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Recent experiments in superconducting qubit systems have shown an unexpectedly strong dependence of the
qubit relaxation rate on the readout drive power. This phenomenon limits the maximum measurement strength
and thus the achievable readout speed and fidelity. We address this problem here and provide a plausible mecha-
nism for drive-power dependence of relaxation rates. To this end we introduce a two-parameter perturbative ex-
pansion in qubit anharmonicity and the drive amplitude through a unitary transformation technique introduced in
Part I. This approach naturally reveals number-nonconserving terms in the Josephson potential as a fundamental
mechanism through which applied microwave drives can activate additional relaxation mechanisms. We present
our results in terms of an effective master equation with renormalized state- and drive-dependent transition
frequency and relaxation rates. Comparison of numerical results from this effective master equation to those
obtained from a Lindblad master equation which only includes number-conserving terms (i.e., Kerr interactions)
shows that number-nonconserving terms can lead to significant drive-power dependence of the relaxation rates.
The systematic expansion technique introduced here is of general applicability to obtaining effective master
equations for driven-dissipative quantum systems that contain weakly nonlinear degrees of freedom.

DOI: 10.1103/PhysRevB.101.134510

I. INTRODUCTION

The dispersive interaction between a qubit and a cavity
forms the basis for qubit-state measurement widely employed
in superconducting quantum circuits. As predicted by the
Jaynes-Cummings model of this interaction [1], each qubit
state induces a different shift on the effective resonance fre-
quency of the readout cavity [2]. By monitoring this shift with
a microwave probe pulse, the qubit state can be accurately
measured. The rapid and high-fidelity application of qubit-
state readout is widely recognized to be a critical compo-
nent in the implementation of current quantum-computing
algorithms. The fidelity of this protocol is predicated on
the dominance of certain number-conserving terms in the
effective qubit evolution under the action of the probe pulse
that is quasiresonant with the readout cavity. This dynamical
regime, sometimes referred to as the linear dispersive regime,
is generally expected to prevail for cavity photon occupa-
tions well below the “critical photon number” ncrit = �2/4g2,
where � = ωc − ωa is the detuning between the cavity (ωc)
and qubit (ωa) resonance frequencies and g is the vacuum
Rabi frequency characterizing the coupling strength [1,3]. For
present systems based on transmon qubits [4], this number is
typically ncrit � 25.

Recent experimental analysis [5,6] indicates that T1 relax-
ation time may decrease by as much as a factor of 2 for rela-
tively small cavity photon occupations n̄c ∼ 5. Understanding
the plausible fundamental mechanism behind this observation
is one of the goals of this paper.

It should come as no surprise that in a coherently driven
nonlinear system the validity of perturbation theory in Hamil-

tonian parameters (such as g/�) requires some care regarding
the nature of the qubit nonlinearity. Early work carefully
analyzed the so-called “nonlinear dispersive regime” of op-
eration and the systematic corrections to the frequencies and
dissipation rates [3] within the Jaynes-Cummings framework,
suitable for qubits with a strong anharmonicity, such as the
Cooper pair box or quantronium qubit [7–10]. This approach
predicts [3,11] that in the absence of any dephasing noise,
the relaxation rate (1/T1) of the qubit decreases with drive
strength. A multilevel Jaynes-Cummings model [12] leads to
the same conclusion regarding the qubit relaxation rates. The
presence of a dephasing noise, on the other hand, is found
to lead to an increase of the relaxation rate with the drive
strength. This “dressed dephasing hypothesis” does seem to
agree with some experimental data that found an increase in
the relaxation rate with the drive strength [13], but does not
seem to correctly capture the effective temperature of the qubit
in the steady state in experiments conducted on 3D transmon
qubits [5]. The question therefore arises whether accurate
modeling of the Josephson nonlinearity of the qubit changes
any of these predictions in a qualitative way. We address this
question here building on the technique of unitary transforma-
tions established in Ref. [14], hereafter called Part I.

Here we derive an effective master equation (EME) for
a weakly anharmonic qubit driven by a coherent microwave
tone. We consider the situation typical of dispersive read-
out, where the weakly anharmonic qubit is coupled to a
single-mode resonator, which in turn is connected capacitively
to a semi-infinite transmission line (see Fig. 1). Extending
the formalism developed in Part I to the coherently driven
case, we provide analytical expressions for effective system
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FIG. 1. Schematics of the readout setup. A Josephson junction
qubit (mode â) is capacitively coupled to a waveguide through a
readout cavity (mode ĉ). A microwave drive (amplitude εd, frequency
ωd) is applied through the waveguide.

frequencies, as well as relaxation and excitation rates that
depend on drive parameters. Through a two-parameter ex-
pansion in the weak Josephson anharmonicity and the drive
strength, we show that at lowest order the system unitary dy-
namics is governed by a multimode Kerr Hamiltonian [15,16],
as found in Part I, but with drive-adapted parameters. The
renormalization of relaxation rates can only be captured by
retaining the number-nonconserving terms in the Josephson
potential. One important finding is that drive-activated cor-
related qubit-cavity relaxation processes, such as stimulated
emission, are dominantly responsible for large renormaliza-
tions of the qubit relaxation rates. The formalism presented
here is the time-dependent generalization of that in Part I, and
the results reduce to those obtained in Part I in the limit of
zero drive strength.

There are several conclusions that can be drawn from
our results regarding driven Josephson junctions. Here we
consider solely the electromagnetic fluctuations of the infinite
transmission line at zero temperature as a source of relaxation
(and excitation, when mixed with the coherent drive tone, as
we show). We find that the lowest-order impact of the drive
is to increase the relaxation rate of a dispersively coupled
qubit. This is in contrast to earlier findings [3,11,12] that
the relaxation rate decreases with the drive strength in the
absence of dephasing sources. The reason can be traced back
to the two-level approximation to the Josephson nonlinearity
that underlies the Jaynes-Cummings (and the Rabi) model.
From the point of view of anharmonicity, the Josephson
nonlinearity is a softening potential, whereas the two-level
truncation corresponds to the opposite situation of a harden-
ing potential. This corresponds to an infinite positive anhar-
monicity, whereas the transmon qubit has a small negative
anharmonicity. This has the additional consequence that the
impact of the drive is effective already at lower excitation
powers than previously foreseen, with important implications
for optimization of readout protocols. Finally, the impact of a
radiative bath through which the drive is incident is found to
also lead to excitation of the qubit in proportion to the drive
strength, even at zero temperature.

Any initialization, computation, and readout operation
on superconducting circuits involves microwave drives.
Our results indicate that the accurate modeling of the

Josephson potential of qubits in such circuits is critical
as the demand for high-fidelity operations is pushed to its
limits. Methods to deal with this challenge may be based
on purely numerical schemes. Indeed in recent years, it has
become necessary to better model strongly driven Josephson
circuits, in a variety of applications: parametric schemes
for engineering effective nonlinearities [17–19], high-power
readout schemes [20,21], as well as the driven-dissipative
stabilization of states confined to a given quantum manifold,
such as cat states [22–24], and implementations of parametric
two-qubit gates [25–32]. The initial evaluation of the
effectiveness of the two-level system approximation for
modeling high-power dynamics [33] has been addressed in
Ref. [34]. More recently the Floquet master equation [35] has
been successful in describing the escape of certain strongly
driven Josephson circuits into states unconfined by the cosine
potential [36,37]. Earlier theoretical and experimental work
also points to the role of counterrotating terms in explaining
the unexpectedly high susceptibility of certain Josephson
circuits to excitation in certain power bands [38].

The pursuit of deriving effective generators for the evolu-
tion of open systems has a long history which can be traced
back to the projection-operator formalism of Feshbach [39].
Most of these schemes rely on numerical methods to extract
the low-frequency dynamics generated by linear operators
of the Lindblad class [40–42]. A similar method has been
applied to obtain effective dynamics on reduced manifolds
using quantum stochastic differential equations [43–45]. An
important aspect of the approach presented here is that one
obtains explicit drive-dependent renormalizations of both fre-
quencies and relaxation rates because of the inclusion of
number-nonconserving terms. Underlying our method is a
series of unitary Schrieffer-Wolff transformations [46] that
remove number-nonconserving terms order-by-order from the
system Hamiltonian, but dress the interactions of the system
with its environment.

The remainder of the paper is organized as follows. Sec-
tion II introduces the model for the quantum circuit consisting
of a qubit coupled to a cavity, which is the standard setup
for the dispersive-readout scheme, and outlines the main
steps of the perturbation theory in weak anharmonicity and
weak drive used to obtain corrections to frequency and decay
rate. We apply the EME to understand dispersive readout in
Sec. III. The EME is analytically derived and then numerically
simulated. The main outcome of this section is our prediction
for the renormalizations of qubit transition frequency and
zero-temperature relaxation rate in the presence of a driven
cavity at a steady-state population n̄c. Finally, we summarize
our results in Sec. IV. We have opted to relegate many details
to appendices in an effort to improve clarity. Each of the
appendices will be pointed to in the main sections of the paper
when necessary.

