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Fluxon-based quantum simulation in circuit QED
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Long-lived fluxon excitations can be trapped inside a superinductor ring, which is divided into an array of
loops by a periodic sequence of Josephson junctions in the quantum regime, thereby allowing fluxons to tunnel
between neighboring sites. By tuning the Josephson couplings and, implicitly, the fluxon tunneling probability
amplitudes, a wide class of one-dimensional tight-binding lattice models may be implemented and populated
with a stable number of fluxons. We illustrate the use of this quantum simulation platform by discussing the
Su-Schrieffer-Heeger model in the one-fluxon subspace, which hosts a symmetry-protected topological phase
with fractionally charged bound states at the edges. This pair of localized edge states could be used to implement
a superconducting qubit increasingly decoupled from decoherence mechanisms.
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I. INTRODUCTION

With recent advances in state preparation and measure-
ment techniques, circuit quantum electrodynamics (cQED)
architectures [1,2] are becoming increasingly attractive for
quantum information processing and quantum simulation [3].
Other platforms for quantum simulation include ultracold
atoms in traps and optical lattices [4], trapped ions [5,6],
Josephson junction arrays [7], and photonic systems [8].
One of the main efforts in quantum simulation has been the
implementation of interacting, strongly correlated models,
which possess rich physics but are, in general, analytically
intractable.

There is an increasing list of proposals based on the cQED
architecture, which notably includes analogs of the seminal
boson Hubbard model [9] for the superfluid-to-insulator tran-
sition of lattice bosons with repulsive contact interactions
[10–17], the fermion Hubbard model [18], and topological
order [19,20]. Recently, several implementations successfully
showed proof-of-concept quantum simulation of dissipative
phase transitions [21], molecules [22] or fermionic tight-
binding models [23], and the Rabi model in the strong and
ultrastrong coupling regimes [24–28], heralding studies of
spin-boson and Kondo physics [29].

Microwave photons, the physical building block for cQED
quantum Hamiltonians, are nevertheless subjected to intrin-
sic dissipation. One solution to circumvent the limitations
imposed by photon loss is to stabilize quantum states using
bath-engineering schemes for single qubits [30,31] or qubit
arrays [32–34].

In this work, we propose an alternative way to simulate
lattice models, where the ground state of the effective Hamil-
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tonian is unaffected by photon losses. Specifically, we show
how to engineer arbitrary one-dimensional tight-binding mod-
els for quantum fluxons, i.e., 2π kinks in the superconducting
phase, associated with strongly confined Josephson fluxoids in
a discretized extended junction with high kinetic inductance.
Fluxons correspond to remarkably stable quantized persistent
currents Ip flowing around superconducting loops containing
Josephson junctions [Figs. 1(a)–1(c)]. In order to load a
certain number of fluxons m inside the ring, one can use a
protocol very similar to the one demonstrated in Ref. [35] for
the reset of a superinductor loop to its ground state with m = 0
[Figs. 1(d) and 1(e)]. We expect this protocol to successfully
implement the desired m-fluxon state with a probability in
excess of 90%, stable for an extended duration of time, on
the order of hours or even days [35].

In the classical regime, fluxons constitute the basis for
rapid single-flux quantum electronics [36], where current
biases close to the critical current prompt fluxon mobility. The
associated heating is low enough to make them attractive for
state-of-the-art classical information processing [37], notably
in the recent design of a qubit readout circuit [38].

Fluxons obeying macroscopic quantum tunneling are sig-
nificantly more fragile. Following their first implementation
a decade ago [39], their use in devices has remained limited
with few exceptions [40–42]. One of the main challenges
in the development of quantum fluxon electronics was the
absence of reliable superinductors, inductors L with an rf
impedance comparable to the resistance quantum: Lω �
RQ = h/(2e)2 ≈ 6.5 k�. A superinductor needs to allow for
large quantum fluctuations of the phase while preventing its
macroscopic quantum tunneling.

The remarkable recent progress in superinductor design
and fabrication [35,43,44], including their use in artificial
crystals and molecules [45–47], renders possible the phys-
ical implementation of the quantum fluxon platform pro-
posed here. Recently, it was shown that granular aluminum
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(a)

(d) (e)

(b) (c)

FIG. 1. Fluxon state preparation. The top row shows the three
possible configurations of the superinductor loop: (a) no persistent
current Ip = 0, (b) persistent current under external flux, and (c)
m fluxons trapped inside of the loop with zero external field. (d)
Circuit setup for insertion of fluxons under external flux and drive.
(e) Protocol for drive amplitude εd (t ) (red) and external flux �ext(t )
(black) for the insertion of m fluxons. The drive frequency fd ≈

1
2π

(LJ,inCS)−1/2 corresponds to the eigenmode of the radio-frequency
resonator consisting of the input junction EJ,in and the shunt capac-
itance CS. The corresponding persistent currents are represented by
the green arrows (see Appendix A).

wires of submicron width can implement almost perfect
superinductors featuring state-of-the-art coherence and low
nonlinearity [48,49].

