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Non-Markovian dynamics of a superconducting qubit in an open multimode resonator
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We study the dynamics of a transmon qubit that is capacitively coupled to an open multimode superconducting
resonator. Our effective equations are derived by eliminating resonator degrees of freedom while encoding their
effect in the Green’s function of the electromagnetic background. We account for the dissipation of the resonator
exactly by employing a spectral representation for the Green’s function in terms of a set of non-Hermitian
modes and show that it is possible to derive effective Heisenberg-Langevin equations without resorting to the
rotating-wave, two-level, Born, or Markov approximations. A well-behaved time-domain perturbation theory is
derived to systematically account for the nonlinearity of the transmon. We apply this method to the problem
of spontaneous emission, capturing accurately the non-Markovian features of the qubit dynamics, valid for any
qubit-resonator coupling strength.
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I. INTRODUCTION

Superconducting circuits are of interest for gate-based
quantum-information processing [1–3] and for fundamental
studies of collective quantum phenomena away from equi-
librium [4–6]. In these circuits, Josephson junctions provide
the nonlinearity required to define a qubit or a pseudospin
degree of freedom, and low-loss microwave waveguides and
resonators provide a convenient linear environment to mediate
interactions between Josephson junctions [7–13] and act as
Purcell filters [14–16] or as suitable access ports for efficient
state preparation and readout. Fabrication capabilities have
reached a stage where coherent interactions between multiple
qubits occur through a waveguide [11], active coupling ele-
ments [17], or cavity arrays [18], while allowing manipulation
and readout of individual qubits in the circuit. In addition,
experiments started deliberately probing regimes featuring
very high qubit coupling strengths [19–21] or setups where
multimode effects cannot be avoided [22]. Accurate modeling
of these complex circuits has not only become important for
designing such circuits, e.g., to avoid cross talk and filter out
the electromagnetic environment, but also for the fundamental
question of the collective quantum dynamics of qubits [23]. In
this work, we introduce a first-principles Heisenberg-Langevin
framework that accounts for such complexity.

The inadequacy of the standard cavity QED models based
on the interaction of a pseudospin degree of freedom with a
single cavity mode was recognized early on [14]. In principle,
the Rabi model could straightforwardly be extended to include
many cavity electromagnetic modes and the remaining qubit
transitions (see Sec. III of [24]), but this does not provide a
computationally viable approach for several reasons. First, we
do not know of a systematic approach for the truncation of this
multimode multilevel system. Second, the truncation itself will
depend strongly on the spectral range that is being probed in
a given experiment (typically around a transition frequency
of the qubit), and the effective model for a given frequency
would have to accurately describe the resonator loss in a
broad frequency range. It is then unclear whether the Markov
approximation would be sufficient to describe such losses.

Multimode effects come to the fore in the accurate computa-
tion of the effective Purcell decay of a qubit [14] or the photon-

mediated effective exchange interaction between qubits in
the dispersive regime [10], where the perturbation theory is
divergent. A phenomenological semiclassical approach to the
accurate modeling of Purcell loss has been suggested [14],
based on the availability of the effective impedance seen by
the qubit. A full quantum model that incorporates the effective
impedance of the linear part of the circuit at its core was
later presented [25]. This approach correctly recognizes that
a better behaved perturbation theory in the nonlinearity can
be developed if the hybridization of the qubit with the linear
multimode environment is taken into account at the outset
[26]. Incorporating the dressing of the modes into the basis
that is used to expand the nonlinearity gives then rise to
self- and cross-Kerr interactions between hybridized modes.
This basis however does not account for the open nature of
the resonator. Qubit loss is then extracted from the poles of
the linear circuit impedance at the qubit port, Z(ω). This
quantity can in principle be measured or obtained from a
simulation of the classical Maxwell equations. Finding the
poles of Z(ω) through Foster’s theorem introduces potential
numerical complications [27]. Moreover, the interplay of the
qubit nonlinearity and dissipation is not addressed within
Rayleigh-Schrödinger perturbation theory. An exact treatment
of dissipation is important for the calculation of multimode
Purcell rates of qubits as well as the dynamics of driven
dissipative qubit networks [28].

The difficulty with incorporating dissipation on equal
footing with energetics in open systems is symptomatic of
more general issues in the quantization of radiation in finite
inhomogeneous media. One of the earliest thorough treatments
of this problem [29] proposes to use a complete set of states in
the unbounded space including the finite body as a scattering
object. This “modes of the universe” approach [30,31] is well
defined but has an impractical aspect: one has to deal with a
continuum of modes, and as a consequence simple properties
characterizing the scatterer itself (e.g., its resonance frequen-
cies and widths) are not effectively utilized. Several methods
have been proposed since then to address this shortcoming,
which discussed quantization using quasimodes (resonances)
of the finite-sized open resonator [32–35]. Usually, these meth-
ods treat the atomic degree of freedom as a two-level system
and use the rotating-wave and the Markov approximations.
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(a) (b)

FIG. 1. (a) Transmon qubit linearly (capacitively) coupled to
an open harmonic electromagnetic background, i.e., a multimode
superconducting resonator, characterized by Green’s function G̃(ω).
(b) Separation of linear and anharmonic parts of the Josephson
potential.

In the present work, rather than using a Hamiltonian
description, we derive an effective Heisenberg-Langevin equa-
tion to describe the dynamics of a transmon qubit [36] capaci-
tively coupled to an open multimode resonator [see Fig. 1(a)].
Our treatment illustrates a general framework that does not rely
on the Markov, rotating-wave, or two-level approximations.
We show that the electromagnetic degrees of freedom of the
entire circuit can be integrated out and appear in the equation of
motion through the classical electromagnetic Green’s function
(GF) corresponding to the Maxwell operator and the associated
boundary conditions. A spectral representation of the GF in
terms of a complete set of non-Hermitian modes [37,38]
accounts for dissipative effects from first principles. This
requires the solution of a boundary-value problem of the
Maxwell operator only in the finite domain of the resonator.
Our main result is the effective equation of motion (29),
which is a Heisenberg-Langevin [39–41] integro-differential
equation for the phase operator of the transmon. Outgoing
fields, which may be desired to calculate the homodyne field
at the input of an amplifier chain, can be conveniently related
through the GF to the qubit phase operator.

As an immediate application, we use the effective
Heisenberg-Langevin equation of motion to study sponta-
neous emission. The spontaneous emission of a two level
system in a finite polarizable medium was calculated [42]
in the Schrödinger picture in the spirit of Wigner-Weisskopf
theory [39]. These calculations are based on a radiation
field quantization procedure which incorporates continuity
and boundary conditions corresponding to the finite dielectric
[43,44], but only focus on separable geometries where the GF
can be calculated semianalytically. A generalization of this
methodology to an arbitrary geometry [45] uses an expansion
of the GF in terms of a set of non-Hermitian modes for the
appropriate boundary value problem [37,38]. This approach
is able to consistently account for multimode effects where
the atom-field coupling strength is of the order of the free
spectral range of the cavity [22,45,46] for which the atom is
found to emit narrow pulses at the cavity round-trip period
[45]. A drawback of these previous calculations performed
in the Schrödinger picture is that without the rotating-wave
approximation, no truncation scheme has been proposed
so far to reduce the infinite hierarchy of equations to a
tractable Hilbert space dimension. The employment of the

rotating-wave approximation breaks this infinite hierarchy
through the existence of a conserved excitation number. The
Heisenberg-Langevin method introduced here is valid for
arbitrary light-matter coupling, and therefore can access the
dynamics accurately where the rotating-wave approximation
is not valid.

In summary, our microscopic treatment of the openness
is one essential difference between our study and previous
works on the collective excitations of circuit-QED systems
with a localized Josephson nonlinearity [25,26,47,48]. In
our work, the lifetime of the collective excitations arises
from a proper treatment of the resonator boundary conditions
[49]. The harmonic theory of the coupled transmon-resonator
system is exactly solvable via Laplace transform. Transmon
qubits typically operate in a weakly nonlinear regime, where
charge dispersion is negligible [36]. We treat the Josephson
anharmonicity on top of the non-Hermitian linear theory
[see Fig. 1(b)] using multiscale perturbation theory (MSPT)
[50–52]. First, it resolves the anomaly of secular contribu-
tions in conventional time-domain perturbation theories via
a resummation [50–52]. While this perturbation theory is
equivalent to the Rayleigh-Schrödinger perturbation theory
when the electromagnetic environment is closed, it allows a
systematic expansion even when the environment is open and
the dynamics is nonunitary. Second, we account for the self-
Kerr and cross-Kerr interactions [53] between the collective
non-Hermitian excitations extending [25,26]. Third, treating
the transmon qubit as a weakly nonlinear bosonic degree
of freedom allows us to include the linear coupling to the
environment nonperturbatively. This is unlike the dispersive
limit treatment of the light-matter coupling as a perturbation
[54]. Therefore, the effective equation of motion is valid for all
experimentally accessible coupling strengths [19–22,55–58].

We finally present a perturbative procedure to reduce
the computational complexity of the solution of Eq. (29),
originating from the enormous Hilbert space size, when
the qubit is weakly anharmonic. Electromagnetic degrees of
freedom can then be perturbatively traced out resulting in an
effective equation of motion (63) in the qubit Hilbert space
only, which makes its numerical simulation tractable.

The paper is organized as follows: In Sec. II, we introduce
a toy model to familiarize the reader with the main ideas
and notation. In Sec. III, we present an ab initio effective
Heisenberg picture dynamics for the transmon qubit. The
derivation for this effective model has been discussed in detail
in Appendices A and B. In Sec. IV A, we study linear theory
of spontaneous emission. In Sec. IV B, we employ quantum
multiscale perturbation theory to investigate the effective dy-
namics beyond linear approximation. The details of multiscale
calculations are presented in Appendix D. In Sec. IV C we
compare these results with the pure numerical simulation. We
summarize the main results of this paper in Sec. V.

II. TOY MODEL

In this section, we discuss a toy model that captures the
basic elements of the effective equations [Eq. (29)], which we
derive in full microscopic detail in Sec. III. This will also allow
us to introduce the notation and concepts relevant to the rest of
this paper, in the context of a tractable and well-known model.
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We consider the single-mode cavity QED model, consisting
of a nonlinear quantum oscillator (qubit) that couples linearly
to a single bosonic degree of freedom representing the cavity
mode (Fig. 1). This mode itself is coupled to a continuum set
of bosons playing the role of the waveguide modes. When the
nonlinear oscillator is truncated to the lowest two levels, this
reduces to the standard open Rabi model, which is generally
studied using master equation [59] or stochastic Schrödinger
equation [60] approaches. Here we will discuss a Heisenberg-
picture approach to arrive at an equation of motion for qubit
quadratures. The Hamiltonian for the toy model is (� = 1)

Ĥ ≡ ωj

4

(
X̂ 2

j + Ŷ2
j

)+ ωj

2
U (X̂j ) + ωc

4

(
X̂ 2

c + Ŷ2
c

)+ gŶj Ŷc

+
∑

b

[ωb

4

(
X̂ 2

b + Ŷ2
b

)+ gbŶcŶb

]
, (1)

where ωj , ωc, and ωb are bare oscillation frequencies of qubit,
the cavity, and the bath modes, respectively. We have defined
the canonically conjugate variables

X̂l ≡ (âl + â
†
l ), Ŷl ≡ −i(âl − â

†
l ), (2)

where âl represent the boson annihilation operator of sector
l ≡ j,c,b. Furthermore, g and gb are qubit-cavity and cavity-
bath couplings. U (X̂j ) represents the nonlinear part of the
potential shown in Fig. 1(b) with a blue spider symbol.

The remainder of this section is structured as follows.
In Sec. II A, we eliminate the cavity and bath degrees of
freedom to obtain an effective Heisenberg-Langevin equation
of motion for the qubit. We dedicate Sec. II B to the resulting
characteristic function describing the hybridized modes of the
linear theory.

A. Effective dynamics of the qubit

In this subsection, we derive the equations of motion for
the Hamiltonian (1). We first integrate out the bath degrees of
freedom via a Markov approximation to obtain an effective
dissipation for the cavity. Then, we eliminate the degrees of
freedom of the leaky cavity mode to arrive at an effective
equation of motion for the qubit, expressed in terms of the GF
of the cavity. The Heisenberg equations of motion are found
as

ˆ̇Xj (t) = ωj Ŷj (t) + 2gŶc(t), (3a)

ˆ̇Yj (t) = −ωj {X̂j (t) + U ′[X̂j (t)]}, (3b)

ˆ̇Xc(t) = ωcŶc(t) + 2gŶj (t) +
∑

b

2gbŶb(t), (3c)

ˆ̇Yc(t) = −ωcX̂c(t), (3d)

ˆ̇Xb(t) = ωbŶb(t) + 2gbŶc(t), (3e)

ˆ̇Yb(t) = −ωbX̂b(t), (3f)

where U ′[X̂j ] ≡ dU/dX̂j . Eliminating Ŷj,c,b(t) using
Eqs. (3b), (3d), and (3f) first, and integrating out the bath
degree of freedom via the Markov approximation [39,61], we

obtain effective equations for the qubit and cavity as

ˆ̈Xj (t) + ω2
j {X̂j (t) + U ′[X̂j (t)]} = −2gωcX̂c(t), (4a)

ˆ̈Xc(t) + 2κc
ˆ̇Xc(t) + ω2

c X̂c(t)

= −2gωj {X̂j (t) + U ′[X̂j (t)]} − f̂B(t), (4b)

where 2κc is the effective dissipation [49,62,63] and f̂B(t) is
the noise operator of the bath seen by the cavity,

f̂B(t) =
∑

b

2gb[ωbX̂b(0) cos(ωbt) + ˆ̇Xb(0) sin(ωbt)]. (5)

Note that Eq. (4b) is a linear nonhomogeneous ODE in
terms of X̂c(t). Therefore, it is possible to find its general
solution in terms of its impulse response, i.e., the GF of the
associated classical cavity oscillator:

G̈c(t,t ′) + 2κcĠc(t,t ′) + ω2
cGc(t,t ′) = −δ(t − t ′). (6)

Following the Fourier transform conventions

G̃c(ω) ≡
∫ ∞

−∞
dtGc(t,t ′)eiω(t−t ′), (7a)

Gc(t,t ′) ≡
∫ ∞

−∞

dω

2π
G̃c(ω)e−iω(t−t ′), (7b)

we obtain an algebraic solution for G̃c(ω) as

G̃c(ω) = 1

(ω − ωC)(ω + ω∗
C)

, (8)

with ωC ≡ νc − iκc and νc ≡ √
ω2

c − κ2
c . Taking the inverse

Fourier transform of Eq. (8) we find the single-mode GF of
the cavity oscillator

Gc(t,t ′) = − 1

νc

sin[νc(t − t ′)]e−κc(t−t ′)�(t − t ′), (9)

where since the poles of G̃c(ω) reside in the lower half of the
complex ω plane, Gc(t,t ′) is retarded (causal) and �(t) stands
for the Heaviside step function [64].

Then, the general solution to Eq. (4b) can be expressed in
terms of Gc(t,t ′) as [65]

X̂c(t) = 2gωj

∫ t

0
dt ′Gc(t,t ′){X̂j (t ′) + U ′[X̂j (t ′)]}

+ (∂t ′ + 2κc)Gc(t,t ′)|t ′=0X̂c(0) − Gc(t,0) ˆ̇Xc(0)

+
∫ t

0
dt ′Gc(t,t ′)f̂B(t ′). (10)

Substituting Eq. (10) into the right-hand side of Eq. (4a) and
defining

K(t) ≡ 4g2 ωc

ωj

Gc(t,0), (11a)

D(t) ≡ −2gωcGc(t,0), (11b)

I(ω) ≡ −2gωcG̃c(ω), (11c)
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we find the effective dynamics of the nonlinear oscillator in
terms of X̂j (t) as

ˆ̈Xj (t) + ω2
j {X̂j (t) + U ′[X̂j (t)]}

= −
∫ t

0
dt ′K(t − t ′)ω2

j {X̂j (t ′) + U ′[X̂j (t ′)]}

+
∫ t

0
dt ′D(t − t ′)f̂B(t ′) +

∫ ∞

−∞

dω

2π
I(ω)

× [(iω + 2κc)X̂c(0) − ˆ̇Xc(0)]e−iωt . (12)

The left-hand side of Eq. (12) is the free dynamics of the qubit.
The first term on the right-hand side includes the memory of
all past events encoded in the memory kernel K(t). The second
term incorporates the influence of bath noise on qubit dynamics
and plays the role of a drive term. Finally, the last term captures
the effect of the initial operator conditions of the cavity. Note
that even though Eq. (12) is an effective equation for the qubit,
all operators act on the full Hilbert space of the qubit and the
cavity.