II. MODEL AND OUTLINE OF THE METHOD

A. Perturbative expansion of driven circuit Hamiltonian

The system under consideration is a superconducting trans-
mon qubit [4] capacitively coupled to a cavity, which is an
idealization of the circuitry typically used for the dispersive
readout [1,2]. The dynamics of the system (subscript “s”)
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coupled to the waveguide (“bath,” subscript “b”) follows from
the full Hamiltonian:

Ĥ = Ĥs + Ĥd(t ) + Ĥsb + Ĥb. (1)

We have approximated the circuit as an oscillator charac-
terized by inductance Lc and capacitance Cc (see Fig. 1),
resulting in the oscillator frequency ω̄c = √

LcCc. The simpli-
fication of the superconducting cavity to a single mode is done
for transparency of results. The techniques presented in this
work can be easily generalized to a multimode setup, starting
from the exact electromagnetic modeling of the system [47].
The coupling capacitance between the qubit and the cavity is
denoted by Cg. The transmon qubit is defined by the Josephson
and Coulomb charging energies, respectively, denoted by EJ

and EC = e2/(2CJ), where CJ is the capacitance across the
Josephson junction. This leads to the qubit transition fre-
quency [4] ω̄a ≈ √

8EJEC in the limit of high anharmonicity
EJ/EC � 1. Upon quantizing [48] the circuit of Fig. 1, we
arrive at the following system Hamiltonian, which was the
starting point of Part I:

Ĥs = ω̄a

4

[
ˆ̄Y 2
a − 2

ε
cos(

√
ε ˆ̄Xa)

]
+ ω̄c

4

( ˆ̄X 2
c + ˆ̄Y 2

c

) + g ˆ̄Ya
ˆ̄Yc,

(2)
consisting of a part describing the transmon qubit, one
describing the linear superconducting cavity, and finally a
coupling term. The Josephson term is determined by the
parameter

ε =
√

2EC/EJ. (3)

For transmons the anharmonicity is weak ε � 1. In our con-
ventions (see Appendix A), the commutator of the phase and
charge quadratures is [ ˆ̄Xa,c,

ˆ̄Ya,c] = 2i. These coordinates are
rescaled phase and number operators, making the ε depen-
dence of Ĥs explicit.

The energy scale g denotes the capacitive qubit-cavity
coupling strength, and it can be related to the coupling ca-
pacitance Cg. This coupling is removed if we switch from the
bare-mode basis to the normal-mode basis. This amounts to
a linear transformation determined by eight real hybridization
coefficients, given explicitly in Part I (see Appendix A):

ˆ̄Xa = uacX̂c + uaaX̂a,
ˆ̄Xc = uccX̂c + ucaX̂a,

ˆ̄Ya = vacŶc + vaaŶa,
ˆ̄Yc = vccŶc + vcaŶa. (4)

These coordinate operators are simply related to normal-mode
bosonic creation and annihilation operators. There is a qubit-
like normal mode (this name coming from the following rela-
tionships between the hybridization coefficients: |uac| � |uaa|
and |vac| � |vaa|) defined as X̂a = â + â†, Ŷa = −i(â − â†),
with [â, â†] = 1, and analogously for the quadrature opera-
tors of the cavity-like mode, starting from the creation and
annihilation operators ĉ and ĉ† (there, the inequalities between
hybridization coefficients are |uca| � |ucc| and |vca| � |vcc|).
This interpretation is valid provided that the coupling g [typi-
cally on the order of (2π ) × 100 MHz] is much smaller than
the bare qubit/cavity frequencies [typically on the order of
(2π ) × 10 GHz].

The quadratic Hamiltonian, obtained by expanding the
cosine potential in (2) to second order, becomes diagonal in

the Fock space spanned by the operators â† and ĉ† acting on
the vacuum state |0〉. This diagonal quadratic theory obtained
after the normal-mode transformation amounts to the first row
of Eq. (7) below.

We assume that the drive field and the losses are both
facilitated by coupling the bare cavity mode to the waveguide
(see Fig. 1). Then the drive term acts on both normal modes,
according to

Ĥd(t ) = εd(vcaŶa + vccŶc) sin(ωdt ). (5)

To the end of treating the drive strength as a small perturba-
tion, we displace the bosonic operators in order to remove (5)
from the linear theory. We explain this procedure, with the
additional problem of taking into account dissipation, in Ap-
pendix B. This displacement transformation is generated by a
unitary operator, up to a phase factor:

V̂ (t ) = eiX̂a
ya (t )

2 e−iŶa
xa (t )

2 , (6)

where the c-numbers xa(t ) and ya(t ) solve the linear classical
equations of motion corresponding to the circuit Lagrangian.

Denoting the resulting displaced Hamiltonian Ĥs +
Ĥd(t ) → Ĥs(t ), time-dependent contributions will only ap-
pear in the nonlinear terms. The bare phase coordinate ap-
pearing in the Josephson potential is displaced by the amount
ηxe−iωdt + c.c., where ηx is provided explicitly in terms of
the parameters of the linear theory in Sec. III. Expanding in
powers of the anharmonicity, we obtain

Ĥs(t ) = ωa

(
â†â + 1

2

)
+ ωc

(
ĉ†ĉ + 1

2

)

+ ω̄a

2

∞∑
n=2

(−ε)n−1

(2n)!
[uaaâ+uacĉ+ηxe−iωdt +H.c.]2n.

(7)

This form of the Hamiltonian is valid for an arbitrary weakly
driven and weakly anharmonic two-mode circuit: the dis-
placement parameter ηx and the hybridization coefficients
ui j would take different forms for different types of linear
coupling between the drives, the qubit, and the cavity.

Turning our attention to relaxation mechanisms, we focus
on the situation of Purcell, or radiative, decay: the qubit
decays by coupling to the dissipative cavity (the effect of
the higher harmonics of the cavity can be addressed using a
theoretical framework introduced by the authors [14]). Then,
in full analogy to the drive (5), the coupling to the environment
takes the form

Ĥsb = (vcaŶa + vccŶc)Ŷb, Ĥb =
∑

k

ωkB̂†
k B̂k, (8)

where Ŷb = ∑
k gk (−iB̂k + iB̂†

k ) is the noise operator, and the
continuum of bath modes is described by bosonic creation and
annihilation operators obeying [B̂k, B̂†

k ] = 1 for each mode
k. We succinctly describe the bath with the bilateral power
spectral density:

S(ω) = lim
T →0

∫ ∞

−∞
dτ e−iωτ Tr

[
e−Ĥb/kBT

Zb(T )
Ŷb(τ ) Ŷb(0)

]
, (9)
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where the bath partition function is Zb(T ) =
Tr exp(−Ĥb/kBT ) and we assume thermal equilibrium at
zero temperature. Equations (7) and (8) form our starting
point Hamiltonian (the subscript “D” stands for “displaced”)

ĤD = Ĥs(t ) + Ĥb + Ĥsb (10)

for the derivation of the EME for the dynamics of a transmon
qubit coupled to a driven-dissipative readout cavity.

B. Formal derivation of the effective master equation

We now proceed to illustrate the distinct role of number-
nonconserving terms in the renormalization of relaxation
rates. We show that we can perform a unitary transforma-
tion on the system Hamiltonian (7) that removes number-
nonconserving terms up to a desired order εn in the Hamil-
tonian.

We note that although this method can be applied to an
arbitrary order εn, the algebra becomes tedious. Physically,
we will be concerned with providing corrections to what are
known as Kerr Hamiltonians [15,16], i.e., Hamiltonians diag-
onal in the Fock basis, which arise from dropping number-
nonconserving terms from the expansion of the Josephson
potential up to linear order in ε (this theory captures the
Josephson anharmonicity in terms of quartic terms in â, ĉ,
etc.). Therefore the calculations presented below are to linear
order in ε.

Because Ĥs(t ) is time dependent, the condition that a uni-
tary transformation preserve the dynamics of the Schrödinger
equation needs to be formulated in terms of the Floquet
Hamiltonian, which differs from the Hamiltonian through the
addition of the energy operator −i∂t [49]:

Ĥs,eff(t ) − i∂t = e−Ĝ(t )[Ĥs(t ) − i∂t ]e
Ĝ(t ). (11)

The anti-Hermitian generator Ĝ(t ) is time dependent and it is
defined by the condition that the effective system Hamiltonian,
Ĥs,eff(t ), contains only number-conserving terms up to some
order in ε. From the perspective of the spectrum of the two-
mode Hamiltonian, this sequence of unitary transformations
amounts to a diagonalization of the system Hamiltonian up to
some desired order in the anharmonicity parameter ε.

Importantly, now one needs to apply the same unitary
transformation (11) to the system-bath interaction Hamilto-
nian (8). Formally, this reads

Ĥsb → e−Ĝ(t )ĤsbeĜ(t ) = Ĥsb + [Ĥsb, Ĝ(t )] + · · · . (12)

In the new frame imposed by the unitary transformation,
the system will couple to the environment by a dressed
coordinate. Due to the nonlinear character of Ĝ, this dressed
coordinate will automatically involve multiphoton terms, in
addition to the single-photon terms (linear combinations of
â, ĉ and their Hermitian conjugates) appearing in the original
frame of Eq. (8). On the transformed system-bath Hamiltonian
we then perform secular, Born, and Markov approximations
in order to obtain the EME. If Eq. (11) amounted to a pertur-
bative diagonalization of the system Hamiltonian up to some
precision in ε, Eq. (12) amounts to projecting the system-bath
coupling onto the eigenbasis of Ĥs, with the same precision.

The generator can be found order-by-order upon an ex-
pansion in powers of the anharmonicity, Ĝ(t ) = εĜ4(t ) +

ε2Ĝ6(t ) + · · · , through a hierarchical set of operator-valued
ordinary differential equations, the first two of which are
derived in Appendix C. Here, we present the solution for
the generator Ĝ4(t ) that cancels the number-nonconserving
terms of the Josephson nonlinearity up to linear order ε. To
this end we expand the system Hamiltonian in powers of the
anharmonicity, to wit,

Ĥs(t ) = Ĥ2 − εĤ4(t ) + ε2Ĥ6(t ) + · · · , (13)

and decompose each operator Ĥ2n(t ) = Ŝ2n(t ) + N̂2n(t ) into
a sum of two normal-ordered operators, corresponding to
the number-conserving and number-nonconserving terms, re-
spectively. The condition for the generator can be written to
lowest order in the anharmonicity ε in the compact form of a
differential equation:

−i ˙̂G4(t ) + [Ĥ2, Ĝ4(t )] = N̂4(t ), (14)

with initial condition

[Ĥ2, Ĝ4(0)] = N̂4(0). (15)

The initial condition is crucial, for it ensures that the uni-
tary transformation removes the number-nonconserving terms
even at time t = 0. Hence, e−Ĝ(0) must differ from the identity
operator.