The key insight of our proposal is to implement a tight-
binding model for long-lived quantum fluxons trapped inside
a superinductor ring. The ring is divided into smaller loops
by a periodic sequence of quantum Josephson junctions [see
Fig. 2(a)], with EJ,i/E

−
C,i � 10, where EJ,i is the Josephson

coupling of the ith junction and E−
C,i = e2/[2(CJ,i + C0/2)]

is the corresponding charging energy. At the classical level,
thanks to the large superinductance on the surrounding ring,
fluxons are confined to single loops, in contrast to the case
of long Josephson junctions or isotropic Josephson junction
arrays [50]. The charging energies allow fluxons to tunnel
between neighboring loops, with a tunneling amplitude whose
spatial dependence is modulated by the Josephson couplings.
The tunnel rates can be either predefined by fabrication or
tuned in situ using locally flux biased superconducting quan-
tum interference device (SQUID) loops, which would also
mitigate the inherent spread in junction parameters. A wide
class of one-dimensional tight-binding lattice models could
be implemented and populated with a stable number m of
fluxons. Additionally, local fast-flux lines would enable the
use of the same platform for quantum annealing [51].

The remainder of this paper is organized as follows. In
Sec. II, we derive the circuit Hamiltonian and provide a defi-
nition of a fluxon trapped in the system. In Sec. III, we derive
a low-energy effective theory for the dynamics of a single
fluxon in terms of a tight-binding model and argue that this

(a)

(b)

(c)

FIG. 2. Superconducting circuit implementation of an effective
tight-binding model for fluxons. (a) The circuit in Fig. 1 generalizes
to a superinductor ring encompassing loops separated by Josephson
junctions. The fluxon “input” junction is shown in blue, the “lattice”
junctions EJ,i are depicted in orange. (b) Circuit representation of
the simplified model of Eq. (4); the branch fluxes ϕ−

i are the degrees
of freedom describing fluxon dynamics through the one-dimensional
array. (c) The equivalent tight-binding model for fluxons, where
every site corresponds to a loop in (b); the on-site and tunneling
energy scales are the ones that appear in Eq. (8).

is indeed the correct low-energy description by numerically
diagonalizing the circuit problem for small numbers of junc-
tions. Finally, we conclude in Sec. IV. We relegate substantial
detail to the Appendixes: Appendix A covers the protocol for
fluxon insertion. We provide the detailed derivation of the
circuit Hamiltonian in Appendix B. We dedicate Appendix C
to numerical methods, and we provide a discussion of the
effects of disorder in Appendix D.

II. CIRCUIT HAMILTONIAN

We now consider a simplified version of the circuit
[Fig. 2(b)] in which the fluxon insertion circuitry can be
neglected (LJ,in � L). The circuit consists of 2N supercon-
ducting islands denoted by indices α, i, with i = 1, . . . , N

being the longitudinal coordinate and α = 1, 2 being the
transverse coordinate. The degrees of freedom are canonically
conjugate pairs of superconducting phase and Cooper pair
number operators on the superconducting islands, obeying
[ϕα,i, nβ,j ] = iδαβδij . We introduce linear combinations cor-
responding to longitudinal and transverse modes,

ϕ±
i = ϕ1,i ± ϕ2,i , n±

i = n1,i ± n2,i

2
, (1)
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respectively, for which [ϕη

i , n
η′
j ] = iδηη′δij for η, η′ = ±. The

transverse variables ϕ−
i and n−

i denote the branch flux, in units
of the superconducting flux quantum �0/(2π ), and Cooper
pair number difference across the ith Josephson junction,
respectively.

Using the notation introduced in Eq. (1), the circuit Hamil-
tonian separates as H = H+ + H− (see Appendix B for the
derivation). The fluxon Hamiltonian is H−, while H+ de-
scribes the longitudinal “parasitic” modes of the transmission
line in Fig. 2(a):

H+ =
N−1∑
i=0

4E+
C (n+

i )2 +
N−2∑
i=0

EL

2
(ϕ+

i+1 − ϕ+
i − ϕext,i+1)2.

(2)

E+
C = e2/C0 are Coulomb charging energies, with C0 being

the capacitance to ground of each superconducting island.
EL = [�0/(2π )]2/(2L) are inductive energies, and ϕext,i =
2π�ext,i/�0 is the external flux. Typical values are C0 ∼
40 aF and L ∼ 100 nH [35]. Since there are N pairs of super-
conducting islands, the plasma frequency characterizing the
excitations of the transmission line scales as

ω+ = 1

N
√

LC0
∼ 500

N
GHz. (3)

On the other hand, the typical energy scale of the antisymmet-
ric sector H− is set by the tunneling energies ti [see Fig. 2(c)
and Eq. (8)], which are on the order of ∼10 GHz. Given the
symmetry of the circuit in Fig. 2, these sectors are orthogo-
nal, and moreover, they are spectrally isolated (ω+ � ti) for
N � 50.

Second, H− describes the transverse modes [see Fig. 2(b)],
which we express as

H− = T − + V−, (4)

whose terms are

T − =
N−1∑
i=0

4E−
C,i (n

−
i )2, (5)

with E−
C,i = e2/[2(CJ,i + C0/2)] � e2/2CJ,i being the

Coulomb charging energy between the two superconducting
islands, and

V− = EL

2
(ϕ−

0 − ϕext,0)2 + EL

2
(ϕ−

N−1 + ϕext,N )2

+
N−2∑
i=0

EL

2
(ϕ−

i+1 − ϕ−
i − ϕext,i+1)2

+
N−1∑
i=0

EJ,i[1 − cos(ϕ−
i )] (6)

being the potential energy from the inductive and Josephson
elements.