B. Linear theory

In the absence of the nonlinearity, i.e., U [X̂j ] = 0, Eq. (12)
is a linear integro-differential equation that can be solved
exactly via unilateral Laplace transform

f̃ (s) ≡
∫ ∞

0
dte−stf (t), (13)

since the memory integral on the right-hand side appears as
a convolution between the kernel K(t) and earlier values of
X̂j (t ′) for 0 < t ′ < t . Employing the convolution identity

L

{∫ t

0
dt ′K(t − t ′)X̂j (t ′)

}
= K̃(s) ˆ̃Xj (s), (14)

we find that the Laplace solution to Eq. (12) takes the general
form

ˆ̃Xj (s) = N̂j (s)

Dj (s)
, (15)

where the numerator

N̂j (s) = sX̂j (0) + ˆ̇Xj (0)

− 2gωc[(s + 2κc)X̂c(0) + ˆ̇Xc(0) − ˆ̃fB(s)]

s2 + 2κcs + ω2
c

(16)

contains the information regarding the initial conditions and
the noise operator. The characteristic function Dj (s) is defined
as

Dj (s) ≡ s2 + ω2
j [1 + K̃(s)]

= s2 + ω2
j − 4g2ωjωc

s2 + 2κcs + ω2
c

, (17)

which is the denominator of the algebraic Laplace solution
(15). Therefore, its roots determine the complex resonances
of the coupled system. The poles of Dj (s) are, on the other
hand, the bare complex frequencies of the dissipative cavity
oscillator found before, zc ≡ −iωC . Therefore, Dj (s) can

always be represented formally as

Dj (s) = (s − pj )(s − p∗
j )

(s − pc)(s − p∗
c )

(s − zc)(s − z∗
c )

, (18)

where pj and pc are the qubit-like and cavity-like poles such
that for g → 0 we get pj → −iωj and pc → −iωC ≡ zc. In
writing Eq. (18), we have used the fact that the roots of a
polynomial with real coefficients come in complex conjugate
pairs.

It is worth emphasizing that our toy model avoids the
rotating-wave (RW) approximation. This approximation is
known to break down in the ultrastrong-coupling regime
[19–21,58,66]. In order to understand its consequence and
make a quantitative comparison, we have to find how the
RW approximation modifies Dj (s). Note that by applying the
RW approximation, only the coupling Hamiltonian in Eq. (1)
transforms as

Ŷj Ŷc −→
RW

1
2 (X̂j X̂c + Ŷj Ŷc). (19)

Then, the modified equations of motion for X̂j (t) and X̂c(t)
read

ˆ̈Xj (t) + (
ω2

j + g2
)
X̂j (t) = −g(ωj + ωc)X̂c(t), (20a)

ˆ̈Xc(t) + 2κc
ˆ̇Xc(t) + (

ω2
c + g2

)
X̂c(t)

= −g(ωj + ωc)X̂j (t) − f̂B(t). (20b)

Note that the form of Eqs. (20a) and (20b) is the same
as Eqs. (4a) and (4b) except for the modified parameters.
Therefore, following the same calculation as in Sec. II A we
find a new characteristic function DRW

j (s) which reads

DRW
j (s) = s2 + (

ω2
j + g2

)− g2(ωj + ωc)2

s2 + 2κcs + (
ω2

c + g2
) .

(21)

We compare the complex roots of Dj (s) and DRW
j (s) in

Fig. 2 as a function of g. For g = 0, the poles start from their
bare values iωj and iνc − κc and the results with and without
RW match exactly. As g increases both theories predict that
the dissipative cavity oscillator passes some of its decay rate
to the qubit oscillator. This is seen in Fig. 2(a) where the poles
move towards each other in the s plane while the oscillation
frequency is almost unchanged. As g is increased more, there
is an avoided crossing and the poles resolve into two distinct
frequencies. After this point, the predictions from Dj (s) and
DRW

j (s) for pj and pc deviate more significantly. This is more
visible in Figs. 2(b) and 2(c) that show the difference between
the two solutions in the complex s plane. In addition, there is
a saturation of the decay rates to half of the bare decay rate of
the dissipative cavity oscillator.

In summary, we have obtained the effective equation of
motion (12) for the quadrature X̂j (t) of the nonlinear oscillator.
This equation incorporates the effects of memory, initial
conditions of the cavity, and drive. It admits an exact solution
via Laplace transform in the absence of nonlinearity. To lowest
order, the Josephson nonlinearity is a time-domain perturba-
tion ∝ X̂ 3

j (t) in Eq. (12). This amounts to a quantum Duffing
oscillator [67] coupled to a linear environment. Time-domain
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FIG. 2. (a) Hybridized poles of the linear theory, pj and pc,
obtained from Eqs. (17) and (19) for the resonant case ωj = ν−

c ,
κc = 0.1νc as a function of g ∈ [0,0.5ωj ] with increment 	g =
0.005ωj . The blue circles and green stars show the qubit-like pole
pj with and without RW, respectively. Similarly, the red squares and
purple crosses show the cavity-like pole pc. (b) and (c) represent the
difference 	pj,c ≡ pj,c − pRW

j,c between the two solutions. The black
arrows show the direction of increase in g.

perturbation theory consists of an order-by-order solution
of Eq. (12). A naive application leads to the appearance of
resonant coupling between the solutions at successive orders.
The resulting solution contains secular contributions, i.e.,
terms that grow unbounded in time. We present the resolution
of this problem using multiscale perturbation theory (MSPT)
[50–52] in Sec. IV B.

III. EFFECTIVE DYNAMICS OF A TRANSMON QUBIT

In this section, we present a first-principles calculation for
the problem of a transmon qubit that couples capacitively to
an open multimode resonator (see Fig. 3). Like the toy model
in Sec. II, this calculation relies on an effective equation

FIG. 3. A transmon qubit coupled to an open superconducting
resonator.

of motion for the transmon qubit quadratures, in which the
photonic degrees of freedom are integrated out. In contrast
to the toy model where the decay rate was obtained via
Markov approximation, we use a microscopic model for
dissipation [62,63]. We model our bath as a pair of semi-
infinite waveguides capacitively coupled to each end of a
resonator.

As shown in Fig. 3, the transmon qubit is coupled to a
superconducting resonator of finite length L by a capacitance
Cg . The resonator itself is coupled to the two waveguides at
its ends by capacitances CR and CL, respectively. For all these
elements, the capacitance and inductance per length are equal
and given as c and l, correspondingly. The transmon qubit is
characterized by its Josephson energy Ej , which is tunable by
an external flux bias line (FBL) [68], and its charging energy
Ec, which is related to the capacitor Cj as Ec = e2/(2Cj ).
The explicit circuit quantization is explained in Appendix A
following a standard approach [49,69–71]. We describe the
system in terms of flux operator 
̂j (t) for transmon and flux
fields 
̂(x,t) and 
̂R,L(x,t) for the resonator and waveguides.

The dynamics for the quantum flux operators of the
transmon and each resonator shown in Fig. 3 is derived in
Appendix A. In what follows, we work with unitless variables

x

L
→ x,

t√
lcL

→ t,
√

lcLω → ω, 2π

̂


0
→ ϕ̂,

(22)

where 
0 ≡ h/(2e) is the flux quantum and 1/
√

lc is the phase
velocity. We also define unitless parameters

χi ≡ Ci

cL
, i = R,L,j,g,s, (23)

Ej,c ≡
√

lcL
Ej,c

�
. (24)

The Heisenberg equation of motion for the transmon reads

ˆ̈ϕj (t) + (1 − γ )ω2
j sin [ϕ̂j (t)] = γ ∂2

t ϕ̂(x0,t), (25)

where γ ≡ χg/(χg + χj ) is a capacitive ratio, ωj ≡ √
8EcEj

is the unitless bare transmon frequency, and x0 is the location
of transmon. The phase field ϕ̂(x,t) of the resonator satisfies
an inhomogeneous wave equation[

∂2
x − χ (x,x0)∂2

t

]
ϕ̂(x,t) = χsω

2
j sin [ϕ̂j (t)]δ(x − x0), (26)

where χ (x,x0) = 1 + χsδ(x − x0) is the unitless capacitance
per unit length modified due to coupling to the transmon qubit,
and χs ≡ χgχj/(χg + χj ) is the unitless series capacitance of
Cj and Cg . The effect of a nonzero χs reflects the modification
of the cavity modes due to the action of the transmon as
a classical scatterer [24]. We note that this modification is
distinct from, and in addition to, the modification of the cavity
modes due to the linear part of the transmon potential discussed
in [25]. Table I lists the unitless variables and parameters used
in the remainder of this paper.

The flux field in each waveguide obeys a homogeneous
wave equation (

∂2
x − ∂2

t

)
ϕ̂R,L(x,t) = 0. (27)
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TABLE I. Summary of definitions for some parameters and
variables. Operators are denoted by a hat notation.

Notation Definition Physical Meaning

χ C/cL unitless capacitance
χs χgχj/(χg + χj ) series capacitance
γ χg/(χg + χj ) capacitive ratio
χ (x,x0) 1 + χsδ(x − x0) capacitance per length
Ej,c

√
lcLEj,c/� unitless energy

ωj

√
8EcEj bare transmon frequency

ε (Ec/Ej )1/2 nonlinearity measure
ε

√
2

6 (Ec/Ej )1/2 small expansion parameter

0 h/(2e) flux quantum
φzpf (2Ec/Ej )1/4 zero-point fluctuation phase

̂(t)

∫ t

0 dt ′V̂ (t) flux
ϕ̂(t) 2π
̂/
0 phase
φ̂j (t) Trph{ρ̂ph(0)ϕ̂j (t)} reduced phase
X̂ (t) ϕ̂(t)/φzpf unitless quadrature
X̂j (t) φ̂j (t)/φzpf reduced unitless quadrature

The boundary conditions (BCs) are derived from conservation
of current at each end of the resonator as

− ∂xϕ̂|x=1− = −∂xϕ̂R|x=1+

= χR∂2
t [ϕ̂(1−,t) − ϕ̂R(1+,t)], (28a)

−∂xϕ̂|x=0+ = −∂xϕ̂L|x=0−

= χL∂2
t [ϕ̂L(0−,t) − ϕ̂(0+,t)]. (28b)

Equations (25)–(28b) completely describe the dynamics
of a transmon qubit coupled to an open resonator. Note that
according to Eq. (25) the bare dynamics of the transmon is
modified due to the force term γ ∂2

t ϕ̂(x0,t). Therefore, in order
to find the effective dynamics for the transmon, we need to
solve for ϕ̂(x,t) first and evaluate it at the point of connection
x = x0. This can be done using the classical electromagnetic
GF by virtue of the homogeneous part of Eqs. (26) and
(27) being linear in the quantum fields (see Appendix B 1).
Substituting it into the left-hand side of Eq. (25) and further
simplifying leads to the effective dynamics for the transmon
phase operator

ˆ̈ϕj (t) + (1 − γ )ω2
j sin [ϕ̂j (t)]

= + d2

dt2

∫ t

0
dt ′K0(t − t ′)ω2

j sin [ϕ̂j (t ′)]

+
∫ +∞

−∞

dω

2π
DR(ω) ˆ̃ϕinc

R (1+,ω)e−iωt

+
∫ +∞

−∞

dω

2π
DL(ω) ˆ̃ϕinc

L (0−,ω)e−iωt +
∫ 1+

0−
dx ′

×
∫ +∞

−∞

dω

2π
I(x ′,ω)[iωϕ̂(x ′,0) − ˆ̇ϕ(x ′,0)]e−iωt .

(29)

The electromagnetic GF is the basic object that appears in
the various kernels constituting the above integro-differential

equation:

Kn(τ ) ≡ γχs

∫ +∞

−∞

dω

2π
ωnG̃(x0,x0,ω)e−iωτ , (30a)

DR(ω) ≡ −2iγ ω3G̃(x0,1
+,ω), (30b)

DL(ω) ≡ −2iγ ω3G̃(x0,0
−,ω), (30c)

I(x ′,ω) ≡ γω2χ (x ′,x0)G̃(x0,x
′,ω). (30d)

Equation (29) fully describes the effective dynamics of the
transmon phase operator. The various terms appearing in this
equation have transparent physical interpretation. The first
integral on the right-hand side of Eq. (29) represents the
retarded self-interaction of the qubit. It contains the GF in
the form G̃(x0,x0,ω) and describes all processes in which
the electromagnetic radiation is emitted from the transmon
at x = x0 and is scattered back again. We will see later on that
this term is chiefly responsible for the spontaneous emission of
the qubit. The boundary terms include only the incoming part
of the waveguide phase fields. They describe the action of the
electromagnetic fluctuations in the waveguides on the qubit,
as described by the propagators from cavity interfaces to the
qubit, G̃(x0,0−,ω) and G̃(x0,1+,ω). The phase fields ϕ̂L(0−,t)
and ϕ̂R(1+,t) may contain a classical (coherent) part as well.
Finally, the last integral adds up all contributions of a nonzero
initial value for the electromagnetic field inside the resonator
that propagates from the point 0 < x ′ < 1 to the position of
transmon x0.

The solution to the effective dynamics (29) requires
knowledge of G̃(x,x ′,ω). To this end, we employ the spectral
representation of the GF in terms of a set of constant flux (CF)
modes [37,72]

G̃(x,x ′,ω) =
∑

n


̃n(x,ω) ¯̃
∗
n(x ′,ω)

ω2 − ω2
n(ω)

, (31)

where 
̃n(x,ω) and ¯̃
n(x,ω) are the right and left eigenfunc-
tions of the Helmholtz eigenvalue problem with outgoing BCs
and hence carry a constant flux when x → ±∞. Note that
in this representation, both the CF frequencies ωn(ω) and
the CF modes 
̃n(x,ω) parametrically depend on the source
frequency ω. The expressions for ωn(ω) and 
̃n(x,ω) are given
in Appendix B 3.

The poles of the GF are the solutions to ω = ωn(ω) that
satisfy the transcendental equation

[e2iωn − (1 − 2iχLωn)(1 − 2iχRωn)]

+ i

2
χsωn[e2iωnx0 + (1 − 2iχLωn)]

× [e2iωn(1−x0) + (1 − 2iχRωn)] = 0. (32)

The solutions to Eq. (32) all reside in the lower half of the
ω plane resulting in a finite lifetime for each mode that is
characterized by the imaginary part of ωn ≡ νn − iκn. In Fig. 4
we plot the decay rate κn versus the oscillation frequency
νn of the first 100 modes for x0 = 0 and different values of
χR = χL and χs . There is a transition from a superlinear [14]
dependence on mode number for smaller opening to a sublinear
dependence for larger openings. Furthermore, increasing χs

always decreases the decay rate κn. Intuitively, χs is the
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FIG. 4. Decay rate κn versus oscillation frequency νn for the first
100 non-Hermitian modes for x0 = 0 and different values of χs .
(a) χR = χL = 10−5, (b) χR = χL = 10−3, (c) χR = χL = 10−2, and
(d) χR = χL = 10−1.

strength of a δ-function step in the susceptibility at the position
of the transmon. An increase in the average refractive index
inside the resonator generally tends to redshift of the cavity
resonances, while decreasing their decay rate.

In summary, we have derived an effective equation of
motion, Eq. (29), for the transmon qubit flux operator ϕ̂j ,
in which the resonator degrees of freedom enter via the
electromagnetic GF G̃(x,x ′,ω) given in Eq. (31).

