESENTATION OF THE HAMILTONIAN

The following derivation assumes electrostatic sources j = 0:

ˆ

Hd3x =

ˆ

(
∂L
∂Ȧρ

Ȧρ +
∂L
∂ψ̇

ψ̇ +
∂L
∂ψ̇∗ ψ̇

∗ − L
)
d3x

=

ˆ

(
− 1

cµ0
F 0ρȦρ + iℏψ∗ψ̇ − L

)
d3x

=

ˆ

(
− 1

cµ0
F 0ρȦρ +

(
j0 + cq|ψ|2

)
A0 +

1

4µ0
FµνFµν +

1

2m
ψ∗
(
ℏ
i
∇− qA

)2

ψ

)
d3x

=

ˆ

(
ϵ0
2
|E|2 + 1

2µ0
|B|2 + 1

2m

∣∣∣∣
(
ℏ
i
∇− qA

)
ψ

∣∣∣∣
2
)
d3x

=

ˆ

(
ϵ0
2
|E|2 + 1

2µ0
|B|2 + 1

2m

∣∣∣∣
√
n (ℏ∇θ − qA) +

ℏ
i
∇√

n

∣∣∣∣
2
)
d3x

=

ˆ

(
ϵ0
2
|E|2 + 1

2µ0
|B|2 + n

(
1

2
mv2

)
+

ℏ2

8m
n|∇ lnn|2

)
d3x.

(S1)

To arrive at the fourth line in Eq. (S1), we have employed Gauss’s law and integration by parts. For more general
source distributions, an analog of Poynting’s theorem can be derived directly from the equations of motion,

Ḣ+∇ · S+ j ·E = 0, (S2)

where the directional energy flux in electrohydrodynamic form is given by

S ≡ 1

µ0
E×B+ nv

(
1

2
mv2 − ℏ2

2m

∇2
√
n√
n

)
− ℏ2

4m
ṅ∇ lnn. (S3)

ELECTROHYDROSTATIC CONDITION

The equations of motion are invariant under the gauge transformation (Aµ, θ) →
(
Aµ + ∂µf, θ − q

ℏf
)
for any single-

valued smooth function f , which motivates us to define the gauge-invariant four-potential Aµ ≡ Aµ + ℏ
q ∂

µθ. In
terms of these variables, Maxwell’s forms are preserved. Namely, the electric and magnetic fields are given by
E = −c∇A0 − Ȧ and B = ∇ × A, respectively, and the electromagnetic tensor is given by Fµν = ∂µAν − ∂νAµ,
which for notational consistency we now refer to as Fµν ≡ Fµν . In terms of the gauge-invariant four-potential,
Maxwell’s equations thus undergo a trivial relabeling:

∂µF
µν = µ0 (J ν + jν) =⇒ ∂µFµν = µ0 (J ν + jν) . (S4)

Since the fluid velocity v = −(q/m)A, the superconducting four current may be written purely in terms of the number
density and the gauge-invariant four-potential as J µ = qn (c,−(q/m)A)

µ
. We proceed by expressing the imaginary

and real parts of Schrödinger’s equation in polar form in terms of the gauge-invariant four-potential, which correspond
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to the superconducting charge continuity equation and the quantum Hamilton-Jacobi equation, respectively:

∂µJ µ = 0 =⇒ ṅ =
q

m
∇ · (nA) (S5a)

−ℏθ̇ =
1

2
mv2 − ℏ2

2m

∇2
√
n√
n

+ qcA0 =⇒ −qcA0 =
q2

2m
|A|2 − ℏ2

2m

∇2
√
n√
n

. (S5b)

In an electrostatic system (j = A = 0), the magnetic field vanishes and the electric field may be derived from
the quantum Hamilton-Jacobi equation: E = −ℏ2/(2mq)∇ (

∇2
√
n/

√
n
)
. Moreover, the only nontrivial component

of Maxwell’s equations is Gauss’s law, which reads c∇2A0 = − (qn+ cj0) /ϵ0, and the only nontrivial component of
Schrödinger’s equation is the quantum Hamilton-Jacobi equation, which reads cA0 = ℏ2/(2mq)∇2

√
n/

√
n. Combining

the two equations to eliminate A0, we arrive at the electrohydrostatic condition,

ℏ2

2mq
∇2∇2

√
n√
n

= − 1

ϵ0
(qn+ cj0) , (S6)

which can be expressed in terms of the normalized number densities as given in the main text.