Classical one-fluxon states correspond to minima of the
potential energy V− with respect to flux variables ϕ−

i , as
shown in Fig. 3(a) for N = 3, describing a single fluxon
trapped inside the superinductor ring surrounding the lattice
in Fig. 2(b). We are considering henceforth the situation in

(a)

(b)

FIG. 3. Effective one-dimensional fluxon potential. (a) The clas-
sical potential for one-fluxon dynamics has four degenerate minima
separated by Josephson energy barriers. The insets show that in
(ϕ−

0 , ϕ−
1 , ϕ−

2 ) space the variable ϕ̃ traverses the edges of a hypercube
between the four minima [see Eq. (7)]. (b) The one-fluxon state
consists of a kink in the superconducting phase. If the kink occurs
between junctions j and j + 1, in the limit EJ � EL, the dominant
current circulation (green arrows) occurs on the loop delimited by
the two junctions. The circulating currents on the neighboring loops
are suppressed by a factor of ∼EJ/EL.

which one flux quantum is threaded through the superinductor
ring by choosing ϕext,0 = 2π , ϕext,i = 0 for 1 � i � N . This
guarantees that one-fluxon states are global minima of V− (see
Appendix A). These states are the N + 1 configurations of the
superconducting phase (k = 0, . . . , N ),

(ϕ−
i )(k) ≈ 2π, 0 � i < k,

≈ 0, k � i � N, (7)

corresponding to kinks in the expectation value of the field ϕ−
i

as a function of i, as shown in Fig. 3(b).
The expressions in Eq. (7) are not exact minima of the

potential energy V− due to the quadratic contributions of
the inductive energy terms ∝ EL. These deviations give rise
to single vortices of persistent current localized at the po-
sition of the kink. The green arrows in Fig. 3(b) show the
expectation values of currents �0

2π
IJ,i = EJ,i sin(ϕ−

i ), �0
2π

I−
i =√

2EL(ϕ−
i+1 − ϕ−

i − ϕext,i+1). The confinement of the persis-
tent currents is essential to enable the local control of the
potential energy, and it follows from the choice of energy
scales EL � EJ in Eq. (6).

In the one-fluxon manifold, the relevant variable is the
position of the kink. To parametrize this position, we define
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the variable ϕ̃ along the curve in the (ϕ−
0 , ϕ−

1 , . . . , ϕ−
N−1)

space which contains the minima of the potential energy
and their connections along classical instanton trajectories
[52,53]. For example, for N = 3, the potential V−(ϕ̃) plotted
in Fig. 3(a) has degenerate minima at points labeled 0, . . . , 3,
corresponding to four classical one-fluxon states along the
curve ϕ̃ represented in the inset. The minima are labeled by
the position of the kink, where 0 stands for no kink, 1 stands
for the kink at the first junction, etc. [Fig. 3(b)].

III. TIGHT-BINDING DESCRIPTION

The charging energy T − gives rise to quantum tunneling
between one-fluxon states. Projecting H− into the one-fluxon
manifold yields a quantum tight-binding model

h− =
N−1∑
i=0

εi |i〉〈i| −
N−2∑
i=0

ti |i〉〈i + 1| + H.c., (8)

where |i〉 denotes the one-fluxon state at i = 0, . . . , N − 1.
We have retained in h− only the next-neighbor contribu-
tions [see Fig. 2(c)], as tunnel rates drop exponentially with
distance. The on-site energies are εi ≈ 1

2 h̄ωi , where ωi =√
8E−

C,iEJ,i is the Josephson plasma frequency. The tunneling
rate [52–55] (the splitting of the N -fold degenerate low-lying
manifold of classical minima) is exponentially small ti ∝
e−

√
8EJ,i /E

−
C,i and becomes zero in the classical limit EJ,i �

E−
C,i . Since the precise value of the numerical prefactor de-

pends on the shape of the potential, in the following we solve
for the tunnel rates exactly via numerical diagonalization.

The low-energy one-fluxon manifold is separated from the
remainder of the spectrum either by a gap of order (2π )2EL,
corresponding to the creation of an additional fluxon or an-
tifluxon in Eq. (6), which amounts to a repulsive interac-
tion, or by an energy scale corresponding to the Josephson
plasma frequency, which amounts to an on-site excitation
into a higher-energy eigenstate of the local potential well.
If multiple fluxons are inserted into the array, it is expected
that the vortex dynamics closely resembles that of a gas of
hardcore bosons with an exponentially suppressed long-range
repulsive interaction whose distance scale is the size of a
single fluxon and is roughly proportional to (EL/EJ)1/2 [50].
This statement holds for energy scales comparable to the
bandwidth ti and far inferior to the gap. In particular, the
Mott insulating state of one fluxon per loop corresponds to the
band insulator obtained by occupying all states of the (band)
spectrum of Eq. (8) with εi = ε and ti = t . Note that fluxon
dynamics is dual to that of bosons on a two-leg Josephson lad-
der, which have a rich ground-state phase diagram depending
on external flux and boson density [50,56–59].

We validate our semiclassical arguments with an exact
numerical diagonalization. For this purpose, we consider
N = 3 junctions,

H− = 4E−
C [(n−

0 )2 + (n−
1 )2 + (n−

2 )2] + V−(ϕ−
0 , ϕ−

1 , ϕ−
2 ).