The operator-valued ordinary differential Eq. (14) is simple
if one expands Ĝ4(t ) as the sum of all possible normal-ordered
“monomials” â†mânĉ†pĉq with m 
= n and p 
= q. By virtue of
the following commutator,

[â†â, â†mân] = (m − n)â†mân, (16)

with an analogous form for ĉ, one can turn the operator-valued
differential equation (14) into a collection of uncoupled or-
dinary differential equations for the complex-valued coeffi-
cients of these monomials in the expansion of the generator.
Therefore, the generator Ĝ4(t ) is analytically tractable and
closed-form expressions can be written down for the simplest
examples (see Appendix D for a one-mode theory), while
computer algebra [50] can be used for the general situation
encountered in the problem of dispersive readout.

Once the generator Ĝ4(t ) is determined, the system Hamil-
tonian takes the form of a Kerr Hamiltonian, i.e., commutes
with the number operators â†â and ĉ†ĉ, and contains interac-
tions up to quadratic order with those number operators:

Ĥs,eff = Ĥ2 − εŜ4(t ) + O(ε2). (17)

To derive the dissipators in the EME, we express the system
operator coupling to the bath, ˆ̄Yc, in the interaction picture
with respect to the system Hamiltonian. Up to linear order in
ε, this amounts to (for a detailed derivation, see Appendix E)

ei
∫ t

0 dt ′Ĥs,eff (t ′ ){ ˆ̄Yc + ε[ ˆ̄Yc, Ĝ4]}e−i
∫ t

0 dt ′Ĥs,eff (t ′ ) ≡
∑

j

Ĉ(ω j )e
iω j t ,

(18)

where j indexes a discrete set of frequencies {ω1, ω2, . . .}
which are linear combinations of ωd, ωa, and ωc. Here Ĉ(ω j )
are operators at most linear in ε, which will enter the dissipa-
tors of the EME, according to the prescription

Ĉ(ω j )e
iω j t → 2κ (ω j )D[Ĉ(ω j )]. (19)
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FIG. 2. Master equation simulations for our model of dispersive readout (see Fig. 1). (a) EME solution: The natural logarithm of the qubit
occupation number 〈â†â〉 as a function of time, for different values of the drive power. As the drive strength is increased, the relaxation rate of
the qubit increases linearly as a function of the cavity steady-state population. Inset: The Kerr-only master equation (43) predicts no drive- or
nonlinearity-induced renormalization of the qubit relaxation rate. (b) The drive strength is adjusted such that the cavity has a mean steady-state
population n̄c. (c) Qubit relaxation rate [Eq. (39)] extracted from a number of numerical simulations: Kerr theory Eq. (43), EME with all terms
included [i.e., solving (31) together with the full expression for the collapse operator Ĉ(ωa), Eq. (F19) in Appendix F, and its analog for Ĉ(ωc )],
as well as EME in which a subset of the terms are included only (see text for complete discussion).

Explicitly, in the Born-Markov approximation [51], this leads
to the EME in the Lindblad form:

˙̂ρ(t ) = −i[Ĥs,eff(t ), ρ̂(t )] +
∑

j

2κ (ω j )D[Ĉ(ω j )]ρ̂(t ),

(20)

where rates are related to the spectral function, 2κ (ω j ) =
S(ω j ), and the dissipator superoperators are defined as
D[Ĉ](·) = Ĉ(·)Ĉ† − 1/2{Ĉ†Ĉ, (·)}.

Note that we have performed the Born-Markov and secular
approximations after the application of two unitary transfor-
mations on the full Hamiltonian describing the system and
its environment: the first, a displacement transformation into
the frame rotating at the drive frequency, and, the second, a
Schrieffer-Wolff transformation that eliminated the number-
nonconserving terms. This was the essential step that allowed
us to derive drive- and anharmonicity-corrected dissipators.

We conclude our presentation of the formal steps toward
obtaining the EME to lowest order in ε by reiterating the main
property: Corrections to the eigenfrequencies are captured by
the number-conserving terms, Ĥs,eff, whereas the renormal-
ized dissipators in (20) arise from the number-nonconserving
terms of the Josephson nonlinearity, via the action of the
generator Ĝ4(t ).

III. EFFECTIVE MASTER EQUATION FOR THE
READOUT PROBLEM

In this section we carry out the program outlined in Sec. II
for the EME describing dispersive readout, beginning from
Eq. (10). For a pedagogical application of the method, we
point the reader to Appendix D where we consider a one-mode
theory of a weakly driven, weakly anharmonic qubit coupled
to an infinite waveguide.

The remainder of this section is organized as follows.
Subsection III A contains the derivation of the EME for
dispersive readout. Equation (31) contains the main result,
with approximate collapse operators applicable to the typical
scenario for dispersive readout, when the drive is close to
resonant with the cavity normal-mode frequency, obtained in
Eqs. (32) and (33). Readers interested in the numerical results
could skip to subsection III B, where the EME numerical
simulations are discussed, with numerical results summarized
in Fig. 2.

A. Analytical results

For a calculation to order ε we truncate the displaced
system Hamiltonian Ĥs(t ), and we will hereafter use

Ĥs(t ) = ωa

(
â†â + 1

2

)
+ ωc

(
ĉ†ĉ + 1

2

)

− εω̄a

48
(uaaâ + uacĉ + ηxe−iωdt + H.c.)4. (21)

Both the qubit-like and the cavity-like normal modes are
subjected to the drive due to hybridization. The parameter
ηx describes the magnitude of the displacement of bare phase
quadrature ˆ̄Xa, according to

ηx = uaaηa,x + uacηc,x. (22)

The coherent parts corresponding to each normal mode are
given by

ηa,x = vcaεd(ωd + iκa)

ω2
a − (ωd + iκa)2

,

ηc,x = vccεd(ωd + iκc)

ω2
c − (ωd + iκc)2

. (23)

These are the amplitudes of the displacement of the phase
quadrature (hence the subscript x) for the two normal modes
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â, ĉ. These expressions depend explicitly on the relaxation
rates and they are obtained from the linear theory (for a
derivation, see Appendix B 2). For a linear system, the steady-
state population of the cavity can be obtained exactly from the
steady-state solution to equations of motion. One obtains

n̄c = |(ηc,x + iηc,y)/2|2, (24)

where ηc,y = −iωc/(ωd + iκc)ηc,x is the corresponding ampli-
tude of the displacement of the charge quadrature (subscript
y). Note that if one assumes that the hybridization between
the cavity and the qubit is weak, then the dressed cavity is
only weakly nonlinear, and Eq. (24) is a good estimate of the
actual steady-state population of the cavity.

The number-conserving terms of the quartic nonlinearity
amount to the following contributions:

εŜ4(t ) = λa(t )n̂a + λc(t )n̂c + χacn̂an̂c + αan̂2
a + αcn̂2

c,

(25)

with

λa(t ) = ε
ω̄a

8
u2

aa

[
4Re

(
η2

x e2iωdt
) + 4|ηx|2 + u2

aa + 2u2
ac

]
,

λc(t ) = ε
ω̄a

8
u2

ac

[
4Re

(
η2

x e2iωdt
) + 4|ηx|2 + u2

ac + 2u2
aa

]
,

χac = ε
ω̄a

4
u2

acu2
aa, αa = ε

ω̄a

8
u4

aa, αc = ε
ω̄a

8
u4

ac. (26)

These terms enter the effective Hamiltonian:

Ĥs,eff(t ) = [ωa − λa(t )]n̂a + [ωc − λc(t )]n̂c

−χacn̂an̂c − αan̂2
a − αcn̂2

c . (27)

This form includes AC Stark shift contributions on the first
row, and cross-Kerr, and self-Kerr contributions, respectively,
on the second row. On the one hand, Ĥs,eff(t ) is the quantum-
nondemolition Hamiltonian required for dispersive measure-
ment in circuit QED. On the other hand, the explicit form
above shows that, at linear order in ε, the qubit transition
frequencies acquire a dependence on the qubit and cavity
states as well as on the drive power.

We now need to find the generator Ĝ4(t ) that removes
the number-nonconserving terms of the nonlinear potential
of Eq. (21), according to the general condition (11) satisfied
with the effective Hamiltonian Ĥs,eff(t ) of Eq. (27). We can
find the generator Ĝ4(t ) using computer algebra [50] (for an
explicit solution in the one-mode theory, see Appendix D). We
do not present the lengthy expression of Ĝ4(t ) here, since this
knowledge is only an intermediate step.

Assuming that Ĝ4(t ) is found such that number-
nonconserving terms are removed from the driven system
Hamiltonian Ĥs up to order ε, the effect of the unitary trans-
formation carries over to two different quantities appearing in
the dynamical equations. First, applying the unitary transfor-
mation derived from the condition above to the system-bath
coupling yields a renormalized system quadrature coupling to
the bath [cf. Eq. (8)]:

Ĥsb → e−Ĝ(t )ĤsbeĜ(t ) = Ĥsb + ε[Ĥsb, Ĝ4(t )] + O(ε2).

(28)

Second, the unitary must be applied to the system reduced
density matrix, which becomes

ρ̂s(t ) → e−Ĝ(t )ρ̂s(t )eĜ(t ) = ρ̂s(t ) + ε[ρ̂s(t ), Ĝ4(t )] + O(ε2).

(29)

Next, we address the system-bath coupling in order to cat-
egorize all the possible relaxation processes induced by the
number-nonconserving terms. For this, we calculate the cor-
rections to the dressed system quadratures Ŷa and Ŷc which
enter the system-bath couplings, Eq. (8). These quadratures
transform according to

ˆ̄Yc → ˆ̄Yc + ε[ ˆ̄Yc, Ĝ4(t )] + O(ε2). (30)

The resulting expressions on the right-hand side are lengthy.
We separate these contributions into the ones coming from
[Ŷa, Ĝ4(t )] and those from [Ŷc, Ĝ4(t )]. The former can be
found tabulated in Appendix F (Tables II–IV for qubit-only,
cavity-only, and mixed processes, respectively), whereas the
latter can be derived from those same tables using simple
transformations on the subscripts.