IV. SPONTANEOUS EMISSION INTO A LEAKY
RESONATOR

In this section, we revisit the problem of spontaneous
emission [14,42,45,73–77], where the system starts from the
initial density matrix

ρ̂(0) = ρ̂j (0) ⊗ |0〉ph〈0|ph, (33)

such that the initial excitation exists in the transmon sector of
Hilbert space with zero photons in the resonator and waveg-
uides. ρ̂j (0) is a general density matrix in the qubit subspace.
For our numerical simulation of the spontaneous emission
dynamics in terms of quadratures, we will consider ρ̂j (0) =
|�j (0)〉〈�j (0)| with |�j (0)〉 = (|0〉j + |1〉j )/

√
2. The spon-

taneous emission was conventionally studied through the
Markov approximation of the memory term which results only
in a modification of the qubit-like pole. This is the Purcell
modified spontaneous decay where, depending on the density
of the states of the environment, the emission rate can be
suppressed or enhanced [73–77]. We extract the spontaneous
decay as the real part of transmon-like pole in a full multimode

calculation that is accurate for any qubit-resonator coupling
strength.

A product initial density matrix like Eq. (33) allows
us to reduce the generic dynamics significantly, since the
expectation value of any operator Ô(t) can be expressed as

Trj Trph{ρ̂j (0) ⊗ ρ̂ph(0)Ô(t)} = Trj {ρ̂j (0)Ô(t)}, (34)

where Ô ≡ Trph{Ô} is the reduced operator in the Hilbert
space of the transmon. Therefore, we define a reduced phase
operator

φ̂j (t) ≡ Trph{ρ̂ph(0)ϕ̂j (t)}. (35)

In the absence of an external drive, the generic effective
dynamics in Eq. (29) reduces to

ˆ̈φj (t) + ω2
j [1 − γ + iK1(0)]Trph{ρ̂ph(0) sin [ϕ̂j (t)]}

= −
∫ t

0
dt ′K2(t − t ′)ω2

j Trph{ρ̂ph(0) sin [ϕ̂j (t ′)]}. (36)

The derivation of Eq. (36) can be found in Appendices B 5 and
B 6.

Note that, due to the sine nonlinearity, Eq. (36) is not closed
in terms of φ̂j (t). However, in the transmon regime [36], where
Ej 
 Ec, the nonlinearity in the spectrum of the transmon is
weak. This becomes apparent when we work with the unitless
quadratures

X̂j (t) ≡ φ̂j (t)

φzpf
, X̂j (t) ≡ ϕ̂j (t)

φzpf
, (37)

where φzpf ≡ (2Ec/Ej )1/4 is the zero-point fluctuation (zpf)
phase amplitude. Then, we can expand the nonlinearity in
both sides of Eq. (36) as

sin [ϕ̂j (t)]

φzpf
= ϕ̂j (t)

φzpf
− ϕ̂3

j (t)

3!φzpf
+ O

[
ϕ̂5

j (t)

φzpf

]

= X̂j (t) −
√

2ε

6
X̂ 3

j (t) + O(ε2), (38)

where ε ≡ (Ec/Ej )1/2 appears as a measure for the strength
of the nonlinearity. In experiment, the Josephson energy Ej

can be tuned through the FBL while the charging energy Ec is
fixed. Therefore, a higher transmon frequency ωj = √

8EcEj

is generally associated with a smaller ε and hence weaker
nonlinearity.

The remainder of this section is organized as follows. In
Sec. IV A we study the linear theory. In Sec. IV B we develop
a perturbation expansion up to leading order in ε. In Sec. IV C,
we compare our analytical results with numerical simulation.
Finally, in Sec. IV D we discuss the output field response of
the system that can be probed in experiment.

A. Linear theory

In this subsection, we solve the linear effective dynamics
and discuss hybridization of the transmon and the resonator
resonances. We emphasize the importance of off-resonant
modes as the coupling χg is increased. We next investigate the
spontaneous decay rate as a function of transmon frequency
ωj and coupling χg and find an asymmetric dependence on ωj

in agreement with a previous experiment [14].
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Neglecting the cubic term in Eq. (38), the partial trace with
respect to the resonator modes can be taken directly and we
obtain the effective dynamics

ˆ̈Xj (t) + ω2
j [1 − γ + iK1(0)]X̂j (t)

= −
∫ t

0
dt ′K2(t − t ′)ω2

j X̂j (t ′). (39)

Then, using the Laplace transform we can solve Eq. (39) as

ˆ̃Xj (s) = sX̂j (0) + ωj Ŷj (0)

Dj (s)
, (40)

with Dj (s) defined as

Dj (s) ≡ s2 + ω2
j [1 − γ + iK1(0) + K̃2(s)]. (41)

Equations (40) and (41) contain the solution for the reduced
quadrature operator of the transmon qubit in the Laplace
domain.

In order to find the time domain solution, it is necessary
to study the poles of Eq. (40) and consequently the roots of
Dj (s). The characteristic function Dj (s) can be expressed as
(see Appendix C)

Dj (s) = s2 + ω2
j + ω2

j

{
−γ +

∑
n

Mn

× s{cos [2δn(x0)]s + sin [2δn(x0)]νn}
(s + κn)2 + ν2

n

}
, (42)

where δn(x) is the phase of the non-Hermitian eigenfunction
such that 
̃n(x) = |
̃n(x)|eiδn(x). We identify the term

Mn ≡ γχs |
̃n(x0)|2 (43)

as the measure of hybridization with individual resonator
modes. The form of Mn in Eq. (43) illustrates that the
hybridization between the transmon and the resonator is
bounded. This strength of hybridization is parametrized by
γχs rather than χg . This implies that as χg , the coupling
capacitance, is increased, the qubit-resonator hybridization is
limited by the internal capacitance of the qubit, χj :

lim
χg

χj
→∞

γχs = lim
χg

χj
→∞

(
χg

χg + χj

)2

χj = χj . (44)

For this reason, our numerical results below feature a saturation
in hybridization as χg is increased.

The roots of Dj (s) are the hybridized poles of the entire
system. If there is no coupling, i.e., χg = 0, then Dj (s) =
s2 + ω2

j = (s + iωj )(s − iωj ) is the characteristic polynomial
that gives the bare transmon resonance. However, for a nonzero
χg , Dj (s) becomes a meromorphic function whose zeros are
the hybridized resonances of the entire system, and whose
poles are the bare cavity resonances. Therefore, Dj (s) can be
expressed as

Dj (s) = (s − pj )(s − p∗
j )
∏
m

(s − pm)(s − p∗
m)

(s − zm)(s − z∗
m)

. (45)

In Eq. (45), pj ≡ −αj − iβj and pn ≡ −αn − iβn are the
zeros of Dj (s) that represent the transmon-like and the nth
resonator-like poles, accordingly. Furthermore, zn ≡ −iωn =
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FIG. 5. (a) The first five hybridized poles of the resonator-qubit
system, for the case where the transmon is slightly detuned below
the fundamental mode, i.e., ωj = ν−

1 . The other parameters are set
as χR = χL = 0.01, χj = 0.05, and χg ∈ [0,10−3] with increments
	χg = 10−5. (b) Zoom-in plot of the hybridization of the most
resonant modes. Hybridization of p1 and pj is much stronger than
that of the off-resonant poles pn, n > 1.

−κn − iνn stands for the nth bare non-Hermitian resonator
resonance. The notation chosen here (p for poles and z for
zeros) reflects the meromorphic structure of 1/Dj (s) which
enters the solution Eq. (40).

An important question concerns the convergence of Dj (s)
as a function of the number of the resonator modes included in
the calculation. The form of Dj (s) given in Eq. (45) is suitable
for this discussion. Consider the factor corresponding to the
mth resonator mode in 1/Dj (s). We reexpress it as

(s − zm)(s − z∗
m)

(s − pm)(s − p∗
m)

=
(

1 − zm − pm

s − pm

)(
1 − z∗

m − p∗
m

s − p∗
m

)

= 1 + O
(∣∣∣∣zm − pm

s − pm

∣∣∣∣
)

. (46)

The consequence of a small shift |pm − zm| as compared to
the strongly hybridized resonant mode |p1 − z1| is that it can
be neglected in the expansion for 1/Dj (s). The relative size of
these contributions is controlled by the coupling χg . As rule
of thumb, the less hybridized a resonator pole is, the less it
contributes to qubit dynamics. Ultimately, the truncation in
this work is established by imposing the convergence of the
numerics.

A numerical solution for the roots of Eq. (42) at weak
coupling χg reveals that the mode resonant with the trans-
mon is significantly shifted, with comparatively small shifts
|pm − zm| in the other resonator modes (see Fig. 5). At weak
coupling, the hybridization of pj and p1 is captured by a single
resonator mode. Next, we plot in Fig. 6 the effect of truncation
on the response of the multimode system in a band around
s = pj . As the coupling χg is increased beyond the avoided
crossing, which is also captured by the single-mode truncation,
the effect of off-resonant modes on pj and p1 becomes
significant. It is important to note that the hybridization occurs
in the complex s plane. On the frequency axis Im{s} an increase
in χg is associated with a splitting of transmon-like and
resonator-like poles. Along the decay rate axis Re{s} we notice
that the qubit decay rate is controlled by the resonant mode at
weak coupling, with noticeable enhancement of off-resonant
mode contribution at strong coupling. If the truncation is not
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FIG. 6. Convergence of pj and p1 for the same parameters as
Fig. 5, but for χg ∈ [0,0.02] and keeping (a) 1, (b) 5, (c) 10, and
(d) 20 resonator modes in Dj (s).

done properly in the strong-coupling regime, it may result in
spurious unstable roots of Dj (s), i.e., Re{s} > 0, as seen in
Fig. 6(a).

The modification of the decay rate of the transmon-like
pole, henceforth identified as αj ≡ −Re{pj }, has an important
physical significance. It describes the Purcell modification of
the qubit decay (if sources for qubit decay other than the
direct coupling to electromagnetic modes can be neglected).
The present scheme is able to capture the full multimode
modification, which is out of the reach of conventional single-
mode theories of spontaneous emission [73–77].

At fixed χg , we observe an asymmetry of αj when the bare
transmon frequency is tuned across the fundamental mode of
the resonator, in agreement with a previous experiment [14],
where a semiclassical model was employed for an accurate
fit. Figure 7 shows that near the resonator-like resonance
the spontaneous decay rate is enhanced, as expected. For
positive detunings spontaneous decay is significantly larger
than for negative detunings, which can be traced back to
an asymmetry in the resonator density of states [14]. We
find that this asymmetry grows as χg is increased. Note that
besides a systematic inclusion of multimode effects, the
presented theory of spontaneous emission goes beyond the
rotating-wave, Markov, and two-level approximations as well.

Having studied the hybridized resonances of the entire
system, we are now able to provide the time-dependent
solution to Eq. (39). By substituting Eq. (45) into Eq. (40)
we obtain

ˆ̃Xj (s) =
(

Âj

s − pj

+
∑

n

Ân

s − pn

)
+ H.c., (47)

0 1
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FIG. 7. Spontaneous emission rate defined as αj ≡ −Re{pj } as a
function of transmon frequency ωj for χR = χL = 10−2, χj = 0.05,
and (a) χg = 10−3 and (b) χg = 5 × 10−3. We observe that the
asymmetry grows as χg is increased. The black vertical dotted lines
show the location of resonator frequencies νn.

from which the inverse Laplace transform is immediate,

X̂j (t) =
[(

Âj e
pj t +

∑
n

Âne
pnt

)
+ H.c.

]
�(t). (48)

The frequency components have operator-valued amplitudes

Âj ≡ AX
j X̂j (0) + AY

j Ŷj (0), (49a)

Ân ≡ AX
n X̂j (0) + AY

n Ŷj (0), (49b)

with the residues given in terms of Dj (s) as

AX
j,n ≡

[
(s − pj,n)

s

Dj (s)

]∣∣∣∣
s=pj,n

, (50a)

AY
j,n ≡

[
(s − pj,n)

ωj

Dj (s)

]∣∣∣∣
s=pj,n

. (50b)

The dependence of AX
j,n and AY

j,n on coupling χg has been
studied in Fig. 8. The transmon-like amplitude (blue solid) is
always dominant, and further off-resonant modes have smaller
amplitudes. By increasing χg , the resonator-like amplitude
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FIG. 8. Dependence of residues defined in Eqs. (50a) and (50b) on
χg for ωj = ν−

1 , χR = χL = 0.01, and χj = 0.05. The black vertical
dotted line shows the value of χj .

063848-9
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grow significantly first and reach an asymptote as predicted by
Eq. (44).

B. Perturbative corrections

In this section, we develop a well-behaved time-domain
perturbative expansion in the transmon qubit nonlinearity as
illustrated in Eq. (38). Conventional time-domain perturbation
theory is inapplicable due to the appearance of resonant
coupling between the successive orders which leads to secular
contributions, i.e., terms that grow unbounded in time (for
a simple example see Appendix D 1). A solution to this
is multiscale perturbation theory (MSPT) [50–52], which
considers multiple independent time scales and eliminates
secular contributions by a resummation of the conventional
perturbation series.

The effect of the nonlinearity is to mix the hybridized
modes discussed in the previous section, leading to transmon-
mediated self-Kerr and cross-Kerr interactions. Below, we ex-
tend MSPT to treat this problem while consistently accounting
for the dissipative effects. This goes beyond the extent of
Rayleigh-Schrödinger perturbation theory, as it will allow us
to treat the energetic and dissipative scales on equal footing.

The outcome of conventional MSPT analysis in a conserva-
tive system is frequency renormalization [50,78]. We illustrate
this point for a classical Duffing oscillator, which amounts
to the classical theory of an isolated transmon qubit up to
leading order in the nonlinearity. We outline the main steps
here leaving the details to Appendix D 1. Consider a classical
Duffing oscillator

Ẍ(t) + ω2[X(t) − εX3(t)] = 0, (51)

with initial conditions X(0) = X0 and Ẋ(0) = ωY0.
Equation (51) is solved order by order with the ansatz

X(t) = x(0)(t,τ ) + εx(1)(t,τ ) + O(ε2), (52a)

where τ ≡ εt is assumed to be an independent time scale such
that

dt ≡ ∂t + ε∂τ + O(ε2). (52b)

This additional time scale then allows us to remove the
secular term that appears in the O(ε) equation. This leads
to a renormalization in the oscillation frequency of the O(1)
solution as

X(0)(t) = x(0)(t,εt) = [a(0)e−iω̄t + c.c.], (53a)

ω̄ ≡
[

1 − 3ε

2
|a(0)|2

]
ω, (53b)

where a(0) = (X0 + iY0)/2. One may wonder how this
leading-order correction is modified in the presence of dis-
sipation. Adding a small damping term κẊ(t) to Eq. (51) such
that κ � ω requires a new time scale η ≡ κ

ω
t leading to

X(0)(t) = e− κ
2 t [a(0)e−iω̄t + c.c.], (54a)

ω̄ ≡
[

1 − 3ε

2
|a(0)|2e−κt

]
ω. (54b)

Equations (54a) and (54b) illustrate a more general fact
that the dissipation modifies the frequency renormalization

by a decaying envelope. This approach can be extended by
introducing higher order (slower) time scales ε2t,η2t , ηεt , etc.
The lowest order calculation above is valid for times short
enough such that ωt � ε−2,η−2,η−1ε−1.

Besides the extra complexity due to noncommuting algebra
of quantum mechanics, the principles of MSPT remain the
same in the case of a free quantum Duffing oscillator [78]. The
Heisenberg equation of motion is identical to Eq. (51) where
we promote X(t) → X̂(t). We obtain the O(1) solution (see
Appendix D 2) as

X̂(0)(t) = e− κ
2 t

[
â(0)e−i ˆ̄ωt + e−i ˆ̄ωt â(0)

2 cos
(

3ω
4 εte−κt

) + H.c.

]
(55a)

with an operator-valued renormalization of the frequency

ˆ̄ω =
[

1 − 3ε

2
Ĥ(0)e−κt

]
ω, (55b)

Ĥ(0) ≡ 1

2
[â†(0)â(0) + â(0)â†(0)]. (55c)

The cosine that appears in the denominator of operator solution
(55a) cancels when taking the expectation values with respect
to the number basis {|n〉} of Ĥ(0):

〈n − 1|X̂(0)(t)|n〉 = √
ne− κ

2 t e−i(1− 3nε
2 e−κt )ωt . (56)

Having learned from these toy problems, we return to
the problem of spontaneous emission which can be mapped
into a quantum Duffing oscillator with ε =

√
2

6 (Ec/Ej )1/2, up
to leading order in perturbation, coupled to multiple leaky
quantum harmonic oscillators [see Eq. (38)]. We are interested
in finding an analytic expression for the shift of the hybridized
poles, pj and pn, that appear in the reduced dynamics of the
transmon.