(9)

To numerically diagonalize H− we consider the equivalent
eigenvalue problem and solve it by a finite-difference method
[60] complemented by exact diagonalization (the procedure

FIG. 4. Low-lying spectrum and wave functions for the lowest
four states (represented in ascending order with respect to their
energy by solid black, dashed red, solid blue, and solid black curves)
for a three-junction circuit with EC = 10 and EJ0 = EJ2 = 100 =
ηEJ1 in units of EL = (�0/2π )2

2L
, with (a) η = 1 and (b) η = 10. We

show with orange dashed lines the potential energy V−(ϕ̃) (left
vertical axis). The wave functions (in arbitrary units) are offset
by their eigenenergies (right vertical axis). For (b), the first and
second excited states are intragap boundary-localized excitations of
the one-fluxon tight-binding model. The points represent the values
obtained from numerical diagonalization, and the lines are direct
connections.

is detailed in Appendix C). We plot the wave function
ψ (ϕ−

0 , ϕ−
1 , ϕ−

2 ), along the ϕ̃ coordinate, and the eigenvalues
of lowest-lying states in Fig. 4(a). Due to the action of the
charging (Laplacian) terms, there is some leakage of the wave
functions along the coordinates perpendicular to the curve
parametrized by ϕ̃. This effect is taken into account in the
multidimensional numerical diagonalization.

Tunneling amplitudes can be tuned to yield a topological
band structure in one dimension. Here, we discuss a fluxon
analog of the Su-Schrieffer-Heeger model [61,62], originally
proposed to describe the electronic structure of polyacetylene,
which sustains a symmetry-protected topological phase with
fractionally charged edge states [63–65]. This is achieved
in the one-fluxon model (8) by dimerizing the Joseph-
son energy EJ,j = EJ + (−1)j+1δ, with EJ > δ > 0 and
j = 0, . . . , N − 1. A pair of exponentially boundary local-
ized states is observable for odd N � 3. In Fig. 4(b) we
show the low-lying energies and eigenstates for the min-
imal length of N = 3 junctions with EJ,0 = EJ,2 = 10EJ,1

and E−
C = EJ,0/10. The effect of enhanced tunneling on the
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middle junction is to split the states corresponding to fluxons
localized on the two central loops, leading to a large energy
gap. The remaining two intragap states correspond to fluxons
localized on the end loops. Their hybridization must vanish
exponentially for increasing N . As long as the dimerization
relation is preserved (i.e., the disorder does not close the
band gap), disorder in the tunneling rates of the effective
tight-binding model (8) does not induce a significant splitting
of the two bound states. On the other hand, the degeneracy
is vulnerable to flux noise, which amounts to on-site disorder
in Eq. (8) (see Appendix D for a discussion of the effect of
disorders).

The levels of the dimerized low-energy model can be filled
as fluxons are added to the system. When one inserts m =
N+1

2 + 1 fluxons, the ground state has two intragap boundary-
localized excitations [62,65–67], which could be used for
the implementation of a superconducting qubit. This may
offer an alternative to fault-tolerant quantum computation via
topological protection, similar to the 0-π qubit [60,68–73].

IV. CONCLUSION

We have presented an alternative path to perform quantum
simulation, moving away from the well-known microwave
photon architectures to a concept based on fluxon dynamics
in networks of Josephson junctions. Unlike photons, flux-
ons can be individually trapped inside superinductor loops,
and their number m can be stable for durations practically
infinite compared to the experimental timescales. The con-
trol and readout of the states could be performed using the
standard tools of cQED. Dispersive quantum nondemolition
measurements [74] could be adapted to access the local
density of states in such circuits by using locally coupled rf
antennas.

We have discussed the possible experimental limitations
of this platform and argued that the current quantum fluxon
model is robust for networks containing up to ∼50 lattice
sites, after which the transmission-line modes of the circuit
can interfere with the fluxon modes. This limit could be
increased by using more sophisticated circuit fabrication tech-
nologies, which can remove most of the backplane dielectric
via etching and thus decrease the self-capacitance [75].

The power of quantum fluxonics is illustrated by the im-
plementation of the Su-Schrieffer-Heeger model in the one-
fluxon subspace. Probes of the Zak geometric phase [76]
classifying the topological state of a long circuit could be
devised, as exemplified for microwave photons in a dimerized
one-dimensional quantum LC array [77]. The purpose of this
proposal is not to introduce a quantum simulator for a specific
model, but rather an entirely different platform. Finally, we
note that, beyond the scope of quantum simulation, fluxons
could be appealing for on-chip quantum state transfer [78,79]
and routing [80].
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APPENDIX A: FLUXON INSERTION

In this Appendix, we provide a more detailed discussion
of the protocol for fluxon insertion. We consider the circuit
in Fig. 5, in which L is a superinductance [35], as described
in the main text, and the loop is closed by an input Joseph-
son junction with Josephson energy EJ,in approximately 100
times the charging energy EC,in. Before we review the time-
dependent protocol introduced in the main text, we derive the
equations of motion and the potential energy for the circuit of
Fig. 5. The physics of the input junction is analogous to that of
a weak link interrupting a loop of a superconductor [81–83].

We now write a system of classical equations of motion
for branch fluxes and currents corresponding to the Josephson
junction and the inductor. These can be represented in terms
of node variables �J = φ1 − φg and �L = φ1 − φg + �ext,
respectively, from which we derive the loop equation for
branch fluxes:

�L = �J + �ext. (A1)

Current conservation at node 1 means

IJ + IL = CJφ̈1. (A2)

Equations (A1) and (A2) underlie the derivation of the Hamil-
tonian of the circuit in Fig. 5(a) based on the rules of circuit
quantization [84,85].

(a) (b)

FIG. 5. (a) Circuit layout illustrating the conventions in the text.
(b) Reduced potential function v(ϕJ ) for the circuit in (a) at ϕext = 0
(black solid line) and ϕext = 2π (black dashed line). The times
t1, t2, t3, t4 correspond to those represented in Fig. 1 of the main text,
and the red arrows and circles indicate the four stages of the insertion
of one fluxon. The integers m above the three central minima indicate
the value of the fluxoid, 2πm, from Eq. (A9) or its equivalent (A10).