The collapse operators can be worked out from the terms
on the right-hand side of Eq. (30) according to the prescription
of Eqs. (18) and (19). Since the expressions for the effective
collapse operators for the qubit and cavity are too lengthy
to be reproduced here, we provide them in Appendix F, and
will only reproduce here in the main text the most relevant
contributions. The collapse operators derived above enter the
following zero-temperature EME for the qubit coupled to the
resonator:

˙̂ρ(t ) = −i[Ĥs,eff(t ), ρ̂(t )] +
∑
j=a,c

2κ (ω j )D[Ĉ(ω j )]ρ̂(t ). (31)

We note that there are other collapse operators at frequencies
different from ωc and ωa, that would appear in the expression
above, but at order ε2. By direct calculation, we have obtained
that the leading contributions to the dissipators of Eq. (31) are
as follows. For the qubit dissipator, there is the dressed single-
photon relaxation in the operator â, along with a correlated
relaxation process â(ĉ − ĉ†) which is large when the drive is
nearly resonant with the cavity:

Ĉ(ωa) ≈ −i

[
vca − ε

8

(
ω̄a

ωa
vcau2

aa − 4
ω̄aωa

ω2
c − ω2

a

vccuacuaa

)

× (
u2

aa + u2
ac + u2

aan̂a + 2u2
acn̂c + 2|ηx|2

)]
â

− iε

2

ω̄a

ωc
vcauacu2

aa

ωd

ωc − ωd
â(η∗

x ĉ − ηxĉ†). (32)

Turning to the cavity dissipator, there are two leading contri-
butions, one corresponding to single-photon decay via ĉ, and
one corresponding to qubit dephasing via â†â:

Ĉ(ωc) ≈ −i

[
vcc − ε

8

(
ω̄a

ωc
vccu2

ac − 4
ω̄aωc

ω2
a − ω2

c

vcauaauac

)

× (
u2

ac + u2
aa + u2

acn̂c + 2u2
aan̂a + 2|ηx|2

)]
ĉ

− i
ε

8

ω̄aωd

ωc
vccuacu2

aa

ηx

ωd − ωc
n̂a. (33)
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Subleading corrections from the remaining terms, all of which
are listed in Eq. (F19) of Appendix F, are at least two orders
of magnitude smaller for the parameters chosen for numerical
simulations in the next subsection [Eqs. (34), (35), and (37)].

B. Numerical results

Let us now turn to our numerical results based on Eq. (31),
shown in Fig. 2. Our aim is to illustrate qubit relaxation in the
presence of a steady-state population in the cavity. We have
chosen
ω̄a

2π
= 6.93 GHz,

ω̄c

2π
= 9.0 GHz,

g

2π
= 225 MHz, (34)

for the bare qubit and cavity frequencies and qubit-cavity
coupling g, respectively, amounting to ncrit = [�/(2g)]2 ≈ 21
and hence the following ratio of quality factors of the dressed
qubit and cavity:

Qa

Qc
= ωa

ωc

κc

κa
≈ 51.5. (35)

This choice for the Q factors guarantees that the population
〈ĉ†ĉ〉(t ) relaxes to the steady-state value, with a mean pop-
ulation n̄c, markedly faster than the qubit population. The
initial state corresponds to one photon in the hybridized qubit
mode, and the vacuum state for the cavity, that is ρ̂(0) =
|1a0c〉〈1a0c|.

Additionally, we have chosen the anharmonicity parame-
ter ε = 0.1 which corresponds to EC/EJ = 1/200, giving an
anharmonicity [4] of

α

2π
= − EC

2π
≈ −175 MHz. (36)

The drive frequency is detuned from the cavity frequency
at half of the value of the Kerr interaction between cavity
and qubit, which is the typical situation for dispersive read-
out [1,2]:

ωd = ωc − χac/2, (37)

with χac = εωau2
aau2

ac/2 ≈ 1.7 × 10−3ω̄c.
Note that it is not typical for dispersive readout that κc

2π
≈

90 MHz is overwhelmingly large compared to the dispersive
shift χac. Working at low quality factors is imposed by the
necessity of simulations to be performed in a reasonable
amount of time. This is the consequence of not performing
the rotating-wave approximation resulting in widely different
timescales. However, as our expressions show, we expect the
EME to correct the relaxation rates multiplicatively: that is,
an order of magnitude decrease of the cavity relaxation rate κc

is expected to result in an order of magnitude decrease in the
corrections predicted by the EME. This is why we present our
relaxation rates rescaled by the bare relaxation rates instead of
absolute units.

We plot the expectation value of the photon number op-
erator corresponding to the hybridized qubit, â†â, and ex-
tract the leading exponential decay in its time dependence.
Figure 2(a) shows this time dependence for variable drive
strength, parametrized by the mean steady-state population of
the cavity n̄c [plotted in Fig. 2(b)]. The leading dependence of
〈â†â〉 is exponential, and the rate of decay as a function of time
increases visibly as a function of drive power. To extract the

relaxation rate of the qubit, κEME
a , numerically, as a function

of n̄c, we assume the following form for the transient qubit
population:

〈â†â〉(t ) = e−2κEME
a t + · · · , (38)

where the ellipsis contains subleading oscillatory terms (neg-
ligible for our parameter choices). The result of this fit is
summarized in Fig. 2(c), where the relaxation rate obtained
from fitting the EME curves of Fig. 2(a) is plotted versus n̄c:

δκEME
a (n̄c)

κEME
a (0)

≡ κEME
a (n̄c) − κEME

a (0)

κEME
a (0)

. (39)

For the left-hand side of Eq. (39), we obtain a monotonically
increasing correction to the qubit relaxation rate, with almost-
linear behavior at low cavity photon number [solid red line in
Fig. 2(c)]. This increase is primarily due to the nearly resonant
behavior of the correlated decay term in Eq. (32).

Note that since the hybridization between the qubit mode
and the cavity is weak, the EME dynamics closely reproduces
the steady-state population of the cavity predicted by the
linear theory. This is illustrated, for example, by the cavity
population, plotted as a function of time and drive strength
in Fig. 2(b). A comparison of the relaxation dynamics of the
cavity and qubit populations in the first two panels of Fig. 2
reveals that the cavity population relaxes on a timescale which
is markedly shorter than the interval of transient exponential
decay of the qubit mode.

To illustrate the essential role of number-nonconserving
terms, we consider for comparison a Kerr-theory master equa-
tion simulation, which exhibits no visible renormalization of
the relaxation rates [see inset of Fig. 2(a)]. This theory retains
the number-conserving terms of the Josephson nonlinearity up
to quartic order in the undriven Hamiltonian, plus the drive:

Ĥs,Kerr(t ) = Ĥs,Kerr + Ĥd(t ), (40)

where

Ĥs,Kerr = [
ωa − λ(0)

a

]
n̂a + [

ωc − λ(0)
c

]
n̂c

−χacn̂an̂c − αan̂2
a − αcn̂2

c . (41)

The frequency shifts amount to

λ(0)
a = ω̄a

8
u2

aa

[
u2

aa + 2u2
ac

]
,

λ(0)
c = ω̄a

8
u2

ac

[
u2

ac + 2u2
aa

]
, (42)

and χac, αa, and αc have been defined in Eq. (26).
This driven Kerr Hamiltonian would form the basis of

an oversimplified theory in which the rotating-wave approx-
imation has been performed at the level of the Hamiltonian
without considering renormalization effects onto dissipators.
The associated master equation amounts to adding dissipators
D[â] and D[ĉ], thus neglecting the essential contributions to
the dissipators from the Josephson nonlinearity and from the
drive term:

˙̂ρ(t ) = −i[Ĥs,Kerr(t ), ρ̂(t )] + 2κ (ωc)D[ĉ]ρ̂(t )

+ 2κ (ωa)D[â]ρ̂(t ). (43)
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FIG. 3. Magnitudes of (a) ηx as a function of n̄c for the param-
eters chosen for the EME simulation (see text); (b) for the same
parameters, the magnitudes of the most significant terms in the EME.

As shown in the inset of Fig. 2(a), there is no renormalization
of the decay rate in a Kerr-only master equation simulation.

In Fig. 3 we investigate the sizes of the various terms
entering Eqs. (32) and (33). We first note that the drive term
|ηx|, which is proportional to

√
n̄c, reaches ≈ 10−1 at n̄c =

1.0, which verifies our condition that the drive should cause
only a small deviation on the phase quadrature [Fig. 3(a)]. Fig-
ure 3(b) shows the leading contributions in the dissipators, as
a function of drive power. The absolute value of the coefficient
of the single-photon dissipator has almost no renormalization
as a function of drive (dashed red curve). Two contributions
control the dressing of the dissipators as a function of drive:
the correlated decay âĉ in Ĉ(ωa) (black dotted line), and the
photon dephasing term â†â in Ĉ(ωc) (dashed black line).

To further illustrate the effects of these contributions, we
have devised EME numerical simulations containing subsets
of the terms [Fig. 2(c)]. The correlated decay âĉ in Ĉ(ωa)
seems to be responsible for most of the renormalization of
relaxation rates in the presence of drives, as shown by EME
simulations where this term is omitted (black dotted line).
Moreover, the omission of the dephasing term â†â in Ĉ(ωc)
leaves the EME result largely unaffected (see dot-dashed
magenta) curve. Finally, we note that the Kerr simulation
(solid black line) and an EME simulation retaining only the
single-photon terms (red-dashed line) both predict negligible
renormalization of the qubit relaxation rate as a function of
drive.