The hybridized poles pj and pn are the roots of Dj (s) and
they are associated with the modal decomposition of the linear
theory in Sec. IV A. The modal decomposition can be found
from the linear solution Xj (t) that belongs to the full Hilbert
space as

X̂j (t) =
(
Âj e

pj t +
∑

n

Âne
pnt

)
+ H.c.

≡
(

uj ˆ̄aj e
pj t +

∑
n

un ˆ̄ane
pnt

)
+ H.c. (57)

This is the full Hilbert space version of Eq. (48). It represents
the unperturbed solution upon which we are building our
perturbation theory. We have used bar notation to distinguish
the creation and annihilation operators in the hybridized mode
basis. Furthermore, uj and un represent the hybridization
coefficients, where they determine how much the original
transmon operator X̂j (t) is transmon-like and resonator-like.
They can be obtained from a diagonalization of the linear
Heisenberg-Langevin equations of motion (see Appendix D 3).
The dependence of uj and un on coupling χg is shown in Fig. 9
for the case where the transmon is infinitesimally detuned
below the fundamental mode of the resonator. For χg = 0,
uj = 1 and un = 0 as expected. As χg reaches χj , u1 is
substantially increased and becomes comparable to uj . By
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FIG. 9. Hybridization coefficients uj and un of the first five modes
for the case where the transmon is infinitesimally detuned below the
fundamental mode, i.e., ωj = ν−

1 as a function of χg ∈ [0,0.5]. Other
parameters are set as χR = χL = 0 and χj = 0.05. The black vertical
dotted line shows the value of χj .

increasing χg further, un for the off-resonant modes start to
grow as well.

The nonlinearity acting on the transmon mixes all the
unperturbed resonances through self- and cross-Kerr contribu-
tions [25,26,53]. Kerr shifts can be measured in a multimode
cavity QED (cQED) system [79,80]. We therefore solve
for the equations of motion of each mode. These are (see
Appendix D 3)

ˆ̄̈Xl(t) + 2αl
ˆ̄̇Xl(t)

+ β2
l

⎧⎨
⎩ ˆ̄Xl(t) − εl

[
uj

ˆ̄Xj (t) +
∑

n

un
ˆ̄Xn(t)

]3
⎫⎬
⎭ = 0, (58)

where ˆ̄Xl ≡ ˆ̄al + ˆ̄a†
l is the quadrature of the lth mode, and

αl and βl are the decay rate and the oscillation frequency,
respectively. Equation (58) is the leading-order approximation
in the inverse Q factor of the lth mode, 1/Ql ≡ αl/βl . Each
hybridized mode has a distinct strength of the nonlinearity εl ≡
ωj

βl
ulε for l ≡ j,n. In order to do MSPT, we need to introduce

as many new time scales as the number of hybridized modes,
i.e., τj ≡ εj t and τn ≡ εnt , and do a perturbative expansion in
all of these time scales. The details of this calculation can be
found in Appendix D 3. Up to lowest order in ε, we find the
operator-valued correction of pj = −αj − iβj as

ˆ̄pj = pj + i
3ε

2
ωj

[
u4

j
ˆ̄Hj (0)e−2αj t +

∑
n

u2
ju

2
n

ˆ̄Hn(0)e−2αnt

]
,

(59a)

while pn = −αn − iβn is corrected as

ˆ̄pn = pn + i
3ε

2
ωj

⎡
⎣u4

n
ˆ̄Hn(0)e−2αnt + u2

nu
2
j

ˆ̄Hj (0)e−2αj t

+
∑
m�=n

u2
nu

2
m

ˆ̄Hm(0)e−2αmt

⎤
⎦, (59b)
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FIG. 10. Fourier transform of 〈X̂j (t)〉 from linear solution (red
dashed) and MSPT (blue solid) for χj = 0.05, χR = χL = 0.001,

Ej = 50Ec, and initial state |�j (0)〉 = |0〉j +|1〉j√
2

as a function of χg . The

maximum value of |Fω〈X̂j (t)〉| at each χg is set to 1. (a) χg ∈ [0,0.02],
	χg = 0.001. (b) χg ∈ [0,0.2], 	χg = 0.02.

where ˆ̄Hj (0) and ˆ̄Hn(0) represent the Hamiltonians of each
hybridized mode

ˆ̄Hl(0) ≡ 1
2 [ ˆ̄a†

l (0) ˆ̄al(0) + ˆ̄al(0) ˆ̄a†
l (0)], l = j,n. (59c)

These are the generalizations of the single quantum Duffing
results (55b) and (55c) and reduce to them as χg → 0 where
uj = 1 and un = 0. Each hybridized mode is corrected due
to a self-Kerr term proportional to u4

l , and cross-Kerr terms
proportional to u2

l u
2
l′ . Contributions of the form u2

l ul′ul′′ [26]
do not appear up to the lowest order in MSPT.

In terms of Eqs. (59a) and (59b), the MSPT solution reads

X̂ (0)
j (t) = Âj (0)e ˆ̄pj t + e

ˆ̄pj tÂj (0)

2 cos
( 3ωj

4 u4
j εte

−2αj t
) + H.c.

+
∑

n

[
Ân(0)e ˆ̄pnt + e

ˆ̄pntÂn(0)

2 cos
( 3ωj

4 u4
nεte

−2αnt
) + H.c.

]
, (60)

where Âj,n is defined in Eq. (57). In Fig. 10, we have compared
the Fourier transform of 〈X̂j (t)〉 calculated both for the MSPT
solution (60) and the linear solution (48) for initial condition
|�(0)〉 = |0〉j +|1〉j√

2
⊗ |0〉ph as a function of χg . At χg = 0,

we notice the bare O(ε) nonlinear shift of a free Duffing
oscillator as predicted by Eq. (53b). As χg is increased,
the predominantly self-Kerr nonlinearity on the qubit is
gradually passed as cross-Kerr contributions to the resonator
modes, as observed from the frequency renormalizations (59a)
and (59b). As a result of this, interestingly, the effective
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nonlinear shift in the transmon resonance becomes smaller and
saturates at stronger couplings. In other words, the transmon
mode becomes more linear at stronger coupling χg . This
counterintuitive result can be understood from Eq. (59a). For
the initial conditions considered here, the last term in Eq. (59a)
vanishes, while one can see from Fig. 9 that uj < 1 for χg > 0.

C. Numerical simulation of reduced equation

The purpose of this section is to compare the results from
MSPT and linear theory to a pure numerical solution valid
up to O(ε2). A full numerical solution of the Heisenberg
equation of motion (29) requires matrix representation of the
qubit operator X̂j (t) over the entire Hilbert space, which is
impractical due to the exponentially growing dimension. We
are therefore led to work with the reduced Eq. (36). While the
nonlinear contribution in Eq. (36) cannot be traced exactly, it
is possible to make progress perturbatively. We substitute the
perturbative expansion Eq. (38) into Eq. (36):

ˆ̈Xj (t) + ω2
j [1 − γ + iK1(0)]

[
X̂j (t) − εTrph

{
ρ̂ph(0)X̂ 3

j (t)
}]

= −
∫ t

0
dt ′ω2

jK2(t − t ′)
[
X̂j (t ′) − εTrph

{
ρ̂ph(0)X̂ 3

j (t ′)
}]

,

(61)

with ε ≡
√

2
6 ε. If we are interested in the numerical results

only up to O(ε2) then the cubic term can be replaced as

εX̂ 3
j (t) = ε[X̂j (t)|ε=0]3 + O(ε2). (62)

Since we know the linear solution (57) for X̂j (t) analytically,
the trace can be performed directly (see Appendix E). We
obtain the reduced equation in the Hilbert space of the
transmon as

ˆ̈Xj (t) + ω2
j [1 − γ + iK1(0)]

[
X̂j (t) − εX̂3

j (t)
]

= −
∫ t

0
dt ′ω2

jK2(t − t ′)
[
X̂j (t ′) − εX̂3

j (t ′)
]+ O(ε2).

(63)

Solving the integro-differential Eq. (63) numerically is a
challenging task, since the memory integral on the right-hand
side requires the knowledge of all results for t ′ < t . Therefore,
the simulation time for Eq. (63) grows polynomially with t .
The beauty of the Laplace transform in the linear case is that it
turns a memory contribution into an algebraic form. However,
it is inapplicable to Eq. (63).

In Fig. 11, we compared the numerical results to both
linear and MSPT solutions up to 10 resonator round-trip times
and for different values of χg . For χg = 0, the transmon
is decoupled and behaves as a free Duffing oscillator. This
corresponds to the first row in Fig. 10(a) where there is only
one frequency component and MSPT provides the correction
given in Eq. (55b). As we observe in Fig. 11(a) the MSPT
results lie on top of the numerics, while the linear solution
shows a visible lag by the 10th round trip. Increasing χg further
brings more frequency components into play. As we observe in
Fig. 10, for χg = 0.01 the most resonant mode of the resonator
has a non-negligible u1. Therefore, we expect to observe weak
beating in the dynamics between this mode and the dominant
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FIG. 11. Comparison of short-time dynamics between the results
from linear theory (black dash-dotted), MSPT (red dotted), and
numerical (blue solid) of 〈X̂j (t)〉 for the same parameters as in Fig. 10
and for (a) χg = 0, (b) χg = 0.01, (c) χg = 0.1, and (d) χg = 0.2.
The oscillation frequency and decay rate of the most dominant pole
(transmon-like) are controlled by the hybridization strength. For (a)
where χg = 0, there is no dissipation and the transmon is isolated.
The decay rate increases with χg such that the Q factor for the
transmon-like resonance reaches Qj ≡ βj/αj ≈ 625.3 in (d).

transmon-like resonance, which is shown in Fig. 11(b).
Figures 11(c) and 11(d) show stronger couplings where many
resonator modes are active and a more complex beating is
observed. In all these cases, the MSPT results follow the
pure numerical results more closely than the linear solution
confirming the improvement provided by perturbation theory.

D. System output

Up to this point, we studied the dynamics of the spontaneous
emission problem in terms of one of the quadratures of the
transmon qubit, i.e., 〈X̂j (t)〉. In a typical experimental setup
however, the measurable quantities are the quadratures of the
field outside the resonator [49]. We devote this section to the
computation of these quantities.

The expression of the fields ϕ̂(x,t) can be directly inferred
from the solution of the inhomogeneous wave Eq. (26) using
the impulse response (GF) defined in Eq. (B1). We note
that this holds irrespective of whether one is solving for the
classical or as is the case here, for the quantum fields. Taking
the expectation value of this solution (Appendix B 4) with
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FIG. 12. Fourier transform of 〈X̂ (1+,t)〉 for the linear solution
(red dashed) and the MSPT (blue solid) for the same parameters as
in Fig. 10. The maximum value of |Fω〈X̂j (t)〉| at each χg is set to 1.

respect to the initial density matrix (33) we find

〈ϕ̂(x,t)〉 = χsω
2
j

∫ t

0
dt ′G(x,t |x0,t

′)〈sin[ϕ̂j (t ′)]〉. (64)

Dividing both sides by φzpf and keeping the lowest order we
obtain the resonator response as

〈X̂ (0)(x,t)〉 = χsω
2
j

∫ t

0
dt ′G(x,t |x0,t

′)
〈
X̂ (0)

j (t ′)
〉
, (65)

where X̂ (0)
j (t) is the lowest order MSPT solution (60), which

takes into account the frequency correction to O(ε). Taking
the Laplace transform decouples the convolution

〈 ˆ̃X (0)(x,s)〉 = χsω
2
j G̃(x,x0,s)

〈 ˆ̃X (0)
j (s)

〉
, (66)

which indicates that the resonator response is filtered by the
GF.

Figure 12 shows the field outside the right end of the

resonator, 〈 ˆ̃X (x = 1+,s = iω)〉, in both linear and lowest
order MSPT approximations. This quadrature can be measured
via heterodyne detection [81]. Note that the hybridized
resonances are the same as those of 〈X̂j (t)〉 shown in Fig. 10.
What changes is the relative strength of the residues. The GF
has poles at the bare cavity resonances and therefore the more
hybridized a pole is, the smaller its residue becomes.

V. CONCLUSION

In this paper, we introduced an approach for studying the
effective non-Markovian Heisenberg equation of motion of
a transmon qubit coupled to an open multimode resonator
beyond rotating-wave and two-level approximations. The main

motivation to go beyond a two-level representation lies in
the fact that a transmon is a weakly nonlinear oscillator.
Furthermore, the information regarding the electromagnetic
environment is encoded in a single function, i.e., the electro-
magnetic GF. As a result, the opening of the resonator is taken
into account analytically, in contrast to the Lindblad formalism
where the decay rates enter only phenomenologically.

We applied this theory to the problem of spontaneous emis-
sion as the simplest possible example. The weak nonlinearity
of the transmon allowed us to solve for the dynamics pertur-
batively in terms of (Ec/Ej )1/2 which appears as a measure of
nonlinearity. Neglecting the nonlinearity, the transmon acts as
a simple harmonic oscillator and the resulting linear theory is
exactly solvable via the Laplace transform. By employing the
Laplace transform, we avoided the Markov approximation and
therefore accounted for the exact hybridization of transmon
and resonator resonances. Up to leading nonzero order, the
transmon acts as a quantum Duffing oscillator. Due to the
hybridization, the nonlinearity of the transmon introduces both
self-Kerr and cross-Kerr corrections to all hybridized modes of
the linear theory. Using MSPT, we were able to obtain closed
form solutions in the Heisenberg picture that do not suffer
from secular behavior. A direct numerical solution confirmed
the improvement provided by the perturbation theory over the
harmonic theory. Surprisingly, we also learned that the linear
theory becomes more accurate for stronger coupling since the
nonlinearity is suppressed in the qubit-like resonance due to
being shared between many hybridized modes.

The theory developed here illustrates how far one can go
without the concept of photons. Many phenomena in the
domain of quantum electrodynamics, such as spontaneous
or stimulated emission and resonance fluorescence, have
accurate semiclassical explanations in which the electric field
is treated classically while the atoms obey the laws of quantum
mechanics. For instance, the rate of spontaneous emission can
be related to the local density of electromagnetic modes in
the weak-coupling limit. While it is now well understood
that the electromagnetic fluctuations are necessary to start
the spontaneous emission process [82], it is important to
ask to what extent a quantized electromagnetic field effects
the qubit dynamics [83]. We find here that although the
electromagnetic degrees of freedom are integrated out and the
dynamics can systematically be reduced to the Hilbert space
of the transmon, the quantum state of the electromagnetic
environment reappears in the initial and boundary conditions
when computing observables.

Although we studied only the spontaneous emission prob-
lem in terms of quadratures, our theory can be applied to a
driven-dissipative problem as well and all the mathematical
machinery developed in this work can be used in more generic
situations. In order to maintain a reasonable amount of material
in this paper, we postpone the results of the driven-dissipative
problem, as well as the study of correlation functions, to future
work.

ACKNOWLEDGMENTS

We appreciate helpful discussions with O. Malik on
implementing the numerical results of Sec. IV C. This research
was supported by the US Department of Energy, Office of

063848-13
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APPENDIX A: QUANTUM EQUATIONS OF MOTION

The classical Lagrangian for the system shown in Fig. 3 can
be found as sum of the Lagrangians for each circuit element.
In the following, we use the convention of working with flux
variables [70,71] as the generalized coordinate for our system.
For an arbitrary node n in the circuit, the flux variable 
n(t)
is defined as


n(t) ≡
∫ t

0
dt ′Vn(t ′), (A1)

while Vn(t ′) stands for the voltage at node n.
The classical Euler-Lagrange equations of motion can then

be found by setting the variation of the Lagrangian with respect
to each flux variable to zero. For the transmon and the resonator
we find


̈j + 1

Cg + Cj

∂Uj (
j )

∂
j

= γ ∂2
t 
(x0,t), (A2)

∂2
x
(x,t) − lc(x,x0)∂2

t 
(x,t) = lγ δ(x − x0)
∂Uj (
j )

∂
j

,

(A3)

where Uj (
j ) stands for the Josephson potential as

Uj (
j ) = −Ej cos

(
2π


0

j

)
, (A4)

and 
0 ≡ h
2e

is the superconducting flux quantum. Further-
more, Cs ≡ CgCj/(Cg + Cj ) is the series capacitance of Cj

and Cg and γ ≡ Cg/(Cg + Cj ). Moreover, l and c are the
inductance and capacitance per length of the resonator and
waveguides while c(x,x0) ≡ c + Csδ(x − x0) represents the
modified capacitance per length due to coupling to transmon.