174505-5



PETRESCU, TÜRECI, USTINOV, AND POP PHYSICAL REVIEW B 98, 174505 (2018)

The purpose of this section is to derive the potential energy
and its stationarity conditions. To this end, let us set the right
member of Eq. (A2) to zero and denote the loop current with
the symbol I , with the following sign convention:

I = IJ = −IL. (A3)

The current around the loop can be related to the phase
difference across the Josephson junction in the following
way. Let

ϕJ ≡ 2π
�J

�0
mod 2π (A4)

be the superconducting phase difference across the Josephson
junction. It is useful to explicitly introduce an integer m such
that the equality modulo multiples of 2π becomes

ϕJ = 2π
�J

�0
+ 2πm. (A5)

The phase variable ϕJ is defined to be compact on the
interval (−π, π ]. It is related to the current through the
Josephson junction through the Josephson relation

I = Ic sin (ϕJ), ϕJ = sin−1

(
I

Ic

)
, (A6)

where Ic is the critical current. It is related to the Josephson
energy through the relation EJ,in = Ic�0/(2π ).

The current I is also related to the flux through the inductor
�L through the constitutive equation

�L = −LI, (A7)

where we have used Eq. (A3).
We can now use the Josephson relation (A6), the equation

relating the flux and phase variables (A5), and the constitutive
equation of the inductor (A7) together with the loop equa-
tion (A1) to obtain

−LI = ϕJ

2π
�0 − m�0 + �ext. (A8)

Rearranging terms, this gives
ϕJ

2π
�0 + (LI + �ext ) = m�0. (A9)

The quantity on the right-hand side is the London fluxoid.
The term in the parentheses is the total flux through the
superconducting loop, composed of the kinetic flux LI from
the loop inductance L and the external flux �ext. This is the
fluxoid quantization condition [83,86].

Using the Josephson relation (A6) in Eq. (A9), we arrive at
the transcendental equation

ϕJ − 2πm + 2π
�ext

�0
= − sin(ϕJ). (A10)

Recall that ϕJ is defined on the compact interval (−π, π ].
Different solutions of the transcendental equation above are
obtained by varying m at fixed �ext. Alternatively, one may
use the relation between �J and ϕJ, Eq. (A5), and solve a
transcendental equation for the real variable, the flux:

2π�J/�0 + 2π�ext/�0 = − sin(2π�J/�0). (A11)

Equations (A10) and (A11) are equivalent, and they serve to
distinguish between the compact phase variable ϕJ and the real

flux variable �J. The equation for the compact phase variable
ϕJ necessarily contains the London fluxoid 2πm [in units of
�0/(2π )].

Equation (A11) is a stationarity condition for the dimen-
sionless potential energy [consistent with the equations of
motion (A1) and (A2)]

v

(
2π

�J

�0

)
=

[
1 − cos

(
2π

�J

�0

)]
+ 2π

(�J + �ext )2

2�c�0
,

(A12)

where we have introduced the critical kinetic flux �c = LIc.
This function is plotted in Fig. 5(b) for two values of the
external flux �ext = 0 (solid line) and �0 (dashed line). The
minima of the potential energy are labeled by their respective
values of the fluxoid 2πm, as obtained from the solution to
the transcendental equation (A10).

The fluxon insertion protocol relies on that of Masluk et al.
[35]. The input junction is addressable by means of the an-
tenna connected across a shunt capacitance CS. The superin-
ductor loop is threaded by external flux �ext. The insertion of
one fluxon entails increasing the fluxoid from m = 0 to m = 1
in units of the superconducting flux quantum in the following
sequence: Before t1 at zero external flux, the system is in its
classical ground state corresponding to m = 0. At t1, the flux
is increased to �0, maintaining the system in the metastable
minimum. Between t2 and t3 a high-amplitude drive is applied
to lower the effective Josephson potential EJ,in, which prompts
a spontaneous relaxation of the system to the lower-energy
state at m = 1. At t4, the flux is turned back to zero, thereby
placing the system in an (excited) metastable state at m = 1.
The procedure can be iterated to insert additional fluxons. To
insert m fluxons, a field �ext = m�0 would be necessary in
order to turn the m-fluxon minimum into a global minimum at
time t2.

APPENDIX B: DERIVATION OF THE CIRCUIT
HAMILTONIAN FOR THE JOSEPHSON

TRANSMISSION LINE

Consider the circuit in Fig. 6. We follow Refs. [84,85]
to quantize the circuit. We will generalize our results to 2N

superconducting islands but keep the calculation concrete at
N = 3 for brevity. Below, g denotes the ground node, to

FIG. 6. N = 3 junction circuit with open boundaries. The mini-
mum spanning tree (MST) [84] is highlighted in gray. The junctions,
not labeled above, are characterized by Josephson energy EJ,j and
capacitance CJ,j , j = 0, 1, 2.
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which superconducting island α, j , with α = 1, 2 and j =
0, 1, 2, is connected via capacitance Cα,j . The Josephson
energy of the j th junction is EJ,j = h̄Ic,j

2e
, where Ic,j denotes

the critical current on the j th junction. The capacitance of
each junction is CJ,j . The minimum spanning tree (MST)
covering the six active nodes αj for α = 1, 2, j = 0, 1, 2 is
highlighted in gray in Fig. 6. The loop equations in terms of
branch variables (labeled according to Fig. 6) are

�C1,1 − �L1,1 − �C1,0 = 0,

�C1,2 − �L1,2 − �L1,1 − �C1,0 = 0,

�C2,0 − �EJ,0 − �C1,0 = 0,

�C2,1 − �EJ,1 − �L1,1 − �C1,0 = 0,

�C2,2 − �EJ,2 − �L1,2 − �L1,1 − �C1,0 = 0, (B1)

�EJ,0 − �L0 = �ext,0,

�EJ,1 − �L2,1 − �EJ,0 + �L1,1 = �ext,1,

�EJ,2 − �L2,2 − �EJ,1 + �L1,2 = �ext,2,

−�EJ,2 + �L3 = �ext,3.