Before summarizing, we would like to add a new wrinkle.
We have seen that the correction from the drive-induced
contributions in the EME is dominated by almost-resonant
contributions ∝ 1/(ωc − ωd). In a second set of numerical
simulations performed with the same parameters (ω̄a/ω̄c =
0.77, g/ω̄c = 0.025), we have varied the drive frequency in the
interval [ωd − 10χac, ωd − χac/2] while keeping the cavity
steady-state population n̄c fixed at a reference value of 0.5
photons. Our results are summarized in Fig. 4. The relaxation
rate obtained from the EME only shows a markedly large
renormalization close to the cavity frequency ωc and decays
rapidly as the drive frequency is shifted. When the drive is
detuned to around 10χac under the cavity frequency, there is
very little renormalization discernible from the drive-induced
terms, and the rate obtained from the EME matches to good
approximation that corresponding to the EME of the undriven
theory [Fig. 4(a)]. The value of the relaxation rate κEME

a

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3
(a) (b)

FIG. 4. EME results versus drive frequency, at n̄c = 0.5 steady-
state cavity photons. (a) The relaxation rate obtained from the EME
(solid red) exhibits a large renormalization only in the vicinity of the
cavity resonance. At large drive-cavity detuning ωc − ωd (ten times
the cross-Kerr energy scale χac) there is almost no correction from
the drive-induced terms, as exemplified by a comparison with the
EME result for an undriven system (black dashed line). (b) This is
consistent with the coefficients of the most resonant contributions in
the EME decaying algebraically with the detuning.

predicted by the EME for the undriven case is smaller than κa,
as already shown in Part I. Overall, these results are consistent
with our understanding of the fact that the coefficients of
the drive-induced corrections to the EME decay algebraically
with the detuning of the readout drive (Fig. 4). This suggests
that there is a marked sensitivity of the renormalization of the
decay rate of the qubit as a function of the detuning between
the readout drive and the cavity.

To summarize, it appears that in the driven qubit-cavity
system, for a choice of parameters inspired by the setup for
dispersive readout, the renormalization of the qubit relaxation
rate is primarily driven by nearly resonant, correlated decay
processes corresponding to one photon leaking out of each
normal mode, âĉ, as well as the photon-conversion process
âĉ†. Both of these appear in the effective collapse operator
Ĉ(ωa) and are responsible for the relaxation of the photon
number in the qubit-like mode. These processes appear as
drive-activated corrections to the qubit dissipator. As the
drive is detuned from the cavity normal-mode frequency, the
strength of the terms in the dissipators corresponding to these
processes decays inversely proportionally to the detuning be-
tween the readout drive and the cavity frequency. We note that
correlated relaxation processes between a qubit and a cavity
have been found before in the context of double quantum dots
coupled to microwave cavities, without the need for a coherent
drive, in a different model [52,53]. Correlated collapse oper-
ators of the form ac† have been found in dissipators in the
undriven Jaynes-Cummings model [3]; however, the essential
difference is that these terms did not appear in the dissipator
at the qubit frequency, as is the case here due to our treatment
of drive effects.

IV. SUMMARY

To conclude, we have argued that the relaxation rate and
the transition frequency of a driven, weakly anharmonic,
superconducting qubit depend strongly on drive power. We
have arrived at these conclusions by devising a perturbation
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theory in the weak nonlinearity and in the strength of the drive.
We have shown that, to lowest order, the effect arises from
the interplay of number-nonconserving terms in the nonlinear
Hamiltonian with the drive, and that the lowest-order contri-
butions of the Josephson potential, the quartic terms, predict
significant corrections to qubit dynamics. Moreover, through
full numerical simulation of the EME, we have quantitatively
confirmed our qualitative analytical predictions. The theory
presented here can be adapted to a wide range of experimental
parameters. A quantitative comparison to current experiments
would necessitate the inclusion of the effects of finite tem-
perature and pure dephasing [3], which is the subject of
future work. We expect that these refinements will only bring
quantitative corrections to the results presented here, with
the qualitative picture conveyed in this work, in particular
the net increase of the qubit relaxation rate with drive in the
dispersive-readout setup, remaining intact.

More generally, our results shed light on the importance of
number-nonconserving terms in the theoretical description of
driven nonlinear systems. In the limit of zero drive, number-
nonconserving terms correspond to the counterrotating terms
of the Hamiltonian, which are frequently neglected in cur-
rent theories of transmon qubit systems [15,16,54]. We have
shown that while number-conserving terms dress frequencies
to lowest order in the strength of anharmonicity, ε, it is the
number-nonconserving terms that actually correct the collapse
operators, ultimately leading to an ε-order correction to the
qubit relaxation rate. These are linear in the mean cavity pho-
ton occupation in the steady state, for small photon numbers.
This is the central finding of our work.
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APPENDIX A: NOTATION CONVENTIONS

Our variables are rescaled from the ones conventionally
used in the literature. If ϕ̂ j and n̂ j , j = a, c, are the canonically
conjugate superconducting phase and Cooper pair number
operators, then they are related to the operators introduced
above as follows:

X̂ j = 1√
ε
ϕ̂ j, Ŷj = 2

√
εn̂ j . (A1)

These conventions allow us write the harmonic part of the
Hamiltonian in a form that is symmetric with respect to an
interchange of the quadratures. Second, it allows us to keep
the dependence on the anharmonicity parameter ε explicit and
outside of the operators.

To organize our double expansion in the drive amplitude
and in the anharmonicity, we first needed to switch from the

bare-mode basis to the normal-mode basis, that is,

ˆ̄Xa = uacX̂c + uaaX̂a,

ˆ̄Xc = uccX̂c + ucaX̂a,

ˆ̄Ya = vacŶc + vaaŶa,

ˆ̄Yc = vccŶc + vcaŶa. (A2)

When expressed with respect to the normal-mode quadratures
on the right-hand side of the equations above, the linear
Hamiltonian becomes diagonal in the Fock basis. Equiva-
lently, the coupling g has been absorbed along with other
details of the linear Hamiltonian into the normal-mode coeffi-
cients ui j , with i, j ∈ {a, c}. The explicit dependence of these
variables on the parameters of the Hamiltonian can be found
in Part I. Note, however, that the remaining nonlinear part of
the Hamiltonian mixes the normal modes.

The normal-mode quadratures are related to the bosonic
creation and annihilation operators as follows:

X̂a = â + â†, Ŷa = −i(â − â†),
(A3)

X̂c = ĉ + ĉ†, Ŷc = −i(ĉ − ĉ†),

and the commutator of the quadratures is [X̂a, Ŷa] = 2i if
[â, â†] = 1, etc.

APPENDIX B: DISPLACEMENT TRANSFORMATION
WITHOUT ROTATING-WAVE APPROXIMATION

This Appendix follows closely the derivation in Ref. [55]
in order to generate a unitary transformation that removes
the coherent part of a continuous wave drive on a harmonic
oscillator (Appendix B 1 below). The second subsection,
Appendix B 2, generalizes this derivation to the case of a
harmonic oscillator coupled to a harmonic bath, leading to the
formulas used in the main text.

1. Displacement transformation on the Schrödinger equation

Consider the driven harmonic oscillator described by

Ĥs(t ) = Ĥ0 + Ĥd(t ),

Ĥ0 = ωa

4

(
X̂ 2

a + Ŷ 2
a

)
, (B1)

Ĥd(t ) = εdŶa sin(ωdt ),

where the canonical commutator between the two quadratures
is [X̂a, Ŷa] = 2i. The problem is to find a unitary transforma-
tion

Û (t ) = eiX̂a
ya (t )

2 e−iŶa
xa (t )

2 e−iS(t ), (B2)

with xa(t ), ya(t ), and S(t ) three real-valued functions of time,
such that

Û †(t )[Ĥs(t ) − i∂t ]Û (t ) = ωa

4

(
X̂ 2

a + Ŷ 2
a

) − i∂t . (B3)

In other words, such a unitary transformation appropriately
displaces the two quadratures X̂a and Ŷa in order to remove the
time-dependent drive term. The task is to find xa(t ), ya(t ), and
S(t ) satisfying the condition (B3).
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The canonical commutation relation implies that Ŷa gener-
ates translations for X̂a and vice versa,

eiŶa
xa
2 X̂ae−iŶa

xa
2 = X̂a + xa,

e−iX̂a
ya
2 ŶaeiX̂a

ya
2 = Ŷa + ya. (B4)

Consequently

Û †(t )Ĥs(t )Û (t ) = ωa

4
[(X̂a + xa)2 + (Ŷa + ya)2]

+ εd(Ŷa + ya) sin(ωdt ). (B5)

The energy operator transforms according to

Û †(t )(−i∂t )Û (t ) = −i∂t + ẏa

2
(X̂a + xa) − ẋa

2
Ŷa − Ṡ.

(B6)

This follows from an application of the chain rule in
Û †(t )(−i∂t )Û (t ) f (t ), where f is an arbitrary differentiable
complex-valued function of time.

Then the Floquet Hamiltonian transforms under the action
of the unitary transformation Û (t ) as follows:

Û †(t )[Ĥs(t ) − i∂t ]Û (t )

= ωa

4

(
X̂ 2

a + Ŷ 2
a

) − i∂t

+
[
ωa

2
xa + ẏa

2

]
X̂a +

[
ωa

2
ya + εd sin(ωdt ) − ẋa

2

]
Ŷa

+ ωa

4

(
x2

a + y2
a

) + εdya sin(ωdt ) + ẏa

2
xa − Ṡ. (B7)

In order to satisfy Eq. (B3), we ask that the coefficient of
the quadrature X̂a, the coefficient of the quadrature Ŷa, and
the coefficient of the time-dependent c-number in Û †[Ĥs(t ) −
i∂t ]Û (t ) vanish, respectively,

ẏa = −ωaxa,

ẋa = ωaya + 2εd sin(ωdt ),

Ṡ = L(t ) ≡ +ωa

4

(
x2

a + y2
a

) + εdya sin(ωdt ) + ẏa

2
xa. (B8)

The first two are classical equations of motion for the quad-
ratures. S corresponds to the action, whereas L is the
Lagrangian, defined here as the Legendre transform of the
classical Hamiltonian. The Euler-Lagrange equations corre-
sponding to L are the first two rows of (B8).

The xa quadrature obeys the equation

ẍa + ω2
axa − 2εdωd cos(ωdt ) = 0. (B9)

Plugging in an ansatz of the particular form that oscillates at
the drive frequency xa(t ) = 2ηa,x cos(ωdt ), we find

ηa,x = εdωd

ω2
a − ω2

d

. (B10)

Linear combinations of the solutions to the homogeneous
equation (εd = 0) can be added in order to enforce any bound-
ary values for xa(0), ya(0).