In addition, we find two wave equations for the flux field of
the left and right waveguides as

∂2
x
R,L(x,t) − lc∂2

t 
R,L(x,t) = 0. (A5)

The boundary conditions (BCs) are derived from continuity of
current at each end as

− 1

l
∂x
|x=L− = −1

l
∂x
R|x=L+

= CR∂2
t [
(L−,t) − 
̂R(L+,t)], (A6a)

−1

l
∂x
|x=0+ = −1

l
∂x
L|x=0− (A6b)

= CL∂2
t [
L(0−,t) − 
(0+,t)], (A6c)

continuity of flux at x = x0


(x = x−
0 ,t) = 
(x = x+

0 ,t), (A7)

and conservation of current at x = x0 as

∂x
|x=x+
0

− ∂x
|x=x−
0

− lCs∂
2
t 
(x0,t) = lγ

∂Uj (
j )

∂
j

.

(A8)

In order to find the quantum equations of motion, we follow
the common procedure of canonical quantization [71]:

(1) Find the conjugate momenta Qn ≡ δL
δ
̇n

.
(2) Find the classical Hamiltonian via a Legendre transfor-

mation as H = ∑
n Qn
̇n − L.

(3) Find the Hamiltonian operator by promoting the
classical conjugate variables to quantum operators such that
{
̂m,Q̂n} = δmn → [
̂m,Q̂n] = i�δmn. We use a hat notation
to distinguish operators from classical variables.

The derivation for the quantum Hamiltonian of the the
closed version of this system where CR,L → 0 can be found
in [24] (see Appendices A, B, and C). Note that nonzero end
capacitors CR,L leave the equations of motion for the resonator
and waveguides unchanged, but modify the BCs of the problem
at x = 0,L. The resulting equations of motion for the quantum
flux operators 
̂j , 
̂(x,t), and 
̂R,L(x,t) have the exact same
form as the classical Euler-Lagrange equations of motion.

Next, we define unitless parameters and variables as

x̄ ≡ x

L
, t̄ ≡ t

L
vp

, ω̄ ≡ ω

vp

L,

ϕ̂ ≡ 2π

̂


0
, n̂ ≡ Q̂

2e
,

(A9)

where vp ≡ 1/
√

lc is the phase velocity of the resonator and
waveguides. Furthermore, we define unitless capacitances as

χi ≡ Ci

cL
, i = R,L,j,g,s, (A10)

as well as a unitless modified capacitance per length as

χ (x̄,x̄0) ≡ 1 + χsδ(x̄ − x̄0). (A11)

Then, the unitless equations of motion for our system are found
as

ˆ̈ϕj (t̄) + (1 − γ )ω̄2
j sin [ϕ̂j (t̄)] = γ ∂2

t̄ ϕ̂(x̄0,t̄), (A12a)[
∂2
x̄ − χ (x̄,x̄0)∂2

t̄

]
ϕ̂(x̄,t̄) = χsω̄

2
j sin [ϕj (t̄)]δ(x̄ − x̄0),

(A12b)

∂2
x̄ ϕ̂R,L(x̄,t̄) − ∂2

t̄ ϕ̂R,L(x̄,t̄) = 0, (A12c)

with the unitless BCs given as

− ∂x̄ ϕ̂|x̄=1− = −∂x̄ ϕ̂R|x̄=1+

= χR∂2
t̄

[
ϕ̂(1−,t̄) − ϕ̂R(1+,t̄)

]
, (A13a)

−∂x̄ ϕ̂|x̄=0+ = −∂x̄ ϕ̂L|x̄=0−

= χL∂2
t̄ [ϕ̂L(0−,t̄) − ϕ̂(0+,t̄)], (A13b)

ϕ̂(x̄ = x̄−
0 ,t̄) = ϕ̂(x̄ = x̄+

0 ,t̄), (A13c)
∂x̄ ϕ̂|x̄−x̄+

0
− ∂x̄ ϕ̂|x̄=x̄−

0
− χs∂

2
t̄ ϕ̂(x̄0,t̄)

= χsω̄
2
j sin [ϕj (t̄)]. (A13d)

In Eqs. (A12a) and (A12b), we have defined the unitless
oscillation frequency ω̄j as

ω̄2
j ≡ lcL2 Ej

Cj

(
2π


0

)2

= 8EcEj , (A14)
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where Ec and Ej stand for the unitless charging and Josephson
energy given as

Ej,c ≡
√

lcL
Ej,c

�
, (A15)

with Ec ≡ e2

2Cj
.

In what follows, we work with the unitless Eqs. (A12a)–
(A12c) and BCs (A13a)–(A13d) and drop the bars.

APPENDIX B: EFFECTIVE DYNAMICS OF THE
TRANSMON VIA A HEISENBERG PICTURE

GREEN’S FUNCTION METHOD

In order to find the effective dynamics of the transmon qubit,
one has to solve for the flux field ϕ̂(x,t) and substitute the result
back into the right-hand side of time evolution of the qubit
given by Eq. (A12a). It is possible to perform this procedure in
terms of the resonator GF. In Sec. B 1 we define the resonator
GF. In Sec. B 3 we study the spectral representation of the GF
in terms of a suitable set of non-Hermitian modes. In Sec. B 4,
we discuss the derivation of the effective dynamics of the
transmon in terms of the resonator GF. Finally, in Secs. B 5
and B 6 we discuss how the generic dynamics is reduced for
the problem of spontaneous emission.

1. Definition of G(x,t|x′,t ′)

The resonator GF is defined as the response of the linear
system of Eqs. (A12b) and (A12c) to a δ-function source in
space-time as[

∂2
x − χ (x,x0)∂2

t

]
G(x,t |x0,t0) = δ(x − x0)δ(t − t0), (B1)

with the same BCs as Eqs. (A13a)–(A13d). Using the Fourier
transform conventions

G̃(x,x0,ω) =
∫ ∞

−∞
dtG(x,t |x0,t0)e+iω(t−t0), (B2a)

G(x,t |x0,t0) =
∫ ∞

−∞

dω

2π
G̃(x,x0,ω)e−iω(t−t0), (B2b)

Eq. (B1) transforms into a Helmholtz equation[
∂2
x + ω2χ (x,x0)

]
G̃(x,x0,ω) = δ(x − x0). (B3)

Moreover, the BCs are transformed by replacing ∂x → ∂x and
∂t → −iω as

G̃
∣∣
x=x+

0
= G̃

∣∣
x=x−

0
, (B4a)

∂xG̃
∣∣
x=x+

0
− ∂xG̃

∣∣
x=x−

0
+ χsω

2 G̃
∣∣
x=x0

= 0, (B4b)

∂xG̃|x=1− = ∂xG̃|x=1+

= χRω2(G̃|x=1− − G̃|x=1+ ), (B4c)

∂xG̃|x=0− = ∂xG̃|x=0+

= χLω2(G̃|x=0− − G̃|x=0+ ). (B4d)

Note that BCs (B4a)–(B4d) do not specify what happens
to G̃(x,x0,ω) at x → ±∞. We model the baths by imposing
outgoing BCs at infinity as

∂xG̃(x,x0,ω)|x→±∞ = ±iωG̃(x → ±∞,x0,ω), (B5)

which precludes any reflections from the waveguides to the
resonator.

2. Spectral representation of GF for a closed resonator

It is helpful to revisit the spectral representation of the GF
for the closed version of our system by setting χR = χL = 0.
This imposes Neumann BC ∂xG̃|x=0,1 = 0 and the resulting
differential operator becomes Hermitian. The idea of spectral
representation is to expand G̃ in terms of a discrete set of
normal modes that obey the homogeneous wave equation

∂2
x 
̃n(x) + χ (x,x0)ω2

n
̃n(x) = 0, (B6a)

∂x
̃n(x)
∣∣
x=0,1 = 0. (B6b)

Then, the real-valued eigenfrequencies obey the transcenden-
tal equation

sin (ωn) + χsωn cos (ωnx0) cos [ωn(1 − x0)] = 0. (B7)

The eigenfunctions read


̃n(x) ∝
{

cos [ωn(1 − x0)] cos (ωnx), 0 < x < x0,

cos (ωnx0) cos [ωn(1 − x)], x0 < x < 1,
(B8)

where the normalization is fixed by the orthogonality condition∫ 1

0
dxχ (x,x0)
̃m(x)
̃n(x) = δmn. (B9)

Note that eigenfunctions of a Hermitian differential oper-
ator form a complete orthonormal basis. This allows us to
deduce the spectral representation of G̃(x,x ′,ω) [65,84,85] as

G̃(x,x ′,ω) =
∑
n∈N


̃n(x)
̃n(x ′)
ω2 − ω2

n

=
∑
n∈Z
n �=0

1

2ω


̃n(x)
̃n(x ′)
ω − ωn

,

(B10)

where the second representation is written due to relations
ω−n = −ωn and 
̃−n(x) = 
̃n(x).

3. Spectral representation of GF for an open resonator

A spectral representation can also be found for the GF of
an open resonator in terms of a discrete set of non-Hermitian
modes that carry a constant flux away from the resonator.
The constant flux (CF) modes [37] have allowed a consistent
formulation of the semiclassical laser theory for complex
media such as random lasers [72]. The non-Hermiticity
originates from the fact that the waveguides are assumed to
be infinitely long; hence no radiation that is emitted from the
resonator to the waveguides can be reflected back. This results
in discrete and complex-valued poles of the GF. The CF modes
satisfy the same homogeneous wave equation

∂2
x 
̃n(x,ω) + χ (x,x0)ω2

n(ω)
̃n(x,ω) = 0, (B11)

but with open BCs the same as Eqs. (B4a)–(B5). Note that
the resulting CF modes 
̃n(x,ω) and eigenfrequencies ωn(ω)
parametrically depend on the source frequency ω.

Considering only an outgoing plane wave solution for the
left and right waveguides based on (B5), the general solution
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for 
̃n(x,ω) reads


̃n(x,ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A<
n eiωn(ω)x + B<

n e−iωn(ω)x, 0 < x < x0,

A>
n eiωn(ω)x + B>

n e−iωn(ω)x, x0 < x < 1,

Cne
iωx, x > 1,

Dne
−iωx, x < 0.

(B12)

Applying BCs (B4a)–(B4d) leads to a characteristic equation

sin [ωn(ω)] + (χR + χL)ωn(ω)

{
cos[ωn(ω)] − ωn(ω)

ω
sin[ωn(ω)]

}

− χRχLω2
n(ω)

{
2i

ωn(ω)

ω
cos[ωn(ω)] +

[
1 + ω2

n(ω)

ω2

]
sin[ωn(ω)]

}

+ χsωn(ω)

{
cos[ωn(ω)x0] − χL

ωn(ω)

ω
{iωn(ω) cos[ωn(ω)x0] + ω sin[ωn(ω)x0]}

}

×
{

cos[ωn(ω)(1 − x0)] − χR

ωn(ω)

ω
{iωn(ω) cos[ωn(ω)(1 − x0)] + ω sin[ωn(ω)(1 − x0)]}

}
= 0, (B13)

which gives the parametric dependence of CF frequencies on ω. Then, the CF modes 
̃n(x,ω) are calculated as


̃n(x,ω) ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−iωn(ω)(x−x0+1){e2iωn(ω)x + [1 − 2iωn(ω)χL]}{e2iωn(ω)(1−x0) + [1 − 2iωn(ω)χR]}, 0 < x < x0,

e−iωn(ω)(x0−x+1){e2iωn(ω)x0 + [1 − 2iωn(ω)χL]}{e2iωn(ω)(1−x) + [1 − 2iωn(ω)χR]}, x0 < x < 1,

−2iχRωn(ω)e−iωn(ω)(1+x0){e+2iωn(ω)x0 + [1 − 2iχLωn(ω)]}e+iωx, x > 1,

−2iχLωn(ω)e−iωn(ω)(1−x0){e2iωn(ω)(1−x0) + [1 − 2iχRωn(ω)]}e−iωx, x < 0.

(B14)

These modes satisfy the biorthonormality condition∫ 1

0
dxχ (x,x0) ¯̃
∗

m(x,ω)
̃n(x,ω) = δmn, (B15)

where { ¯̃
m(x,ω)} satisfy the Hermitian adjoint of eigenvalue
problem (B11). In other words, 
̃n(x,ω) and ¯̃
n(x,ω) are the
right and left eigenfunctions and obey ¯̃
n(x,ω) = 
̃∗

n(x,ω).
The normalization of Eq. (B14) is then fixed by setting m = n.

In terms of the CF modes, the spectral representation of the
GF can then be constructed

G̃(x,x ′,ω) =
∑

n


̃n(x,ω) ¯̃
∗
n(x ′,ω)

ω2 − ω2
n(ω)

. (B16)

Examining Eq. (B16), we realize that there are two sets of
poles of G̃(x,x ′,ω) in the complex ω plane. First, from setting
the denominator of Eq. (B16) to zero which gives ω = ωn(ω).
These are the quasibound eigenfrequencies that satisfy the
transcendental characteristic equation

[e2iωn − (1 − 2iχLωn)(1 − 2iχRωn)]

+ i

2
χsωn[e2iωnx0 + (1 − 2iχLωn)]

× [e2iωn(1−x0) + (1 − 2iχRωn)] = 0. (B17)

The quasibound solutions ωn to Eq. (B17) reside in the lower
half of the complex ω plane and come in symmetric pairs
with respect to the Im{ω} axis; i.e., both ωn and −ω∗

n satisfy
the transcendental Eq. (B17). Therefore, we can label the

eigenfrequencies as

ωn =
⎧⎨
⎩

−iκ0, n = 0,

+νn − iκn, n ∈ +N,

−νn − iκn, n ∈ −N,

(B18)

where νn and κn are positive quantities representing the
oscillation frequency and decay rate of each quasibound mode.
Second, there is an extra pole at ω = 0 which comes from
the ω dependence of CF states 
̃n(x,ω). We confirmed these
poles by solving for the explicit solution G̃(x,x ′,ω) that obeys
Eq. (B3) with BCs (B4a)–(B5) with MATHEMATICA.

4. Effective dynamics of transmon qubit

Note that Eqs. (A12b) and (A12c) are linear in terms of
ϕ̂(x,t) and ϕ̂R,L(x,t). Therefore, it is possible to eliminate
these linear degrees of freedom and express the formal solution
for ϕ̂(x,t) in terms of ϕ̂j (t) and G(x,t |x ′,t ′). At last, by
plugging the result into the right-hand side of Eq. (A12b)
we find a closed equation for ϕ̂j (t).

Let us denote the source term that appears on the right-hand
side of Eq. (A12b) as

S[ϕ̂j (t)] ≡ χsω
2
j sin [ϕ̂j (t)]. (B19)

Then, we write two equations for ϕ̂(x,t) and G(x,t |x ′,t ′) [65]
(see Sec. 7.3 of that reference) as[

∂2
x ′ − χ (x ′,x0)∂2

t ′
]
ϕ̂(x ′,t ′) = S

[
ϕ̂j (t ′)

]
δ(x ′ − x0),

(B20a)[
∂2
x ′ − χ (x,x ′)∂2

t ′
]
G(x,t |x ′,t ′) = δ(x − x ′)δ(t − t ′).