The branch fluxes for branches that belong to the MST can
be reexpressed in terms of node fluxes,

�EJ,0 = φ2,0 − φ1,0, �EJ,1 = φ2,1 − φ1,1,

�EJ,2 = φ2,2 − φ1,2, �L1,1 = φ1,1 − φ1,0, (B2)

�L1,2 = φ1,2 − φ1,1, �C1,0 = φ1,0 − φg.

Placing these in the loop equations (B1), we obtain

�C1,1 = φ1,1 − φg, �C1,2 = φ1,2 − φg,

�C2,0 = φ2,0 − φg, �C2,1 = φ2,1 − φg,

�C2,2 = φ2,2 − φg,

�L0 = φ2,0 − φ1,0 − �ext,0, �L3 = φ2,2 − φ1,2 + �ext,3,

�L2,1 = φ2,1 − φ2,0 − �ext,1, �L2,2 = φ2,2 − φ2,1 − �ext,2.

(B3)

Substituting (B2) and (B3) into the Kirchoff node equa-
tions, we find equations of motion α, i:

1, 0 : −φ2,0 − φ1,0 − �ext,0

L0
− Ic,0 sin

(
2π

φ2,0 − φ1,0

φ0

)
+ φ1,1 − φ1,0

L1,1
= C1,0(φ̈1,0 − φ̈g ) − C0(φ̈2,0 − φ̈1,0),

2, 0 : +φ2,0 − φ1,0 − �ext,0

L0
+ Ic,0 sin

(
2π

φ2,0 − φ1,0

φ0

)
− φ2,1 − φ2,0 − �ext,1

L2,1
= C2,0(φ̈2,0 − φ̈g ) + C0(φ̈2,0 − φ̈1,0),

1, 1 :
φ1,1 − φ1,0

L1,1
− Ic,1 sin

(
2π

φ2,1 − φ1,1

φ0

)
− φ1,2 − φ1,1

L1,2
= C1,1(φ̈1,1 − φ̈g ) − C1(φ̈2,1 − φ̈1,1), (B4)

2, 1 :
φ2,1 − φ2,0 − �ext1

L2,1
+ Ic,1 sin

(
2π

φ2,1 − φ1,1

φ0

)
− φ2,2 − φ2,1 − �ext2

L2,2
= C2,1(φ̈2,1 − φ̈g ) + C1(φ̈2,1 − φ̈1,1),

1, 2 : +φ1,2 − φ1,1

L1,2
− Ic,2 sin

(
2π

φ2,2 − φ1,2

φ0

)
− φ2,2 − φ1,2 + �ext3

L3
= C1,2(φ̈1,2 − φ̈g ) − C2(φ̈2,2 − φ̈1,2),

2, 2 : +φ2,2 − φ2,1 − �ext,2

L2,2
+ Ic,2 sin

(
2π

φ2,2 − φ1,2

φ0

)
+ φ2,2 − φ1,2 + �ext,3

L3
= C2,2(φ̈2,2 − φ̈g ) + C2(φ̈2,2 − φ̈1,2).

These are Euler-Lagrange equations for the following Lagrangian (expressed now in terms of N ; to retrieve the previous
equations, one would set N = 3):

L =
N−1∑
j=0

1

2
Cj (φ̇2,j − φ̇1,j )2 +

N−1∑
j=0

∑
α=1,2

1

2
Cα,i (φ̇α,i − φ̇g )2 −

N−2∑
j=0

[
(φ1,j+1 − φ1,j )2

2L1,j+1
+ (φ2,j+1 − φ2,j − �ext,j+1)2

2L2,j+1

]

− (φ2,0 − φ1,0 − �ext,0)2

2L0
− (φ2,N−1 − φ1,N−1 + �ext,N )2

2LN

+
N−1∑
j=0

EJ,j

[
1 − cos

(
2π

φ2,j − φ1,j

φ0

)]
. (B5)

Now set the longitudinal inductances to all be equal, Lα,i = L, and the terminal inductors to a value that ensures that all loop
inductances are constant across the circuit L0 = LN = 2L. Further, let the capacitance to ground of each superconducting island
be Cα,i = C0 for i = 0, . . . , N − 1 and α = 1, 2. These assignments agree with the particular choices denoted in Fig. 2(b) in the
main text. We now introduce new coordinates,

φ±
j = φ2,j ± φ1,j . (B6)

In terms of these fields the charging energy is rearranged into

1

2
C0(φ̇j,0 − φ̇g )2 + 1

2
C0(φ̇j,1 − φ̇g )2 ≡ 1

2
C0(A2 + B2) = 1

2
C0

(A + B )2 + (A − B )2

2
= C0[(φ̇j+/2 − φ̇g )2 + (φ̇j−/2)2],

(B7)
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and the longitudinal inductive elements give rise to

(φ1,j+1 − φ1,j )2

2L
+ (φ2,j+1 − φ2,j − �ext,j+1)2

2L
= 1

4L
[(φ+

j+1 − φ+
j − �ext,j+1)2 + (φ−

j+1 − φ−
j − �ext,j+1)2]. (B8)