We note that the form derived above in Eq. (B10) becomes
divergent if the drive is resonant with the mode frequency ωa.
This is impractical for our application to dispersive readout,
where the drive is close to resonant with the cavity frequency.

One solution to circumvent this problem is to consider the
effect of dissipation. If the oscillator had a relaxation rate κa,
then the formula above translates to

ηa,x = εd(ωd + iκa)

ω2
a − (ωd + iκa)2

. (B11)

For a full derivation of this form, which is adjusted for
dissipation and is divergence-free, the reader can refer to the
next subsection.

2. Displacement transformation on the full master equation

A limitation of the transformation performed in Ap-
pendix B 1 is that the effect of the bath is not included in the
displacement. For consistency, in a numerical simulation, the
transformation of Appendix B 1 would need to be applied to
the system operator in the system-bath coupling, leading to
dissipators of displaced collapse operators. It turns out that
there is a simpler way to account for the effect of the bath by
removing the drive terms directly at the level of the Lindblad
master equation.

To this end, we consider a generalization of the transfor-
mation Û (t ) introduced in Appendix B 1, and apply it to the
reduced density matrix:

ρ̂ ′(t ) = V̂ †(t )ρ̂(t )V̂ (t ), (B12)

where V̂ (t ) has the same form as Û (t ) in Eq. (B2),

V̂ (t ) = eiX̂a
ya (t )

2 e−iŶa
xa (t )

2 e−iS(t ). (B13)

The problem is to find complex xa(t ), ya(t ), S(t ) such that
the drive term is eliminated from the master equation alto-
gether, not merely from the Hamiltonian as in the previous
subsection. At the end of this section, we will prove that
there actually exist real xa(t ), ya(t ), S(t ) and hence unitary
V̂ (t ) satisfying the condition above. For now, let us relax this
assumption and find the necessary conditions for nonunitary,
but invertible, V̂ (t ) such that the drive term is removed from
the Lindblad master equation. We denote the inverse of V̂ (t )
by Ŵ (t ):

Ŵ (t )V̂ (t ) = V̂ (t )Ŵ (t ) = 1,

Ŵ †(t )V̂ †(t ) = V̂ †(t )Ŵ †(t ) = 1. (B14)

We now need to express the Lindblad master equation in
terms of the non-Hermitian Hamiltonian:

Ĥs = ωa − iκa

4

(
X̂ 2

a + Ŷ 2
a

) + εdŶa sin(ωdt ),

˙̂ρ(t ) = 1

i
[Ĥsρ̂(t ) − ρ̂(t )Ĥ†

s (t )] + 2κaâρ̂â†.

The first step is to find the equation obeyed by ρ̂ ′(t ). To this
end, we may write ρ̂(t ) = Ŵ †(t )ρ̂ ′(t )Ŵ (t ) and take the time
derivative

˙̂ρ(t )= ˙̂W †(t )ρ̂ ′(t )Ŵ (t )+Ŵ †(t ) ˙̂ρ ′(t )Ŵ (t )+Ŵ †(t )ρ̂ ′(t ) ˙̂W (t ),
(B15)

then apply V̂ †(t ) to the left and V̂ (t ) to the right, which yields

V̂ †(t ) ˙̂ρ(t )V̂ (t ) = V̂ †(t ) ˙̂W †(t )ρ̂ ′(t ) + ˙̂ρ ′(t ) + ρ̂ ′(t ) ˙̂W (t )V̂ (t )

= V̂ †(t ) ˙̂W †(t )ρ̂ ′(t ) − ρ̂ ′(t )Ŵ (t ) ˙̂V (t ) + ˙̂ρ ′(t ).

(B16)
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Then

˙̂ρ ′(t ) = V̂ †(t )

{
1

i
[Ĥsρ̂(t ) − ρ̂(t )Ĥ†

s (t )] + 2κaâρ̂â†
}

V̂ (t )

− V̂ †(t ) ˙̂W †(t )ρ̂ ′ + ρ̂ ′ ˙̂W (t )V̂ (t )

= − i[V̂ †ĤsŴ
†V̂ †ρ̂V̂ − V̂ †ρ̂V̂Ŵ ĤsV̂ ]

+ 2κaV̂
†âŴ †V̂ †ρ̂V̂Ŵ â†V̂

− V̂ †(t ) ˙̂W †(t )ρ̂ ′ + ρ̂ ′ ˙̂W (t )V̂ (t )

= −i[V̂ †(Ĥs − i∂t )Ŵ
†ρ̂ ′ − ρ̂ ′Ŵ (Ĥ†

s − i∂t )V̂ ]

+ 2κa(V̂ †âŴ †)ρ̂ ′(Ŵ â†V̂ ). (B17)

We may now use

V̂ †âŴ † = X̂a + iŶa

2
+ x∗

a + iy∗
a

2
≡ â + ā,

(B18)

Ŵ â†V̂ = X̂a − iŶa

2
+ xa − iya

2
≡ â† + ā∗,

to recast the last term of (B17) in the form

2κa(V̂ †âŴ †)ρ̂ ′(Ŵ â†V̂ ) (B19)

= 2κa

(
X̂a + iŶa

2
+ x∗

a + iya∗
2

)
ρ̂ ′

(
X̂a − iŶa

2
+ xa − iya

2

)

= 2κaâρ̂ ′â† + 2κaāρ̂ ′ X̂a − iŶa

2

+ 2κaā∗ X̂a + iŶa

2
ρ̂ ′ + 2κa|ā|2ρ̂ ′. (B20)

Additionally,

V̂ †(t )[Ĥs(t ) − i∂t ]Ŵ
†(t )

= ωa − iκa

4

(
X̂ 2

a + Ŷ 2
a

) +
[
ωa − iκa

2
x∗

a + ẏa
∗

2

]
X̂a

+
[
ωa − iκa

2
y∗

a − ẋa
∗

2
+ εd sin(ωdt )

]
Ŷa

+ ωa − iκa

4
[(x∗

a )2+(y∗
a )2]+εdy∗

a sin(ωdt ) + ẏa
∗

2
x∗

a−Ṡ∗.

(B21)

Note that the equation for Ŵ (t )[Ĥ†
s (t ) − i∂t ]V̂ (t ) is the Her-

mitian conjugate of (B21). In addition to (B21) we must keep
track of the second term and the fourth term in the expression
of the transformed collapse operator, Eq. (B20). This yields
the following three equations that need to be satisfied for the
coefficients of X̂a, Ŷa, and the c-number to vanish, respectively,

X̂a :
ωa − iκa

2
x∗

a + ẏa
∗

2
+ iκa

xa − iya

2
= 0,

Ŷa :
ωa − iκa

2
y∗

a − ẋa
∗

2
− κa

xa − iya

2
+ εd sin(ωdt ) = 0,

c-number :
ωa − iκa

4
[(x∗

a )2 + (y∗
a )2] + εdy∗

a sin(ωdt )

+ ẏa
∗

2
x∗

a + iκa|ā|2 − Ṡ∗ = 0. (B22)

The third equation gives a prescription for S as soon as xa and
ya are found. The first two equations can be rearranged to give

ẋ∗
a = (ωa − iκa)y∗

a − κa(xa − iya) + 2εd sin(ωdt ),

ẏ∗
a = −(ωa − iκa)x∗

a − iκa(xa − iya). (B23)

Let us search for real solutions for the classical quadra-
tures. If xa(t ) and ya(t ) were real, the equations would be

ẋa = −κaxa + ωaya + 2εd sin(ωdt ),

ẏa = −κaya − ωaxa. (B24)

This results in the second-order differential equation for xa:

ẍa + 2κaẋa + (
κ2

a + ω2
a

)
xa = 2εdωd cos(ωdt ). (B25)

This is the equation of an oscillator of natural frequency ωa =√
κ2

a + ω2
a, decay rate 2κa, driven by the periodic forcing term

2εdωd cos(ωdt ). The particular solution is xa(t ) = ηa,xe−iωdt +
η∗

a,xeiωdt , with

ηxa = εd(ωd + iκa)

ω2
a − (ωd + iκa)2

, (B26)

while ya(t ) = ηa,ye−iωdt + η∗
a,yeiωdt with

ηa,y = −i
εdωa

ω2
a − (ωd + iκa)2

. (B27)

We have found real xa(t ) and ya(t ) describing the steady
state of Eqs. (B24). Since the two quadratures are real, the
equation for S, Eq. (B22), becomes

ωa

4

[
x2

a + y2
a

] + εdy∗
a sin(ωdt ) + ẏa

2
xa − Ṡ∗ = 0, (B28)

implying that S is real, and therefore the transformation matrix
V̂ (t ) is unitary and therefore W (t ) = V †(t ).

Finally, we have arrived at the following master equation
for ρ̂ ′(t ):

˙̂ρ ′(t ) = −i

[
ωa − iκa

4

(
X̂ 2

a + Ŷ 2
a

)
ρ̂ ′ − ρ̂ ′ ωa − iκa

4

(
X̂ 2

a + Ŷ 2
a

)]

+ 2κaâρ̂ ′â†

= −i[ωaâ†â, ρ̂ ′(t )] + 2κaD[â]ρ̂ ′(t ). (B29)

All the complexity of solution to the classical driven-
dissipative harmonic oscillator is now encapsulated in the
unitary transformation V̂ (t ) that relates the laboratory frame
density matrix ρ̂(t ) to the displaced density matrix ρ̂ ′(t ).

APPENDIX C: HIERARCHICAL EQUATIONS FOR
TIME-DEPENDENT GENERATORS

In this Appendix, we derive the hierarchical equations
for the generator of our perturbation theory, Ĝ(t ), for time-
dependent Hamiltonians. The problem is to find the Ĝ(t ) such
that all number-nonconserving terms up to O(εn) for n � 1
are removed from the left-hand side of Eq. (11).