(B20b)
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In Eq. (B20b) we have employed the reciprocity property of the GF

G(x,t |x ′,t ′) = G(x ′, − t ′|x, − t), (B21)

which holds since Eq. (B20b) is invariant under

x ↔ x ′, t ↔ −t ′. (B22)

Multiplying Eq. (B20a) by G(x,t |x ′,t ′) and Eq. (B20b) by ϕ̂(x ′,t ′) and integrating over the dummy variable x ′ in the interval
[0−,1+] and over t ′ in the interval [0,t+] and finally taking the difference gives

∫ t+

0
dt ′
∫ 1+

0−
dx ′

⎧⎪⎨
⎪⎩
(
G∂2

x ′ ϕ̂ − ϕ̂∂2
x ′G
)︸ ︷︷ ︸

(a)

+ [χ (x,x ′)ϕ̂∂2
t ′G − χ (x ′,x0)G∂2

t ′ ϕ̂
]︸ ︷︷ ︸

(b)

−GS(ϕ̂j )δ(x ′ − x0)︸ ︷︷ ︸
(c)

+ ϕ̂δ(t − t ′)δ(x − x ′)︸ ︷︷ ︸
(d)

⎫⎪⎬
⎪⎭ = 0,

(B23)

where we have used the shorthand notation G ≡ G(x,t |x ′,t ′) and ϕ̂ ≡ ϕ̂(x ′,t ′).
The term labeled as (a) can be simplified further through integration by parts in x ′ as

∫ t+

0
dt ′ (G∂x ′ ϕ̂ − ϕ̂∂x ′G)|x ′=1+

x ′=0− . (B24)

There are two contributions from term (b). One comes from the constant capacitance per length in χ (x,x ′) and χ (x,x0) that
simplifies to

∫ 1+

0−
dx ′ (ϕ̂∂t ′G − G∂t ′ ϕ̂)|t ′=0, (B25)

where due to working with the retarded GF

G(x,t |x ′,t+) = 0; (B26)

hence the upper limit t ′ = t+ vanishes. The second contribution comes from the Dirac δ functions in χ (x,x ′) and χ (x,x0) which
give

χs

∫ t+

0
dt ′
[
ϕ̂(x,t ′)∂2

t ′G(x,t |x,t ′) − G(x,t |x0,t
′)∂2

t ′ ϕ̂(x0,t
′)
]
. (B27)

Terms (c) and (d) get simplified due to Dirac δ functions as

∫ t+

0
dt ′G(x,t |x0,t

′)S[ϕ̂j (t ′)], (B28)

and ϕ̂(x,t), respectively.
At the end, we find a generic solution for the flux field ϕ̂(x,t) in the domain [0−,1+] as

ϕ̂(x,t) =
∫ t+

0
dt ′G(x,t |x0,t

′)S[ϕ̂j (t ′)]︸ ︷︷ ︸
source contribution

+
∫ t+

0
dt ′ [ϕ̂(x ′,t ′)∂x ′G(x,t |x ′,t ′) − G(x,t |x ′,t ′)∂x ′ ϕ̂(x ′,t ′)]

∣∣x ′=1+

x ′=0−︸ ︷︷ ︸
boundary contribution

+
∫ 1+

0−
dx ′ [ϕ̂(x ′,t ′)∂t ′G(x,t |x ′,t ′) − G(x,t |x ′,t ′)∂t ′ ϕ̂(x ′,t ′)]

∣∣
t ′=0︸ ︷︷ ︸

initial condition contribution

+ χs

∫ t+

0
dt ′[ϕ̂(x,t ′)∂2

t ′G(x,t |x,t ′) − G(x,t |x0,t
′)∂2

t ′ ϕ̂(x0,t
′)]︸ ︷︷ ︸

feedback induced by transmon

. (B29)
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According to Eq. (A12a), the transmon is forced by the
resonator flux field evaluated at x = x0, i.e. ϕ̂(x0,t). In the
following, we rewrite the GF in terms of its Fourier repre-
sentation for each term in Eq. (B29) at x = x0. The Fourier
representation simplifies the boundary contribution further,
while also allowing us to employ the spectral representation
of the GF discussed in Sec. B 3.

The source contribution can be written as

χs

∫ t

0
dt ′
∫ +∞

−∞

dω

2π
G̃(x0,x0,ω)ω2

j sin [ϕ̂j (t ′)]e−iω(t−t ′).

(B30)

The boundary terms consist of two separate contributions at
each end. Assuming that there is no radiation in the waveguides
for t < 0 we can write

ϕ̂R,L(x,t) = ϕ̂R,L(x,t)�(t), (B31a)

∂xϕ̂R,L(x,t) = ∂xϕ̂R,L(x,t)�(t). (B31b)

Using Eqs. (B31a) and (B31b) and causality of the GF,
i.e., G(x,t |x ′,t ′) ∝ �(t − t ′), we can extend the integration
domain in t ′ from [0,t+] to [−∞,∞] without changing the
value of integral since for an arbitrary integrable function
F (t,t ′), we have∫ t+

0
dt ′F (t,t ′)θ (t ′)θ (t − t ′) =

∫ +∞

−∞
dt ′F (t,t ′)θ (t ′)θ (t − t ′).

(B32)

This extension of integration limits becomes handy when
we write both ϕ̂R(x ′,t ′) and G(x0,t |x ′,t ′) in terms of their
Fourier transforms in time. Focusing on the right boundary
contribution at x ′ = 1+ we get∫ +∞

−∞
dt ′
∫ +∞

−∞

dω1

2π

∫ +∞

−∞

dω2

2π
[ ˆ̃ϕR(x ′,ω1)∂x ′G̃(x0,x

′,ω2)

− G̃(x0,x
′,ω2)∂x ′ ˆ̃ϕR(x ′,ω1)]|x ′=1+e−iω1t

′
e−iω2(t−t ′).

(B33)

Next, we write ˆ̃ϕR(x ′,ω) as the sum of “incoming” and
“outgoing” parts

ˆ̃ϕR(1+,ω1) = ˆ̃ϕinc
R (1+,ω1) + ˆ̃ϕout

R (1+,ω1), (B34)

defined as

∂x ′ ˆ̃ϕout
R (x ′ = 1+,ω1) = +iω1 ˆ̃ϕout

R (x ′ = 1+,ω1), (B35a)

∂x ′ ˆ̃ϕinc
R (x ′ = 1+,ω1) = −iω1 ˆ̃ϕinc

R (x ′ = 1+,ω1). (B35b)

On the other hand, since we are using a retarded GF with
outgoing BCs we have

∂x ′G̃(x0,x
′ = 1+,ω2) = +iω2G̃(x0,x

′ = 1+,ω2). (B36)

By substituting Eqs. (B35a), (B35b), and (B36) into Eq. (B33),
the integrand becomes

i(ω1 + ω2)G̃(x0,1
+,ω2) ˆ̃ϕinc

R (1+,ω1)

+ i(ω2 − ω1)G̃(x0,1
+,ω2) ˆ̃ϕout

R (1+,ω1). (B37)

By taking the integral in t ′ as
∫∞
−∞ dt ′ei(ω2−ω1)t ′ = 2πδ(ω1 −

ω2), Eq. (B33) can be simplified as∫ +∞

−∞

dω

2π

[
2iωG̃(x0,x

′ = 1+,ω) ˆ̃ϕinc
R (0−,ω)

]
e−iωt , (B38)

which indicates that only the incoming part of the field leads
to a nonzero contribution to the field inside the resonator.
A similar expression holds for the left boundary with the
difference that the incoming wave at the left waveguide is
“right going” in contrast to the right waveguide∫ +∞

−∞

dω

2π

[
2iωG̃(x0,x

′ = 0−,ω) ˆ̃ϕinc
L (0−,ω)

]
e−iωt . (B39)

The initial condition (IC) terms can be expressed in a compact
form as ∫ x2

x1

dx ′
∫ ∞

−∞

dω

2π
{χ (x ′,x0)G̃(x0,x

′,ω)

× [ ˆ̇ϕ(x ′,0) − iωϕ̂(x ′,0)]}e−iωt . (B40)

Gathering all the contributions, plugging them into the right-
hand side of Eq. (A12a), and defining a family of memory
kernels

Kn(τ ) ≡ γχs

∫ +∞

−∞

dω

2π
ωnG̃(x0,x0,ω)e−iωτ (B41a)

and transfer functions

DR(ω) ≡ −2iγ ω3G̃(x0,1
+,ω), (B41b)

DL(ω) ≡ −2iγ ω3G̃(x0,0
−,ω), (B41c)

I(x ′,ω) ≡ γω2χ (x ′,x0)G̃(x0,x
′,ω), (B41d)

the effective dynamics of the transmon is found to be

ˆ̈ϕj (t) + (1 − γ )ω2
j sin [ϕ̂j (t)]

= + d2

dt2

∫ t

0
dt ′K0(t − t ′)ω2

j sin [ϕ̂j (t ′)]

+
∫ +∞

−∞

dω

2π
DR(ω) ˆ̃ϕinc

R (1+,ω)e−iωt

+
∫ +∞

−∞

dω

2π
DL(ω) ˆ̃ϕinc

L (0−,ω)e−iωt +
∫ 1+

0−
dx ′

×
∫ +∞

−∞

dω

2π
I(x ′,ω)[iωϕ̂(x ′,0) − ˆ̇ϕ(x ′,0)]e−iωt .

(B42)

This is Eq. (29) in Sec. III.

5. Effective dynamics for spontaneous emission

Equation (B42) is the most generic effective dynamics of
a transmon coupled to an open multimode resonator. In this
section, we find the effective dynamics for the problem of
spontaneous emission where the system starts from the IC

ρ̂(0) = ρ̂j (0) ⊗ |0〉ph〈0|ph. (B43)
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In the absence of external drive and due to the interaction with
the leaky modes of the resonator, the system reaches its ground
state ρ̂g ≡ |0〉j 〈0|j ⊗ |0〉ph〈0|ph in steady state.

Note that due the specific IC (B43), there is no contribution
from the IC of the resonator in Eq. (B42). To show this
explicitly, recall that at t = 0 the interaction has not turned
on and we can represent ϕ̂(x,0) and ˆ̇ϕ(x,0) in terms of a set of
Hermitian modes of the resonator as [24]

ϕ̂(x,0) = 1̂j ⊗
∑

n

(
�

2ω
(H )
n cL

)1/2

[ân(0) + â†
n(0)]
̃(H )

n (x),

(B44a)

ˆ̇ϕ(x,0) = 1̂j ⊗
∑

n

−i

(
�ω(H )

n

2cL

)1/2

[ân(0) − â†
n(0)]
̃(H )

n (x),

(B44b)

where we have used superscript notation (H ) to distinguish
Hermitian from non-Hermitian modes. By taking the partial
trace over the photonic sector we find

Trph{ρ̂ph[ân(0) ± â†
n(0)]} = 〈0|ph[ân(0) ± â†

n(0)]|0〉ph = 0.

(B45)

With no external drive, ˆ̃ϕinc
R,L do not have a coherent part and

their expectation value vanishes due to the same reasoning
as Eq. (B45). Therefore, the effective dynamics for the
spontaneous emission problem reduces to

ˆ̈φj (t) + (1 − γ )ω2
j Trph{ρ̂ph(0) sin [ϕ̂j (t)]}

= d2

dt2

∫ t

0
dt ′K0(t − t ′)ω2

j Trph{ρ̂ph(0) sin [ϕ̂j (t ′)]}.

(B46)

Taking the second derivative of the right-hand side using
the Leibniz integral rule and bringing the terms evaluated at
the integral limits to the left-hand side gives

ˆ̈φj (t) − ω2
jK0(0)Trph{ρ̂ph(0) cos [ϕ̂j (t)] ˆ̇ϕj (t)}

+ ω2
j [1 − γ + iK1(0)]Trph{ρ̂ph(0) sin [ϕ̂j (t)]}

= −
∫ t

0
dt ′K2(t − t ′)ω2

j Trph{ρ̂ph(0) sin [ϕ̂j (t ′)]}, (B47)

where we have used Eq. (B41a) to rewrite time derivatives of
K0(τ ) in terms of Kn(τ ).

6. Spectral representation of K0, K1, and K2

In this section, we express the contributions from the kernels
K0(0), K1(0), and K2(τ ) appearing in Eq. (B47) in terms of the
spectral representation of the GF. For this purpose, we use the
partial fraction expansion of the GF in agreement with [86–91]
in terms of its simple poles discussed in Sec. B 3 as

G̃(x,x ′,ω) =
∑
n∈Z

1

2ω


̃n(x)
̃n(x ′)
ω − ωn

, (B48)

where 
̃n(x) ∝ 
̃n(x,ω = ωn) is the quasibound eigenfunc-
tion.

FIG. 13. Integration contours: (a) Integration contour that en-
closes the poles of ω2G̃(x0,x0,ω) and ωG̃(x0,x0,ω); (b) integration
contour for G̃(x0,x0,ω), which has an extra pole at ω = 0.

Let us first calculate K2(τ ). By choosing an integration
contour in the complex ω plane shown in Fig. 13(a) and
applying Cauchy’s residue theorem [85,92] we find∮

C

dωω2G̃(x0,x0,ω)e−iωτ

=
∫

I

dωω2G̃(x0,x0,ω)e−iωτ +
∫

II

dωω2G̃(x0,x0,ω)e−iωτ

= −2πi

∞∑
n=0

1

2
[ωn[
̃n(x0)]2e−iωnτ − ω∗

n[
̃∗
n(x0)]2e+iω∗

nτ ]

= −2π

∞∑
n=0

|ωn||
̃n(x0)|2 sin [νnτ + θn − 2δn(x0)]e−κnτ ,

(B49)

where due to nonzero opening of the resonator, both ωn and

̃n(x) are in general complex valued. Therefore, we have
defined

θn ≡ arctan

(
κn

νn

)
, (B50)

δn(x) ≡ arctan

(
Im[
̃n(x)]

Re[
̃n(x)]

)
. (B51)

As the radius of the half circle in Fig. 13(a) is taken to infinity,∫
II

dωω2G(x0,x0,ω) approaches zero. This can be checked by
a change of variables,

ω = RII e
−iψ , ψ ∈ [0,π ] → dω = −iRII e

−iψdψ. (B52)

Substituting this into
∫
II

and taking the limit RII → ∞ gives

lim
RII →∞

∫
II

dωω2G̃(x0,x0,ω)e−iωτ

=
∞∑

n=0

lim
RII →∞

∫
II

dω
ω(ω + iκn)[
̃n(x0)]2

(ω − ωn)(ω + ω∗
n)

e−iωτ

∝
∫ π

0
dψ lim

RII →∞
e−iRII τ cos (ψ)RII e

−RII τ sin (ψ) = 0, τ > 0.

(B53)
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On the other hand,
∫
I

in this limit reads

lim
RII →∞

∫
I

dωω2G̃(x0,x0,ω)e−iωτ

=
∫ ∞

−∞
dωω2G̃(x0,x0,ω)e−iωτ , (B54)

which is the quantity of interest. Therefore, we find∫ ∞

−∞
dωω2G̃(x0,x0,ω)e−iωτ

= −2π

∞∑
n=0

|ωn||
̃n(x0)|2 sin [νnτ + θn − 2δn(x0)]e−κnτ .

(B55)

From this, we obtain the spectral representation of K2(τ ) as

K2(τ ) = −
∞∑

n=0

An sin [νnτ + θn − 2δn(x0)]e−κnτ , (B56)

with An ≡ γχs

√
ν2

n + κ2
n |
̃n(x0)|2.