NUMERICAL DETAILS

The non-dimensionalized 1D electrohydrostatic condition and energy density employed in this study are given by

n̄+ 2
d2

dx̃2

(
1√
n̄

d2
√
n̄

dx̃2

)
= Θ

(∣∣∣x̃− L̃/2
∣∣∣
)

(S7a)

ˆ

Hdx = u0ξ

ˆ

(∣∣∣∣
d

dx̃

(
1√
n̄

d2
√
n̄

dx̃2

)∣∣∣∣
2

︸ ︷︷ ︸
uelectric [u0]

+
n̄

4

∣∣∣∣
d ln n̄

dx̃

∣∣∣∣
2

︸ ︷︷ ︸
uelastic [u0]

)
dx̃, (S7b)

where x̃ ≡ x/ξ, L̃ ≡ L/ξ, and Θ is the Heaviside theta function. Calculation of the electrohydrostatic pressure
between superconducting bodies was performed numerically using a central finite difference scheme with second-order
accuracy for all spatial derivatives. The electrohydrostatic condition was solved on a numerical grid consisting of
801 equally spaced points x̃ ∈ [−20, 20] with boundary conditions n̄(x̃)||x̃|≥20 = 1 for 201 equally spaced separation

lengths L̃ ∈ [0, 20]. Analytic manipulations of the electrohydrostatic condition were performed with SymPy, and the
ensuing nonlinear vector equation was solved numerically using scipy.optimize.fsolve, which converged with the
default tolerance of 1.49012e-08 for all results in this study.

SELF-SOURCED INHOMOGENEOUS BIHARMONIC EQUATION AND GREEN’S FUNCTION

As given in the main text, the electrohydrostatic condition reads

n̄+ 2ξ4∇2∇2
√
n̄√
n̄

= n̄src, (S8)

which for a uniform background n̄src = 1 yields the trivial solution n̄ = 1. We derive the self-sourced version of the
inhomogeneous biharmonic equation arising in linear elasticity theory by considering source distributions representing
small perturbations from a uniform background as follows,

n̄src(x) = 1 + λn̄(1)src(x) (S9a)

n̄(x) = 1 +

∞∑

k=1

λkn̄(k)(x), (S9b)

so that as the perturbative parameter λ → 0, we recover the unperturbed uniform medium. To first order in λ, the
electrohydrostatic condition is given by

λn̄(1) +
∂

∂λ

(
2ξ4∇2∇2

√
n̄√
n̄

) ∣∣∣∣∣
λ=0

λ = λn̄(1)src

n̄(1) + ξ4∇4n̄(1) = n̄(1)src ,

(S10)
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as given in the main text with δn̄src ≡ λn̄
(1)
src and δn̄ ≡ λn̄(1). To arrive at the second line, we have employed the

quantum potential derivative identity derived in Eq. (S19). We now derive the corresponding Green’s function by

considering a source distribution of the form n̄
(1)
src(x) = δ(3)(x). Expanding n̄(1) and n̄

(1)
src in the Fourier basis,

n̄(1)(x) ≡
ˆ

ñ(1)(k)eik·xd3k (S11a)

n̄(1)src(x) ≡
ˆ

ñ(1)src(k)e
ik·xd3k, (S11b)

and taking the inverse Fourier transform of Eq. (S10) yields

(
1 + (kξ)4

)
ñ(1)(k) = ñ(1)src(k) =

1

(2π)3
(S12)

with k ≡ |k|. We proceed by solving for n̄(1) in spherical coordinates with ρ ≡ |x|:

n̄(1)(x) =
1

(2π)3

ˆ

eik·x

1 + (kξ)4
d3k

=
1

(2π)3

ˆ ∞

0

ˆ π

0

ˆ 2π

0

(
eikρ cos θ

1 + (kξ)4
k2 sin θ

)
dϕdθdk

=
1

(2π)2

ˆ ∞

0

ˆ π

0

(
eikρ cos θ

1 + (kξ)4
k2 sin θ

)
dθdk

=
1

2π2ρ

ˆ ∞

0

(
k sin(kρ)

1 + (kξ)4

)
dk

=
1

4πξ2ρ
sin

(
ρ

ξ
√
2

)
e
− ρ

ξ
√

2 .

(S13)

For source distributions of the form n̄
(1)
src(x) = δ(3)(x−x′), the first order response n̄(1)(x) can be attained by a simple

coordinate shift, which yields the Green’s function in the main text. We note that the total net charge is neutral, as

ensured by the property
´

V
n̄(1)d3x =

´

V
n̄
(1)
srcd3x, where integration is performed over all space V .

HEALING LENGTH ANALOGS IN THE LITERATURE

Few sources in the literature tabulate superconducting parameters gathered from independent experiments. We
include one such compilation [1] below and calculate the healing length from the main text using the reported London
penetration depths. We find better agreement between our healing length and the GL coherence length for type-II
superconductors than for type-I superconductors. Since the former tend to have higher critical temperatures than the
latter, this trend lends further support to the notion that the hydrodynamic model is likely most valid at temperatures
far below the critical temperature.