More explicitly, we may reexpress the system Hamiltonian
of Eq. (7) formally as a series in powers of the anharmonicity
parameter ε:

Ĥs(t ) = Ĥ2 − εĤ4(t ) + ε2Ĥ6(t ) + · · · , (C1)
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where all of Ĥ2n are known, and separable into number-
conserving and -nonconserving contributions:

Ĥ2n(t ) = Ŝ2n(t ) + N̂2n(t ), (C2)

for any n � 2, where it is implicitly assumed that both terms
on the right-hand side of Eq. (C2) are in normal-ordered form,
and we define number-conserving terms strictly speaking as
terms which are polynomials in the number operators n̂a and
n̂c. For example, a term of the form â†â†ĉĉ belongs to N̂4(t ).

The unknown generator of the unitary transformation,
Ĝ(t ), may also be expressed as a series in ε:

Ĝ(t ) = εĜ4(t ) + ε2Ĝ6(t ) + · · · , (C3)

where Ĝ2n(t ) are unknown. The requirement that number-
nonconserving terms in Ĥs(t ) − i∂t be removed translates to
a hierarchical set of differential equations for the operator-
valued coefficients in the Taylor series of the generator,
Ĝ2n(t ).

This can be achieved by using the Baker-Campbell-
Hausdorff expansion on Eq. (11) to find Ĝ(t ) order-by-order
by imposing that all number-nonconserving terms up to some
order εn disappear from the system Hamiltonian. The first step
in this iterative process is to cancel all number-nonconserving
terms which are order ε. We insert into Eq. (11) the Taylor
series for Ĝ(t ) and Ĥs(t ), then expand the resulting expression
to linear order in ε, to find that

e−Ĝ(t )[Ĥs(t ) − i∂t ]e
Ĝ(t ) = Ĥ2 + ε{−Ĥ4(t ) + [Ĥ2, Ĝ4]

−i ˙̂G4(t )} + O(ε2). (C4)

The curly braces on the right-hand side contain all contribu-
tions of order ε. Requiring that number-nonconserving terms
be canceled at order ε amounts to an ordinary differential
equation for Ĝ4(t ). Separating number-nonconserving terms
of Ĥ4(t ) as in Eq. (C2), we have

−i ˙̂G4(t ) + [Ĥ2, Ĝ4(t )] = N̂4(t ). (C5)

With this condition satisfied, the effective Hamiltonian takes
the form

Ĥs,eff(t ) = Ĥ2 − εŜ4(t ) + O(ε2). (C6)

Even though Eq. (C5) is an operator-valued ordinary dif-
ferential equation, we may expand both N̂4(t ) and Ĝ4(t )
over normal-ordered products of creation and annihilation
operators, which we referred to in Part I as “monomials,”
and thereby obtain a solvable system of uncoupled ordinary
differential equations for the complex-valued coefficients of
Ĝ4(t ). We select the following initial condition at t = 0:

[Ĥ2, Ĝ4(0)] = N̂4(0) (C7)

such that the unitary generated by G4(0) removes N̂4(0) from
the system Hamiltonian at t = 0.

Higher-order number-nonconserving terms can be recur-
sively canceled. If the time dependence of Ĝ4(t ) is known,
then Ĝ6(t ) can be obtained upon requiring that all order-ε2

number-nonconserving terms in Eq. (11) are vanishing. This
condition reads

−i ˙̂G6(t ) + [Ĥ2, Ĝ6(t )] + N̂6(t ) − [Ŝ4(t ), Ĝ4(t )]

− 1
2N ([[Ĥ2, Ĝ4], Ĝ4]) = 0, (C8)

where N (Ô) for a normal-ordered operator Ô selects only
those terms in Ô which are number nonconserving. There is
an analogous initial condition for Ĝ6(t ) at t = 0:

[Ĥ2, Ĝ6(0)] + N̂6(0) − [Ŝ4(0), Ĝ4(0)]

− 1
2N ([N̂4(0), Ĝ4(0)]) = 0. (C9)

The effective order-ε2 Hamiltonian depends only on Ĝ4(t ):

Ĥs,eff = Ĥ2 − εŜ4 + ε2Ŝ6

− ε2

2
S ([[Ĥ2, Ĝ4], Ĝ4]) + O(ε3), (C10)

where we have analogously defined S (Ô) to denote the
number-conserving terms of some normal-ordered operator Ô.

Transition frequency corrections due to the Josephson an-
harmonicity are obtained immediately from Ĥs,eff, since it is
diagonal in the Fock representation. We stress that while en-
ergy corrections at order ε arise from the number-conserving
terms in the Hamiltonian, corrections to energies at order ε2

and higher can arise from number-nonconserving terms, as
well, as illustrated by the last term of Eq. (C10).

To summarize, due to the time dependence of the sys-
tem Hamiltonian, it follows that the terms in the expansion
of the generator Ĝ(t ) must satisfy operator-valued ODEs.
Equations (C5) and (C8) are such equations for the first
two terms in the expansion, Ĝ4(t ) and Ĝ6(t ), respectively.
These equations can be reduced to systems of uncoupled
ordinary differential equations by expansion over normal-
ordered monomials in the bosonic operators. The procedure
can be iterated to obtain equations for Ĝ2n(t ) for n = 4, 5, . . ..
The bookkeeping of terms becomes difficult as the degree
of the monomials increases. We have performed the normal
ordering of the operators, as well as solutions to the resulting
differential equations for the generators Ĝ4(t ) using computer
algebra techniques.

APPENDIX D: QUBIT COUPLED TO AN INFINITE
WAVEGUIDE

In this Appendix we present the treatment of a weakly
driven, weakly anharmonic qubit coupled to an infinite waveg-
uide, in which we take as dominant source of quantum noise
the noise on the flux quadrature. This is the situation of a
frequency-tuned transmon qubit [4]. Below, we are interested
in the effect of flux noise solely, which dominates over charge
noise in frequency-tuned transmons (see Fig. 5).

1. Effective master equation

The system circuit, which is shown schematically in
Fig. 1(a), is described by the following Hamiltonian:

Ĥ = Ĥa + Ĥd(t ) + Ĥsb + Ĥb. (D1)

Ĥa is the qubit Hamiltonian, obtained from circuit quanti-
zation of the circuit in Fig. 1(a) and upon expanding the
Josephson potential to linear order in ε:

Ĥa = ωa

(
â†â + 1

2

)
− εωa

48
(â + â†)4, (D2)
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FIG. 5. An EME is derived here for a transmon qubit (mode â)
coupled to an infinite waveguide. A flux bias line is used to tune
the frequency of the transmon qubit by adjusting the magnetic flux
through its SQUID loop. Flux noise is the dominant source of noise
for this setup.

whereas the Hamiltonians describing the drive on the charge
quadrature, the system-bath coupling, and the bath modes are

Ĥd(t ) = −iεd(â − â†) sin(ωdt ),

Ĥsb = (â + â†)
∑

k

gk (B̂k + B̂†
k ),

Ĥb =
∑

k

ωkB̂†
k B̂k . (D3)

In order to prepare a simultaneous expansion in the anhar-
monicity parameter ε and in the drive strength εd, we first
perform a displacement transformation

Ĥ(t ) − i∂t → Û †(t )[Ĥ(t ) − i∂t ]Û (t ),

Û (t ) = eiX̂a
ya (t )

2 e−iŶa
xa (t )

2 e−iSa (t ), (D4)

parametrized by three real functions of time xa(t ), ya(t ),
and Sa(t ). This transformation will remove the drive term
Ĥd(t ) from the linear part of the dynamical equations (see
Appendices B 1 and B 2), provided that xa and ya obey the
classical equations of motion for a driven harmonic oscillator,

ẋa = ωaya + 2εd sin(ωdt ) − κaxa,
(D5)

ẏa = −ωaxa − κaya,

and that Sa(t ) is the associated action. The particular solution
is xa(t ) = ηa,xe−iωdt + η∗

a,xeiωdt , with

ηa,x = εd(ωd + iκa)

ω2
a − (ωd + iκa)2

, (D6)

while ya(t ) = ηa,ye−iωdt + η∗
a,yeiωdt with

ηa,y = −i
εdωa

ω2
a − (ωd + iκa)2

. (D7)

Based on these, the remaining function Sa can be determined,
which is handled in the Appendix B 2. With this transforma-
tion, the resulting Hamiltonian takes the form

Ĥa + Ĥd(t ) → Ĥa(t ),

Ĥa(t ) = ωa

(
â†â + 1

2

)
− εωa

48
(â + ηa,xe−iωdt + H.c.)4.

(D8)

Note that this calculation of the displacement parameters is
done without invoking the rotating-wave approximation. This
allows us to accurately account for the effect of all number-
nonconserving terms in the Josephson nonlinearity. Moreover,
through the explicit dependence on the relaxation rate, this
displacement transformation takes into account the effect of
the bosonic bath to lowest order in the anharmonicity.

In order to separate order-ε corrections to relaxation rates
from the frequency corrections, we transform the displaced
Hamiltonian, Eq. (D8), to perturbatively remove the number-
nonconserving terms. Specifically, we aim to find a unitary
transformation defined by anti-Hermitian operator Ĝ4(t ) such
that

e−εĜ4(t )[Ĥa(t ) − i∂t ]e
εĜ4(t ) = Ĥa,eff(t ) − i∂t + O(ε2).

(D9)

The effective Hamiltonian Ĥa,eff(t ) contains only number-
conserving terms:

Ĥa,eff(t ) = ωaĤa − εωa

48
Ŝ4(t ), (D10)

with

Ŝ4(t ) = 6Ĥ2
a + 12x2

a (t )Ĥa + x4
a (t ) + 6

4 ,

Ĥa = n̂a + 1
2 . (D11)

Defining N̂4(t ) to contain all the number-nonconserving terms
to quartic order in creation and annihilation operators, i.e.,

−εωa

48
N̂4(t ) ≡ Ĥa(t ) − Ĥa,eff(t ), (D12)

the condition (D9) is equivalent to

−i ˙̂G4(t ) + [ωaĤa, Ĝ4(t )] = ωaN̂4(t )

48
. (D13)

We derive the generator Ĝ4(t ) from this equation in Ap-
pendix D 2. In this section we will make use only of the
resulting commutators of Ĝ4(t ) with system quadratures, etc.,
which will yield the EME.