K1(0) can be found through similar complex integration:∮
C

dωωG̃(x0,x0,ω)

=
∫

I

dωωG̃(x0,x0,ω) +
∫

II

dωωG̃(x0,x0,ω)

= −2πi

∞∑
n=0

[
[
̃n(x0)]2

2
+ [
̃∗

n(x0)]2

2

]

= −2πi

∞∑
n=0

|
̃n(x0)|2 cos [2δn(x0)]. (B57)

It can be shown again that
∫
II

→ 0 as RII → ∞ from which
we find that

iK1(0) = γχs

∞∑
n=0

|
̃n(x0)|2 cos [2δn(x0)]

=
∞∑

n=0

An√
ν2

n + κ2
n

cos [2δn(x0)]. (B58)

K0(0) has an extra pole at ω = 0, so the previous contour
is not well defined. Therefore, we shift the integration contour
as shown in Fig. 13. Then, we have∮

C

dωG̃(x0,x0,ω)

=
∫

I

dωG̃(x0,x0,ω) +
∫

II

dωG̃(x0,x0,ω)

= −2πi

∞∑
n=0

1

2

[
[
̃n(x0)]2

ωn

− [
̃∗
n(x0)]2

ω∗
n

]

− 2πi

∞∑
n=0

1

2

[
[
̃n(x0)]2

−ωn

+ [
̃∗
n(x0)]2

ω∗
n

]
= 0, (B59)

where the first sum comes from the residues at ω = ωn and
ω = −ω∗

n, while the last sum is the residue at ω = 0 and they

completely cancel each other and we get

K0(0) = 0. (B60)

From Eq. (B60) we find that the effective dynamics for the
spontaneous emission problem simplifies to

ˆ̈φj (t) + ω2
j [1 − γ + iK1(0)]Trph{ρ̂ph(0) sin [ϕj (t)]}

= −
∫ t

0
dt ′K2(t − t ′)ω2

j Trph{ρ̂ph(0) sin [ϕ̂j (t ′)]}. (B61)

APPENDIX C: CHARACTERISTIC FUNCTION D j (s) FOR
THE LINEAR EQUATIONS OF MOTION

Up to linear order, the transmon acts as a simple harmonic
oscillator and we find

ˆ̈Xj (t) + ω2
j [1 − γ + iK1(0)]X̂j (t)

= −
∫ t

0
dt ′K2(t − t ′)ω2

j X̂j (t ′). (C1)

Equation (C1) is a linear integro-differential equation with
a memory integral on the right-hand side, appearing as the
convolution of the memory kernel K2 with earlier values of
X̂j . It can be solved by means of a unilateral Laplace transform
[64,85,93] defined as

f̃ (s) ≡
∫ ∞

0
dte−stf (t). (C2)

Employing the following properties of the Laplace transform
as

(1) convolution

L

{∫ t

0
dt ′f (t ′)g(t − t ′)

}
= L

{∫ t

0
dt ′f (t − t ′)g(t ′)

}
= L{f (t)} · L{g(t)}
= f̃ (s)g̃(s), (C3)

(2) general derivative

L

{
dN

dtN
f (t)

}
= sN f̃ (s) −

N∑
n=1

sN−n dn−1

dtn−1
f (t)

∣∣∣∣
t=0

, (C4)

we can transform the integro-differential Eq. (C1) into a closed
algebraic form in terms of ˆ̃Xj (s) as

ˆ̃Xj (s) = sX̂j (0) + ˆ̇Xj (0)

Dj (s)
= sX̂j (0) + ωj Ŷj (0)

Dj (s)
, (C5)

where we have defined

Dj (s) ≡ s2 + �2(s), (C6a)

�2(s) ≡ ω2
j [1 − γ + iK1(0) + K̃2(s)], (C6b)

and Ŷj is the normalized charge variable and is canonically
conjugate to X̂j such that [X̂j (0),Ŷj (0)] = 2i.

Note that in order to solve for X̂j (t) from Eq. (C5), one
has to take the inverse Laplace transform of the resulting
algebraic form in s. This requires studying the denominator
first which determines the poles of the entire system up to linear
order. Using the expressions for K2(τ1) and iK1(0) given in
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Eqs. (B56) and (B58) we find

iK1(0) + K̃2(s) =
∑
n∈N

An√
ν2

n + κ2
n

cos [2δn(x0)] −
∑
n∈N

An

cos [θn − 2δn(x0)]νn + sin [θn − 2δn(x0)](s + κn)

(s + κn)2 + ν2
n

. (C7)

Expanding the sine and cosine in the numerator of the second term in Eq. (C7) as

cos [θn − 2δn(x0)]νn + sin [θn − 2δn(x0)](s + κn)

= {cos (θn) cos [2δn(x0)] + sin (θn) sin [2δn(x0)]}νn + {sin (θn) cos [2δn(x0)] − cos (θn) sin [2δn(x0)]}(s + κn)

= {κn cos [2δn(x0)] − νn sin [2δn(x0)]}s√
ν2

n + κ2
n

+
(
ν2

n + κ2
n

)
cos [2δn(x0)]√

ν2
n + κ2

n

, (C8)

Eq. (C7) simplifies to

∞∑
n=0

An√
ν2

n + κ2
n

{
cos [2δn(x0)] −

(
ν2

n + κ2
n

)
cos [2δn(x0)]

(s + κn)2 + ν2
n

− {κn cos [2δn(x0)] − νn sin [2δn(x0)]}s
(s + κn)2 + ν2

n

}

=
∞∑

n=0

Mn

s{cos [2δn(x0)]s + sin [2δn(x0)]νn}
(s + κn)2 + ν2

n

, (C9)

where we have defined

Mn ≡ An√
ν2

n + κ2
n

= γχs |
̃n(x0)|2. (C10)

Therefore, Dj (s) simplifies to

Dj (s) = s2 + ω2
j + ω2

j

{
−γ +

∞∑
n=0

Mn

s{cos [2δn(x0)]s + sin [2δn(x0)]νn}
(s + κn)2 + ν2

n

}
︸ ︷︷ ︸

modification due to memory

. (C11)

APPENDIX D: MULTISCALE ANALYSIS

In order to understand the application of MSPT on the
problem of spontaneous emission, we have broken down its
complexity into simpler toy problems, discussing each in
a separate subsection. In Sec. D 1, we revisit the classical
Duffing oscillator problem [50] in the presence of dissipation,
to study the interplay of nonlinearity and dissipation. In
Sec. D 2, we discuss the free quantum Duffing oscillator to
show how the noncommuting algebra of quantum mechanics
alters the classical solution. Finally, in Sec. D 3, we study the
full problem and provide the derivation for the MSPT solution
(60).

1. Classical Duffing oscillator with dissipation

Consider a classical Duffing oscillator

Ẍ(t) + δ ωẊ(t) + ω2[X(t) − εX3(t)] = 0, (D1)

with initial condition X(0) = X0, Ẋ(0) = ωY0. In order to
have a bound solution, it is sufficient that the initial energy of
the system be less than the potential energy evaluated at its
local maxima, Xmax ≡ ±√

1/3ε, i.e., E0 < U (Xmax), which
in terms of the initial conditions X0 and Y0 reads

1

2
Y 2

0 + 1

2

(
X2

0 − εX4
0

)
<

5

36ε
. (D2)

Note that a naive use of conventional perturbation the-
ory decomposes the solution into a series X(t) = X(0)(t) +
εX(1)(t) + · · · , which leads to unbounded (secular) solutions
in time. In order to illustrate this, consider the simple case
where δ = 0, X0 = 1, and Y0 = 0. Then, we find

O(1) : Ẍ(0)(t) + ω2X(0)(t) = 0, (D3a)

O(ε) : Ẍ(1)(t) + ω2X(1)(t) = ω2[X(0)(t)]3, (D3b)

which leads to X(0)(t) = cos(ωt) and X(1)(t) = 1
32 cos(ωt) −

1
32 cos(3ωt) + 3

8ωt sin(ωt). The latter has a secular contribu-
tion that grows unbounded in time.

The secular terms can be canceled order by order by intro-
ducing multiple time scales, which amounts to a resummation
of the conventional perturbation series [50]. We assume small
dissipation and nonlinearity, i.e., δ,ε � 1. This allows us to
define additional slow time scales τ ≡ εt and η ≡ δt in terms
of which we can perform a multiscale expansion for X(t) as

X(t) = x(0)(t,τ,η) + εx(1)(t,τ,η)

+ δy(1)(t,τ,η) + O(ε2,δ2,εδ). (D4a)

Using the chain rule, the total derivative d/dt is also expanded
as

dt = ∂t + ε∂τ + δ∂η + O(ε2,δ2,εδ). (D4b)
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Plugging Eqs. (D4a) and (D4b) into Eq. (D1) and collecting
equal powers of δ and ε we find

O(1) : ∂2
t x(0) + ω2x(0) = 0, (D5a)

O(δ) : ∂2
t y(1) + ω2y(1) = −ω∂tx

(0) − 2∂t∂ηx
(0), (D5b)

O(ε) : ∂2
t x(1) + ω2x(1) = ω2[x(0)]3 − 2∂t∂τ x

(0). (D5c)

The general solution to O(1) Eq. (D5a) reads

x(0)(t,τ,η) = a(τ,η)e−iωt + a∗(τ,η)e+iωt . (D6)

Plugging Eq. (D6) into Eq. (D5b) we find that in order to
remove secular terms a(τ,η) satisfies

(2∂η + ω)a(τ,η) = 0, (D7)

which gives the η dependence of a(τ,η) as

a(τ,η) = α(τ )e− ω
2 η. (D8)

The condition that removes the secular term on the right-
hand side of O(ε) Eq. (D5c) reads

2iω∂τ a(τ,η) + 3ω2|a(τ,η)|2a(τ,η) = 0. (D9)

Multiplying Eq. (D9) by a∗(τ,η) and its complex conjugate by
a(τ,η) and taking the difference gives

∂τ |a(τ,η)|2 = 0, (D10)

which together with Eq. (D8) implies that

|a(τ,η)|2 = |α(0)|2e−ωη. (D11)

Then, a(τ,η) is found as

a(τ,η) = α(0)e− ω
2 ηei 3

2 ω|α(0)|2e−ωητ . (D12)

Replacing τ = εt and η = δt , the general solution up to
O(ε2,δ2,εδ) reads

X(0)(t) = x(0)(t,εt,δt) = e− κ
2 t [α(0)e−iω̄(t)t + c.c.], (D13)

where we have defined the decay rate κ ≡ δ.ω and a normal-
ized frequency ω̄(t) as

ω̄(t) ≡
[

1 − 3ε

2
|α(0)|2e−κt

]
ω. (D14)

Furthermore, α(0) is determined based on initial conditions as
α(0) = (X0 + iY0)/2.

A comparison between the numerical solution (blue),
O(1) MSPT solution (D13) (red), and linear solution (black)
is made in Fig. 14 for the first ten oscillation periods.
The MSPT solution captures the true oscillation frequency
better than the linear solution. However, it is only valid

0 10 20
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1

X
(t

)
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0 10 20
ωt
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-0.5

0
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1

X
(t

)

(b)

FIG. 14. Comparison of numerical solution (blue solid) with
MSPT solution (D13) (red dotted) and linear solution, i.e., ε = 0
(black dash-dotted), of Eq. (D1) for δ = 0.01 and ICs X0 = 1, Y0 = 0.
(a) ε = 0.1, (b) ε = 0.2.

for ωt � ε−2,δ−2,ε−1δ−1 up to this order in perturbation
theory.

2. A free quantum Duffing oscillator

Consider a free quantum Duffing oscillator that obeys

ˆ̈X(t) + ω2[X̂(t) − εX̂3(t)] = 0, (D15)

with operator initial conditions

X̂(0), ˆ̇X(0) = ωŶ (0), (D16)

such that X̂(0) and Ŷ (0) are canonically conjugate variables
and obey [X̂(0),Ŷ (0)] = 2i1̂.

Next, we expand X̂(t) and d/dt up to O(ε2) as

X̂(t) = x̂(0)(t,τ ) + εx̂(1)(t,τ ) + O(ε2), (D17a)

dt = ∂t + ε∂τ + O(ε2). (D17b)

Plugging this into Eq. (D15) and collecting equal powers
of ε gives

O(1) : ∂2
t x̂(0) + ω2x̂(0) = 0, (D18a)

O(ε) : ∂2
t x̂(1) + ω2x̂(1) = ω2[x̂(0)]3 − 2∂t∂τ x̂

(0). (D18b)

Up to O(1), the general solution reads

x̂(0)(t,τ ) = â(τ )e−iωt + â†(τ )e+iωt . (D19)

Furthermore, from the commutation relation [x̂(t,τ ),ŷ(t,τ )] =
2i1̂ we find that [â(τ ),â†(τ )] = 1̂. Substituting Eq. (D19) into
the right-hand side of Eq. (D18b) and setting the secular term
oscillating at ω to zero we obtain

2iω
dâ(τ )

dτ
+ ω2[â(τ )â(τ )â†(τ )

+ â(τ )â†(τ )â(τ ) + â†(τ )â(τ )â(τ )] = 0. (D20)

The condition that removes secular term at −ω, appears as a
Hermitian conjugate of Eq. (D20).

Using [â(τ ),â†(τ )] = 1, Eq. (D20) can be rewritten in a
compact form

dâ(τ )

dτ
− i

3ω

4
[Ĥ(τ )â(τ ) + â(τ )Ĥ(τ )] = 0, (D21)
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where

Ĥ(τ ) ≡ 1
2 [â†(τ )â(τ ) + â(τ )â†(τ )]. (D22)

Next, we show that Ĥ(τ ) is a conserved quantity. Pre- and
post-multiplying Eq. (D20) by â†(τ ), pre- and post-multiplying
Hermitian conjugate of Eq. (D20) by â(τ ), and adding all the
terms gives

dĤ(τ )

dτ
= 0, (D23)

which implies that Ĥ(τ ) = Ĥ(0). Therefore, we find the
solution for â(τ ) as

â(τ ) = W
{
â(0) exp

[
+i

3ω

2
Ĥ(0)τ

]}
, (D24)

whereW{· · · } represents Weyl ordering of operators [94]. The
operator ordering W{â(0)f (Ĥ(0)τ )} is defined as follows:

(1) Expand f (Ĥ(0)τ ) as a Taylor series in powers of
operator Ĥ(0)τ .

(2) Weyl-order the series term by term as

W{â(0)[Ĥ(0)]n} ≡ 1
2n

n∑
m=0

(
n

m

)
[Ĥ(0)]mâ(0)[Ĥ(0)]n−m.

The formal solution (D24) can be reexpressed in a closed
form [78,95–97] using the properties of Euler polynomials
[64] as

â(τ ) = â(0)ei 3ω
2 Ĥ(0)τ + ei 3ω

2 Ĥ(0)τ â(0)

2 cos
(

3ωτ
4

) . (D25)

Plugging Eq. (D25) into Eq. (D19) and substituting τ = εt ,
we find the solution for X̂(t) up to O(ε) as

X̂(0)(t) = x̂(0)(t,εt) = â(0)e−i ˆ̄ωt + e−i ˆ̄ωt â(0)

2 cos
(

3ω
4 εt

)
+ â†(0)e+i ˆ̄ωt + e+i ˆ̄ωt â†(0)

2 cos
(

3ω
4 εt

) , (D26)

where ˆ̄ω ≡ ω[1 − 3ε
2 Ĥ(0)] appears as a renormalized fre-

quency operator.
The physical quantity of interest is the expectation value

of X̂(0)(t) with respect to the initial density matrix ρ̂(0). The
number basis of the simple harmonic oscillator is a complete
basis for the Hilbert space of the Duffing oscillator such that

ρ̂(0) =
∑
mn

cmn|m〉〈n|. (D27)

Therefore, calculation of 〈X̂(0)(t)〉 reduces to calculating the
matrix element 〈m|â(εt)|n〉. From Eq. (D25) we find that the
only nonzero matrix element reads

〈n − 1|â(εt)|n〉 = 〈n − 1|â(0)|n〉ei 3εω
2 〈n|Ĥ(0)|n〉

2 cos
(

3εω
4 t
)

+ ei 3εω
2 〈n−1|Ĥ(0)|n−1〉〈n − 1|â(0)|n〉

2 cos
(

3εω
4 t
)

= 〈n − 1|â(0)|n〉ei 3nεω
2 t , (D28)

where we used that 〈n|Ĥ(0)|n〉 = n + 1/2 is diagonal in the
number basis.