Type-I Superconductors

Material Tc [K] ∆0 [meV] µ0Hc0 [mT] λ0 [nm] ξ0 [nm]
√

λ0λC
4π

[nm]

Al 1.18 0.18 10.5 50 1600 0.07

In 3.41 0.54 23.0 65 360 0.08

Sn 3.72 0.59 30.5 50 230 0.07

Pb 7.20 1.35 80.0 40 90 0.06

Nb 9.25 1.50 198.0 85 40 0.09

TABLE S1. The penetration depth λ0 and coherence length ξ0 are given at zero temperature. Our healing length (last column)
is calculated according to its definition in the main text with λL = λ0 and λC the Compton wavelength of a Cooper pair.
Source: Donnelly, R. J. 1981. Cryogenics. In Physics Vade Mecum, ed. H. L. Anderson. American Institute of Physics, New
York.
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Type-II Superconductors

Material Tc [K] ∆0 [meV] µ0Hc0,2 [T] λGL(0) [nm] ξGL(0) [nm]
√

λGL(0)λC
4π

[nm]

Pb-In 7.0 1.2 0.2 150 30 0.12

Pb-Bi 8.3 1.7 0.5 200 20 0.14

Nb-Ti 9.5 1.5 13 300 4 0.17

Nb-N 16 2.4 15 200 5 0.14

PbMo6S8 15 2.4 60 200 2 0.14

V3Ga 15 2.3 23 90 2–3 0.09

V3Si 16 2.3 20 60 3 0.08

Nb3Sn 18 3.4 23 65 3 0.08

Nb3Ge 23 3.7 38 90 3 0.09

TABLE S2. The temperature-dependent GL penetration depth and coherence length are given by λGL(T ) = λGL(0)(1 −
T/Tc)

−1/2 and ξGL(T ) = ξGL(0)(1 − T/Tc)
−1/2, respectively. Our healing length (last column) is calculated according to its

definition in the main text with λL = λGL(0) and λC the Compton wavelength of a Cooper pair. We note that these values
are only representative, since parameters for alloys and compounds depend on fabrication techniques. Source: Donnelly, R. J.
1981. Cryogenics. In Physics Vade Mecum, ed. H. L. Anderson. American Institute of Physics, New York.

POLARITON DISPERSION RELATIONS

The quantum Hamilton-Jacobi equation and Maxwell’s equations can be combined to express Ampere’s law with
Maxwell’s correction in terms of the gauge-invariant vector potential A and the superconducting number density n:

∇×∇×A+
1

c2
Ä+

1

c2
∂

∂t
∇
(
− q

2m
|A|2 + ℏ2

2mq

∇2
√
n√
n

)
= µ0

(
−q

2

m
nA+ j

)
. (S14)

To prepare for a perturbative analysis, we employ the quantum potential derivative identity derived in Eq. (S19) and
the superconducting charge continuity equation to express the final term on the left side of Eq. (S14) in terms of
dyadics [2]:

ℏ2

2qmc2
∂

∂t
∇∇2

√
n√
n

=
ℏ2

4qmc2
∇
(
n−3[n,∇]

2
ṅ
)
=

(
λC
4π

)2 {
n−3,∇}[n,∇]

2{n,∇}A. (S15)

We extract the system’s low-power dynamics through the following perturbative expansion,

j(x, t) = λj(1)(x, t) (S16a)

A(x, t) =

∞∑

k=1

λkA(k)(x, t) (S16b)

n(x, t) = n(0)(x) +
∞∑

k=1

λkn(k)(x, t), (S16c)

so that as the perturbative parameter λ → 0, we recover the unperturbed electrostatic system. To first order in λ,
Ampere’s law with Maxwell’s correction is given by

(
∇×∇×+

1

c2
∂2

∂t2
+
µ0q

2

m
n(0) +

(
λC
4π

)2{(
n(0)

)−3

,∇
}[
n(0),∇

]2{
n(0),∇

})
A(1) = µ0j

(1), (S17)

which for a uniform medium with n(0) = ns reads(
∇∇−∇2 +

1

c2
∂2

∂t2
+

1

λ2L
+

(
λC
4π

)2

∇2∇∇
)
A(1) = µ0j

(1). (S18)

By employing longitudinal and transverse ansatzes A(1)
∥,⊥ ∼ k∥,⊥e

i(k·x−ω∥,⊥t) and noting that ∇∇A(1)
∥ = −k2A(1)

∥
and ∇∇A(1)

⊥ = 0, it is straightforward to show that in regions with j = 0, the system supports the propagation of
longitudinal and transverse plane waves in the fluid velocity field with corresponding dispersion relations given in the
main text.
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QUANTUM POTENTIAL DERIVATIVE IDENTITY

The derivative of the quantum potential with respect to an arbitrary variable α can be written as follows,

∂

∂α

∇2
√
n√
n

=
1

2

(
∇2 n′

√
n√
n

− ∇2
√
n

n3/2
n′
)

=
1

2
√
n

(
1√
n
∇2 + 2∇ 1√

n
·∇+∇2 1√

n
− ∇2

√
n

n

)
n′

=
1

2
n−3

(
n2∇2 − n∇n ·∇+ |∇n|2 − n∇2n

)
n′

=
1

2
n−3[n,∇]

2 ∂n

∂α
,

(S19)

where n′ ≡ ∂n/∂α [2].
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