Additionally, the inductive terms for the two end loops transform to

(φ2,0 − φ1,0 − �ext,0)2

2 × 2L
= (φ−

0 − �ext,0)2

2 × 2L
,

(φ2,N−1 − φ1,N−1 + �ext,N )2

2 × 2L
= (φ−

N−1 + �ext,N )2

2 × 2L
. (B9)

In terms of the new coordinates introduced in (B6) the Lagrangian of Eq. (B5) becomes

L =
N−1∑
j=0

CJ,j

2
(φ̇j− )2 +

N−1∑
j=0

C0

4
[(φ̇j+ − 2φ̇g )2 + (φ̇j− )2] −

N−2∑
j=0

1

4L
[(φ+

j+1 − φ+
j − �ext,j+1)2 + (φ−

j+1 − φ−
j − �ext,j+1)2]

− 1

4L
[(φ−

0 − �ext,0)2 + (φ−
N−1 + �ext,N )2] +

N−1∑
j=0

EJ,j

[
1 − cos

(
2π

φ−
j

�0

)]
. (B10)

The canonically conjugate momenta corresponding to the variables introduced in Eq. (B6) are

∂L
∂φ̇j−

≡ Q−
j = (CJ,j + C0/2)φ̇j− ,

∂L
∂φ̇j+

≡ Q+
j = (C0/2)(φ̇j+ − 2φ̇g ),

∂L
∂φ̇g

≡ Qg = −
N−1∑
j=0

C0(φ̇j+ − 2φ̇g ). (B11)

After a Legendre transform, H ≡ Qgφ̇g + ∑N−1
j=0

∑
α=± Qα

j φ̇jα − L, and promoting classical degrees of freedom to quantum
operators, we find

H =
N−1∑
j=0

(Q+
j )2

2(C0/2)
+

N−1∑
j=0

(Q−
j )2

2(CJ,j + C0/2)
+

N−2∑
j=0

1

4L
[(φ+

j+1 − φ+
j − �ext,j+1)2 + (φ−

j+1 − φ−
j − �ext,j+1)2]

+ 1

4L
[(φ−

0 − �ext,0)2 + (φ−
N−1 + �ext,N )2] −

N−1∑
j=0

EJ,j

[
1 − cos

(
2π

φ−
j

φ0

)]
. (B12)

We introduce, as in the main text, a dimensionless variable for the flux ϕα
j = 2πφα

j /�0 and the canonically conjugate Cooper

pair number nα
j = Qα

j

2e
for j = 0, . . . , N − 1 and α = ±. We also introduce energy scales associated with charging and inductive

circuit elements,

E+
C = e2

2(C0/2)
, EL = [�0/(2π )]2

2L
, E−

C,j = e2

2(CJ,j + C0/2)
, (B13)

as well as dimensionless flux variables

ϕext,j = 2π

�0
�ext,j . (B14)

The Hamiltonian reads

H = H+ + H−, (B15)

where

H =
N−1∑
j=0

4E+
C (n+

j )2 +
N−1∑
j=0

4E−
C,j (n−

j )2 +
N−2∑
j=0

EL

2
[(ϕ+

j+1 − ϕ+
j − ϕext,j+1)2 + (ϕ−

j+1 − ϕ−
j − ϕext,j+1)2]

+ EL

2
[(ϕ−

0 − ϕext,0)2 + (ϕ−
N−1 + ϕext,N )2] −

N−1∑
j=0

EJ,j [1 − cos(ϕ−
j )]. (B16)

This is the Hamiltonian used in the main text.
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(a)

(b)

FIG. 7. Three-dimensional density plots (opaque volumes signify that the absolute value of the probability density exceeds 10−3) for the
first four eigenstates of H− in Eq. (9) obtained from the finite-differences solution with Np = 17. The low-lying energies are represented in

the leftmost panels. We set EC = EJ,0 × 10−1, EJ,0 = η × EJ,1 = EJ,2 in units of EL = (�0/2π )2

2L
, with (a) η = 1 and (b) η = 10, corresponding

to the values chosen in Fig. 4 of the main text. In (a), the eigenvalues of the first five states, in units of EL, are 189.51, 190.10, 190.75, 191.22,

and 227.49, respectively. In (b), the first five eigenvalues are 144.55, 152.34, 152.41, 159.01, and 179.91, respectively.

APPENDIX C: NUMERICAL METHODS

In this Appendix we detail the solution to Eq. (9) of the
main text. For three junctions, the quantum Hamiltonian in
the antisymmetric sector reads

H− ≈ 4EC[(n−
0 )2 + (n−

1 )2 + (n−
2 )2] + V−(ϕ−

0 , ϕ−
1 , ϕ−

2 ),

(C1)

where one flux quantum is threaded through the entire circuit.
The latter condition makes the classical global minimum cor-
respond to fluxoid m = 1 [in analogy with the point marked
t3 in Fig. 5(b)]. We choose a gauge such that ϕext,0 = 2π and
ϕext,i = 0 for i = 1, 2, 3. Moreover, making the inductances
of the four elementary loops in the circuit equal ensures
that the global minimum of the potential energy is fourfold
degenerate: this is the underlying tight-binding lattice.