3. Quantum Duffing oscillator coupled to a set of quantum
harmonic oscillators

Quantum MSPT can also be applied to the problem of
a quantum Duffing oscillator coupled to multiple harmonic
oscillators. For simplicity, consider the toy Hamiltonian

Ĥ ≡ ωj

4

(
X̂ 2

j + Ŷ2
j − ε

2
X̂ 4

j

)
+ ωc

4

(
X̂ 2

c + Ŷ2
c

)+ gŶj Ŷc,

(D29)

where the nonlinearity only exists in the Duffing sector of
the Hilbert space labeled as j . Due to linear coupling there
will be a hybridization of modes up to linear order. Therefore,
Hamiltonian (D29) can always be rewritten in terms of the
normal modes of its quadratic part as

Ĥ ≡ βj

4

( ˆ̄X 2
j + ˆ̄Y2

j

)+ βc

4

( ˆ̄X 2
c + ˆ̄Y2

c

)− εωj

8

(
uj

ˆ̄Xj +uc
ˆ̄Xc

)4
,

(D30)

where uj,c are real hybridization coefficients and ˆ̄Xj,c and ˆ̄Yj,c

represent j -like and c-like canonical operators. For g = 0,
uj → 1, uc → 0, ˆ̄Xj,c → X̂j,c, and ˆ̄Yj,c → Ŷj,c. To find uj,c

consider the Heisenberg equations of motion

ˆ̈Xj (t) + ω2
j X̂j (t) = −2gωcX̂c(t), (D31a)

ˆ̈Xc(t) + ω2
c X̂c(t) = −2gωj X̂j (t). (D31b)

Expressing �X ≡ (X̂j X̂c)T , the system above can be written as
�̈X + V �X = 0, where V is a 2 × 2 matrix. Plugging an ansatz
�X = �X0e

iλt leads to an eigensystem whose eigenvalues are
βj,c and whose eigenvectors give the hybridization coefficients
uj,c.

The Heisenberg equations of motion for the hybridized
modes ˆ̄Xl(t), l ≡ j,c, reads

ˆ̄̈Xl(t) + β2
l { ˆ̄Xl(t) − εl[uj

ˆ̄Xj (t) + uc
ˆ̄Xc(t)]3} = 0, (D32)

where due to hybridization, each oscillator experiences a
distinct effective nonlinearity as εl ≡ ωj

βl
ulε. Therefore, we

define two new time scales τl ≡ εlt in terms of which we can
expand

ˆ̄Xl(t) = ˆ̄x(0)
l (t,τj ,τc) + εl ˆ̄x(1)

l (t,τj ,τc)

+ εl′ ˆ̄y(1)
l (t,τj ,τc) + O

(
ε2
j ,ε

2
c ,εj εc

)
, (D33a)

dt = ∂t + εj ∂τj
+ εc∂τc

+ O
(
ε2
j ,ε

2
c ,εj εc

)
, (D33b)

where we have used the notation that if l = j , l′ = c, and vice
versa. Up to O(1) we find

O(1) : ∂2
t

ˆ̄x(0)
l + β2

l
ˆ̄x(0)
l = 0, (D34)

whose general solution reads

ˆ̄x(0)
l (t,τj ,τc) = ˆ̄al(τj ,τc)e−iβl t + ˆ̄a†

l (τj ,τc)e+iβl t , (D35)

where

[ ˆ̄al1 , ˆ̄a†
l2

] = δl1l2 1̂, [ ˆ̄al1 , ˆ̄al2 ] = [ ˆ̄a†
l1
, ˆ̄a†

l2
] = 0. (D36)
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There are O(εl) and O(εl′) equations for each normal mode as

O(εl) of l : ∂2
t

ˆ̄x(1)
l + β2

l
ˆ̄x(1)
l

= −2∂t∂τl
ˆ̄x(0)
l − β2

l

[
uj ˆ̄x(0)

j + uc ˆ̄x(0)
c

]3 = 0, (D37a)

O(εl′) of l : ∂2
t

ˆ̄y(1)
l + β2

l
ˆ̄y(1)
l = −2∂t∂τl′

ˆ̄x(0)
l . (D37b)

By setting the secular terms on the right-hand side of
Eq. (D37b) we find that ∂τl′ b̂l = 0 which means that the q

and c sectors are only modified with their own time scale, i.e.,
ˆ̄al = ˆ̄al(τl). Applying the same procedure on Eq. (D37a) and
using commutation relations (D36) we find

d ˆ̄al

dτl

− i
3βl

4

{
u3

l [ ˆ̄Hl ˆ̄al + ˆ̄al
ˆ̄Hl] + 2ulu

2
l′ [

ˆ̄Hl′ ˆ̄al + ˆ̄al
ˆ̄Hl′]
} = 0,

(D38)

where

ˆ̄Hl(τl) ≡ 1
2 [ ˆ̄a†

l (τl) ˆ̄al(τl) + ˆ̄al(τl) ˆ̄a†
l (τl)]. (D39)

By pre- and post-multiplying Eq. (D39) by ˆ̄a†
l (τl) and its

Hermitian conjugate by ˆ̄al(τl) and adding them, we find that

d ˆ̄Hl(τl)

dτl

= 0, (D40)

which means that the sub-Hamiltonians of each normal mode
remain a constant of motion up to this order in perturbation.
Therefore, in terms of effective Hamiltonians

ˆ̄hl(0) ≡ u3
l

ˆ̄Hl(0) + 2ulu
2
l′

ˆ̄Hl′(0), (D41)

Eq. (D42) simplifies to

d ˆ̄al

dτl

− i
3βl

4
[ ˆ̄hl(0) ˆ̄al + ˆ̄al

ˆ̄hl(0)] = 0. (D42)

Equation (D42) has the same form as Eq. (D21) while the
Hamiltonian H(0) is replaced by an effective Hamiltonian
ˆ̄hl(0). Therefore, the formal solution is found as the Weyl
ordering

ˆ̄al(τ ) = W
{

ˆ̄al(0) exp

[
+i

3βl

2
ˆ̄hl(0)τl

]}
. (D43)

Note that since [ ˆ̄al,
ˆ̄Hl′(0)] = 0, the Weyl ordering only acts

partially on the Hilbert space of interest which results in a
closed form solution

ˆ̄al(τl) = ˆ̄al(0)ei
3βl
2

ˆ̄hl (0)τl + ei
3βl
2

ˆ̄hl (0)τl ˆ̄al(0)

2 cos
( 3u3

l βlτl

4

) . (D44)

At last, ˆ̄X (0)
l (t) is found by replacing τl = εlt as

ˆ̄X (0)
l (t) = ˆ̄x(0)

l (t,εlt)

= ˆ̄al(0)e−i ˆ̄βl t + e−i ˆ̄βl t ˆ̄al(0)

2 cos
( 3u3

l βlεl

4 t
) + ˆ̄a†

l (0)e+i ˆ̄βl t + e+i ˆ̄βl t ˆ̄a†(0)

2 cos
( 3u3

l βlεl

4 t
) ,

(D45)

where ˆ̄βl ≡ βl[1 − 3εl

2
ˆ̄hl(0)]. Plugging the expressions for εl

and ˆ̄hl(0), we find the explicit operator renormalization of each

sector as

ˆ̄βj = βj − 3ε

2
ωj

[
u4

j
ˆ̄Hj (0) + u2

ju
2
c

ˆ̄Hc(0)
]
, (D46a)

ˆ̄βc = βc − 3ε

2
ωj

[
u4

c
ˆ̄Hc(0) + u2

cu
2
j

ˆ̄Hj (0)
]
. (D46b)

Equations (D46a) and (D46b) are symmetric under j ↔ c,
implying that in the normal mode picture all modes are
renormalized in the same manner. The terms proportional to
u4

j,c and u2
j,cu

2
c,j are the self-Kerr and cross-Kerr contributions,

respectively.
This analysis can be extended to the case of a Duffing

oscillator coupled to multiple harmonic oscillators without
further complexity, since the Hilbert spaces of the distinct
normal modes do not mix to lowest order in MSPT. Consider
the full Hamiltonian of our cQED system as

Ĥ ≡ ωj

4

(
X̂ 2

j + Ŷ2
j − ε

2
X̂ 4

j

)+
∑

n

ωn

4

(
X̂ 2

n + Ŷ2
n

)
+
∑

n

gnŶj Ŷn, (D47)

where here we label transmon operators with j and all modes
of the cavity by n. The coupling gn between transmon and the
modes is given as [24]

gn = 1
2γ

√
χj

√
ωjωn
̃n(x0). (D48)

Then, the Hamiltonian can be rewritten in a new basis that
diagonalizes the quadratic part as

Ĥ ≡ βj

4

(
ˆ̄X 2
j + ˆ̄Y2

j

)
+
∑

n

βn

4

(
ˆ̄X 2
n + ˆ̄Y2

n

)

− εωj

8

(
uj

ˆ̄Xj +
∑

n

un
ˆ̄Xn

)4

. (D49)

The procedure to arrive at uj,c and βj,c is a generalization of
the one presented under Eqs. (D31a) and (D31b).

The Heisenberg dynamics of each normal mode is then
obtained as

ˆ̄̈Xl(t) + β2
l

⎧⎨
⎩ ˆ̄Xl(t) − εl

[
uj

ˆ̄Xj (t) +
∑

n

un
ˆ̄Xn(t)

]3
⎫⎬
⎭ = 0,

(D50)

where εl ≡ ωj

βl
ulε for l ≡ j,n. Up to lowest order in pertur-

bation, the solution for ˆ̄X (0)
l (t) has the exact same form as

Eq. (D45) with operator renormalization ˆ̄βj

ˆ̄βj = βj − 3ε

2
ωj

[
u4

j
ˆ̄Hj (0) +

∑
n

u2
ju

2
n

ˆ̄Hn(0)

]
(D51a)

and ˆ̄βn

ˆ̄βn=βn−3ε

2
ωj

⎡
⎣u4

n
ˆ̄Hn(0) + u2

nu
2
j

ˆ̄Hj (0) +
∑
m�=n

u2
nu

2
m

ˆ̄Hm(0)

⎤
⎦.

(D51b)
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In Appendix D 1, we showed that adding another time scale
for the decay rate and doing MSPT up to leading order resulted
in the trivial solution (D13) where the dissipation only appears
as a decaying envelope. Therefore, we can immediately
generalize the MSPT solutions (D51a) and (D51b) to the
dissipative case where the complex pole pj = −αj − iβj of
the transmon-like mode is corrected as

ˆ̄pj = pj + i
3ε

2
ωj

[
u4

j
ˆ̄Hj (0)e−2αj t +

∑
n

u2
ju

2
n

ˆ̄Hn(0)e−2αnt

]
,

(D52a)

and resonator-like mode pn = −αn − iβn as

ˆ̄pn = pn + i
3ε

2
ωj

⎡
⎣u4

n
ˆ̄Hn(0)e−2αnt + u2

nu
2
j

ˆ̄Hj (0)e−2αj t

+
∑
m�=n

u2
nu

2
m

ˆ̄Hm(0)e−2αmt

⎤
⎦. (D52b)

Then, the MSPT solution for X̂ (0)
j (t) is obtained as

X̂ (0)
j (t) = uj

ˆ̄aj (0)e ˆ̄pj t + e
ˆ̄pj t ˆ̄aj (0)

2 cos
( 3ωj

4 u4
j εte

−2αj t
) + H.c.

+
∑

n

[
un

ˆ̄an(0)e ˆ̄pnt + e
ˆ̄pnt ˆ̄an(0)

2 cos
( 3ωj

4 u4
nεte

−2αnt
) + H.c.

]
. (D53)

Note that if there is no coupling, uj = 1 and un = 0 and we
retrieve the MSPT solution of a free Duffing oscillator given
in Eq. (D26).

APPENDIX E: REDUCED EQUATION FOR
THE NUMERICAL SOLUTION

In this Appendix, we provide the derivation for Eq. (63)
based on which we did the numerical solution for the
spontaneous emission problem. Substituting Eq. (38) into
Eq. (36) we obtain the effective dynamics up to O(ε2) as

ˆ̈Xj (t) + ω2
j [1 − γ + iK1(0)]

[
X̂j (t) − εTrph

{
ρ̂ph(0)X̂ 3

j (t)
}]

= −
∫ t

0
dt ′ω2

jK2(t − t ′)
[
X̂j (t ′) − εTrph

{
ρ̂ph(0)X̂ 3

j (t ′)
}]

.

(E1)

If we are only interested in the numerical results up to linear
order in ε then we can write

X̂j (t) = X̂ (0)
j (t) + εX̂ (1)

j (t) + O(ε2), (E2)

and we find that

εTrph

{
ρ̂ph(0)X̂ 3

j (t)
} = εTrph

{
ρ̂ph(0)

[
X̂ (0)

j (t)
]3}+ O(ε2).

(E3)

Note that in this appendix X̂ (0)
j (t) differs from the MSPT

notation in the main body and represents the linear solution.
We know the exact solution for X̂ (0)

j (t) via the Laplace

transform as

X̂ (0)
j (t) = L−1

{
sX̂ (0)

j (0) + ωj Ŷ (0)
j (0)

Dj (s)

}

+ L−1

⎧⎪⎨
⎪⎩
∑
n

[
an(s)X̂ (0)

n (0) + bn(s)Ŷ (0)
n (0)

]
Dj (s)

⎫⎪⎬
⎪⎭

= L−1

{
sX̂

(0)
j (0) + ωj Ŷ

(0)
j (0)

Dj (s)

}
⊗ 1̂ph

+ 1̂j ⊗ L−1

⎧⎪⎨
⎪⎩
∑
n

[
an(s)X̂(0)

n (0) + bn(s)Ŷ (0)
n (0)

]
Dj (s)

⎫⎪⎬
⎪⎭,

(E4)

where we have employed the fact that at t = 0, the Heisenberg
and Schrödinger operators are the same and have the following
product form:

X̂ (0)
j (0) = X̂

(0)
j (0) ⊗ 1̂ph, (E5a)

Ŷ (0)
j (0) = Ŷ

(0)
j (0) ⊗ 1̂ph, (E5b)

Ŷ (0)
n (0) = 1̂j ⊗ Ŷ (0)

n (0), (E5c)

X̂ (0)
n (0) = 1̂j ⊗ X̂(0)

n (0). (E5d)

The coefficients an(s) and bn(s) can be found from the circuit
elements and are proportional to light-matter coupling gn.
However, for the argument that we are are trying to make,
it is sufficient to keep them in general form.

Note that Eq. (E4) can be written
formally as

X̂ (0)
j (t) = X̂

(0)
j (t) ⊗ 1̂ph + 1̂j ⊗ X̂j,ph(t). (E6)

Therefore, [X̂ (0)
j (t)]3 is found as[

X̂ (0)
j (t)

]3
= [

X̂
(0)
j (t)

]3 ⊗ 1̂ph + 1̂j ⊗ X̂3
j,ph(t)

+ 3
{[

X̂
(0)
j (t)

]2 ⊗ X̂j,ph(t) + X̂
(0)
j (t) ⊗ X̂2

j,ph(t)
}
. (E7)

Finally, we have to take the partial trace with respect to
the photonic sector. For the initial density matrix ρ̂ph(0) =
|0〉ph〈0|ph, 〈

X̂j,ph(t)
〉
ph

= 〈
X̂3

j,ph(t)
〉
ph

= 0. (E8)

The only nonzero expectation values in 〈X̂ 2
j,ph(t)〉ph are

〈X̂2
n(0)〉ph = 〈Ŷ 2

n (0)〉ph = 1. Therefore, the partial trace over
the cubic nonlinearity takes the form

Trph

{
ρ̂ph(0)

[
X̂ (0)

j (t)
]3}

= [
X̂

(0)
j (t)

]3 + 3L−1

{∑
n

[
a2

n(s) + b2
n(s)

]
Dj (s)

}
X̂

(0)
j (t).

(E9)

The first term is the reduced transmon operator cubed. The
second term is the sum over vacuum fluctuations of the
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MALEKAKHLAGH, PETRESCU, AND TÜRECI PHYSICAL REVIEW A 94, 063848 (2016)

resonator modes. Neglecting these vacuum expectation values we can write

Trph

{
ρ̂ph(0)

[
X̂ (0)

j (t)
]3} ≈ [

X̂
(0)
j (t)

]3 = X̂3
j (t) + O(ε2). (E10)

Substituting Eq. (E10) into Eq. (E1) gives

ˆ̈Xj (t) + ω2
j [1 − γ + iK1(0)][X̂j (t) − ε[X̂j (t)]3] = −

∫ t

0
dt ′ω2

jK2(t − t ′)[X̂j (t ′) − ε[X̂j (t ′)]3] + O(ε2). (E11)
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