Writing n−
i = −i ∂

∂ϕ−
i

, the associated Schrödinger equation

takes the form of a differential eigenvalue equation,

H−
({

−i
∂

∂ϕ−
i

, ϕ−
i

∣∣∣∣i = 0, . . . , 2

})
ψ = E ψ. (C2)

This eigenvalue equation can be solved by finite-difference
methods [60]. With one flux quantum threaded through the
loop, as explained in the previous paragraph, the lowest-
energy manifold will contain only one-fluxon states, and
therefore, we consider only the interval (ϕ−

0 , ϕ−
1 , ϕ−

2 ) ∈
[−π, 3π ] × [−π, 3π ] × [−π, 3π ]. This interval symmetri-
cally contains the minima at 0 and 2π . We cover this interval
by a uniform mesh of Np points in each of the three directions.
Local minima of the classical potential outside of the first
octant are higher than the ones inside it by an energy ap-
proximately equal to (2π )2EL, as follows from the expression
of the potential energy in Eq. (B16), and their influence is
neglected. We adapt the mesh size so that in the classical

limit, corresponding to vanishing charging energies EC = 0,
the lowest-energy eigenvalues and the corresponding wave
functions agree with the minima of the classical potential. In
Fig. 7 we show results for the uniform and dimerized lattices
for a computation corresponding to N = 3 junctions and
mesh size Np = 17 along each axis. Diagonalization was per-
formed with a Jacobi-Davidson routine in the MATHEMATICA

package.

APPENDIX D: DISORDER EFFECTS

In the cQED implementation of the tight-binding model for
fluxons, tunneling rate disorders would arise from the spread
in the junction parameters EJ,i , E−

C,i in Eqs. (5) and (6) of
the main text, whereas on-site disorders are induced by flux
disorder at the level of the circuit, i.e., in the variables ϕext,i in
Eq. (6) of the main text. Based on this correspondence, we will
show in this section that the degeneracy of the bound states in
the circuit QED implementation of the Su-Schrieffer-Heeger
model is fairly robust to junction imperfections. However,
local flux noise will generally split the degenerate manifold.

In Fig. 8 we show typical values for the tunnel rate through
a single junction as a function of the junction surface area,
along with the expected spread caused by errors in the junc-
tion surface area of the order of 5% and 10%, respectively. We
consider the following dependence for the tunnel rate on the
Josephson and charging energies [55]:

t = 8

√
EJEC

π

(
EJ

2EC

) 1
4

e−√
8EJ/EC . (D1)

Additionally, from the Ambegaokar-Baratoff [87] formula we
may express

EJ = h
�

8e2

1

Rn(S)
, (D2)
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FIG. 8. Typical tunnel rate for a Josephson junction as a function
of junction surface area (solid black lines). The black dotted (blue
dashed) lines together with the shaded region between them show
the spread of the tunnel rate for a 5% (10%) error in the surface area.
Thick black dashed lines serve as guides to the eye to illustrate a
possible choice of two reference surface areas for the small and large
junctions in the dimerized configuration. Inset: Fractional spread of
the tunnel rate as a function of junction area for a 5% (black dotted
line) and 10% (blue dashed line) tolerance in the junction surface
area.

where h is Planck’s constant, e is the electron charge, and
Rn(S) is the normal-state resistance. We take the typical
dependence of the normal-state resistance on the surface
area in the form Rn(S) = αR/S, where α = 100 �μm2.
Moreover,

EC = e2

2CJ(S)
. (D3)

For the junction capacitance a typical dependence on the
surface area would be CJ(S) = αCS, with αC = 50 fF/μm2.
The estimates used here also allow us to exemplify in Fig. 8
a possible choice for junction surface areas for the dimerized
configuration necessary for the Su-Schrieffer-Heeger model.
This choice is governed by the requirement that the spread in
the tunnel rates preserves the dimerization, in accordance with
our analysis of bond disorders. We conclude that, for typical
junction parameters like those chosen here, it is possible, in
principle, to realize a dimerized configuration, even at a 10%
tolerance for the junction surface areas.

For completeness, we now study the effects of disorder
on the spectrum of the Su-Schrieffer-Heeger Hamiltonian. We
consider the following tight-binding model:

h− =
N−1∑
i=0

Wsite,i |i〉〈i| −
N−2∑
i=0

(ti + Wbond,i )|i〉〈i + 1| + H.c.,

(D4)

where we implement the dimerization by setting

t0 = t2 = · · · = 0.5�, t1 = t3 = · · · = �, (D5)

where � is the band gap. Moreover, Eq. (D4) generalizes
Eq. (8) of the main text with the introduction of on-site disor-
ders Wsite,i uniformly distributed in the interval [−Wsite

2 , Wsite
2 ]

and tunnel term disorder Wbond,i uniformly distributed in
[−Wbond

2 , Wbond
2 ] for all i running over the ranges in Eq. (D4).

For both bond disorder [Fig. 9(a)] and on-site disorder
[Fig. 9(b)] we diagonalize numerically Eq. (D4) with 30 sites
and variable disorder strength and show the spectrum. We
perform diagonalizations for an ensemble of 1000 disordered
systems. We find that the degeneracy of the boundary states
is preserved up to strong bond disorder Wbond on the order of
the band gap � (equivalently, the degeneracy is preserved for
bond disorder that preserves the dimerization of the hopping
rates). On the other hand, the degeneracy of the boundary
states is immediately split by on-site disorder Wsite, and the
splitting is proportional to Wsite.

FIG. 9. (a) Effect of increasing bond disorder Wbond on the spectrum of the Su-Schrieffer-Heeger model with open boundary conditions.
The degenerate boundary states subsist up to strong disorder (the size of the gap). (b) On-site disorder Wsite splits the degeneracy of the
boundary states, on average by an amount equal to Wsite.
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