A compact form for the effective Hamiltonian is

Ĥa,eff(t ) =
{

1 − ε

8
− ε

2

[|ηa,x|2 + Re
(
η2

a,xe2itωd
)]}

ωan̂a

− ε

8
ωan̂2

a + O(ε2),

where in the last line we have neglected c-number contribu-
tions. Time-dependent contributions coming from the drive
through xa(t ) are retained in Ĥa,eff(t ). Equation (D14) con-
tains the state-dependent renormalization of the qubit transi-
tion frequencies coming from the self-Kerr interaction.

We now focus on the effect of the unitary e−εĜ4(t ) on
the relaxation processes. Recall that Ĝ4(t ) can be calculated
explicitly, and we provide the solution in Appendix D 2. The
relaxation processes induced by the nonlinearity can be ob-
tained by calculating the renormalized system-bath Hamilto-
nian, e−εĜ4(t )ĤsbeεĜ4(t ). This unitary acts only upon the qubit
quadrature, as

e−εĜ4(t )X̂aeεĜ4(t ) = X̂a + ε[X̂a, Ĝ4] + O(ε2). (D14)
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TABLE I. The terms of [X̂a, Ĝ4]. The left column shows each
operator entering the sum, and the right column shows its coefficient.
The explicit derivations are provided in Appendix D 2.

Operator Coefficient

â − ωaη2
a,x (−e−2itωd +e2itωa )

8(ωd+ωa )

− ωaη∗2
a,x (e2itωd −e2itωa )

8(ωd−ωa )

+ 1
8 [(η2

a,x + η∗2
a,x )e2itωa + 2|ηa,x|2 + 1]

â† c.c.

â2 − ωaηa,x (−e−itωd +e3itωa )
4(ωd+3ωa )

− ωaη∗
a,x (eitωd −e3itωa )

4(ωd−3ωa )

− ωaηa,x (e−itωd −eitωa )
4(ωd+ωa )

+ ωaη∗
a,x (eitωd −eitωa )

4(ωd−ωa )

+ 1
12 (−3eitωa + e3itωa )(ηa,x + η∗

a,x )

(â†)
2

c.c.

â†â + ωa[ηa,x (e−itωa −e−itωd )+c.c.]
2(ωd−ωa )

+ ωa[ηa,x (e−itωd −eitωa )+c.c.]
2(ωd+ωa )

+ cos(ωat )(ηa,x + η∗
a,x )

(â†)
2
â + H.c. 1

8

(â†)
3 + H.c. − 1

48

We have listed in Table I all order-ε terms arising from this
transformation.

We next express the system operator coupling to the bath in
the interaction picture with respect to the system Hamiltonian
Ĥs,eff(t ) + Ĥb as in the main text. This takes the form (a proof
of this point can be found in Appendix E)

ei
∫ t

0 dt ′Ĥs,eff (t ′ ){X̂a + ε[X̂a, Ĝ4]}e−i
∫ t

0 dt ′Ĥs,eff (t ′ )

≡
∑

j

Ĉ(ω j )e
iω j t , (D15)

where j indexes a discrete set of frequencies {ω1, ω2, . . .},
which are linear combinations of ωd, ωa. Here Ĉ(ω j ) are
operators at most linear in ε, which will enter the dissipators
of the EME, according to the prescription

Ĉ(ω j )e
iω j t → 2κ (ω j )D[Ĉ(ω j )], (D16)

where 2κ (ω j ) = S(ω j ), and S differs from the expression
provided in the main text, Eq. (9), by replacing the charge Ŷb

quadratures with the phase X̂b quadratures of the bath.
Up to the leading order in ε, this leads us to an EME (see

Appendix E):

˙̂ρa(t ) = −i[Ĥa,eff, ρ̂a(t )] +
∑

j

2κ (ω j )D[Ĉ(ω j )]ρ̂a(t ).

(D17)

In the above, the operator entering the dissipator Ĉ(ω j ) has
the following dominant contribution at the qubit frequency

ω j = ωa:

Ĉ(ωa) =
[
1 + ε

8
(1 + n̂a + 2|ηa,x|2)

]
â

+ εωd

8

(
η2

a,x

ωd − ωa
+ η∗2

a,x

ωd + ωa

)
â†

− εωd

4

(
ηa,x

ωd + ωa
+ η∗

a,x

ωd − ωa

)
â2

+ εωd

12

(
η∗

a,x

ωd + 3ωa
+ ηa,x

ωd − 3ωa

)
â†2

+ εωd

2

(
ηa,x

ωd − ωa
+ η∗

a,x

ωd + ωa

)
â†â. (D18)

We note that setting the drive to zero, amounting to ηa,x → 0,
leads to the expression found in Part I. At nonzero drive,
there exists a relaxation-induced dephasing term ∝ εηa,x, as
well as an upward excitation term ∝ εη2

a,x. Since the former
is lower order in ηa,x compared to the latter, we keep track
of dephasing terms in addition to single-photon terms for
completeness. In addition to those contributions, two-photon
transitions appear in this dissipator at the same frequency ωa.

Finally, let us note that at nonzero temperature there would
appear the Hermitian conjugate dissipator,

Ĉ(−ωa) = Ĉ(ωa)†. (D19)

Just as drive induced upward transitions in Ĉ(ωa), drive in
the presence of finite temperature will allow for downward
transitions in Ĉ(−ωa).

The contributions in (D17) are the dominant single-photon
and dephasing contributions. Additionally, there are single-
photon dissipators and dephasing dissipators, at frequencies
distinct from ωa. As above, for generality, we list all the
possible dissipators, including those at negative frequency
which vanish at zero temperature:

+ S(ωa + 2ωd)D
[
ε

ωaη
2
a,x

8(ωd + ωa)
â

]

+ S(−ωa − 2ωd)D
[
ε

ωaη
∗2
a,x

8(ωd + ωa)
â†

]

+ S(ωa − 2ωd)D
[
ε

ωaη
∗2
a,x

8(ωd − ωa)
â

]

+ S(−ωa + 2ωd)D
[
ε

ωaη
2
a,x

8(ωd − ωa)
â†

]

+ S(ωd)D
[
ε

ω2
aηa,x

−ω2
d + ω2

a

â†â

]

+ S(−ωd)D
[
ε

ω2
aη

∗
a,x

−ω2
d + ω2

a

â†â

]
. (D20)

The terms of Eq. (D20) containing â† represent drive-induced
upward transitions at zero temperature. Because dissipators
are quadratic in their argument, the terms of Eq. (D20) lead
to order-ε2 contributions in the EME [in addition to order-ε
contributions coming from Eq. (D17)].
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In addition, there appear two- and three-photon relaxation
processes, associated with collapse operators â2 and â3. For
each of these processes, the corresponding dissipator and
relaxation rate can be obtained analogously:

+S(ωd + 2ωa)D
[

ε

4

(
ωa

ωd + 3ωa
− ωa

ωd + ωa

)
ηa,xâ2

]

+ S(−ωd − 2ωa)D
[

ε

4

(
ωa

ωd+3ωa
− ωa

ωd+ωa

)
η∗

a,x(â†)2

]

× S(−ωd + 2ωa)D
[
−ε

4

(
ωa

ωd − 3ωa
− ωa

ωd − ωa

)
η∗

a,xâ2

]

× S(ωd − 2ωa)D
[

ε

4

(
− ωa

ωd − 3ωa
+ ωa

ωd − ωa

)
ηa,x(â†)2

]

+ S(3ωa)D
[
− ε

48
â3

]
+ S(−3ωa)D

[
− ε

48
(â†)3

]
. (D21)

Note that the dissipators appear in pairs of two terms, the first
of which corresponds to either a one-, two-, or three-photon
relaxation process or dephasing, while the second corresponds
to the Hermitian conjugate process at the negative transition
frequency. At zero temperature, one of the two terms vanishes
since the spectral function S(ω) ∝ �(ω), where � is the
Heaviside function (see Appendix E); i.e., it is nonzero only
for non-negative frequency. The exception occurs for resonant
situations where the drive frequency ωd and the oscillator
frequency ωa are commensurate and the spectral function is
evaluated at zero frequency, which we will generally avoid in
our numerics.

The EME for a qubit coupled to an infinite waveguide,
Eq. (D17), is specified by the dissipators in Eqs. (D18)–(D21).
Figure 6 shows results obtained from the numerical solution
of the EME. In particular, we find that as the drive power
is increased, there is an increase in the qubit relaxation rate.
The qubit relaxation rate is obtained from the EME-generated
time dependence of the qubit photon number, 〈â†â〉(t ). The
result is obtained by performing a least-squares fit of this
time dependence to the photon number of a linear oscillator
under the same conditions, with the relaxation rate κEME

a and
oscillator frequency ωEME

a as fit parameters. Figure 6 shows
that the relaxation rate of the nonlinear oscillator increases as
a function of drive power and ε. In the regime of weak drives,
we find that this increase is linear in both ε and n̄, with an
increase of a few percent when the drive strength corresponds
to a mean steady-state population of one photon in the driven
linear oscillator (see Fig. 6). The parameters chosen for the
simulation are as follows: the Q factor for the linear oscillator
is Q = 102, and a drive frequency ωd = 1.66ωa. In general,
the renormalization of the qubit relaxation rate is a rescaling
of the linear oscillator value by a factor larger than 1 which is
linearly increasing with ε and n̄. Therefore the result quoted
here is not sensitive to the order of magnitude of Q. We
assume that the bath spectrum is flat, such that the spectral
function takes the form S(ω) = 2κ for all ω.

Finally, we can derive state-dependent relaxation rates
by rederiving the EME in a Fock-state representation [for
the detailed derivation, and comparison to Eq. (D17), see

FIG. 6. Results from EME solution for a qubit coupled to an
infinite waveguide. The drive strength is represented on the hori-
zontal axis in units of n̄, which represents the steady-state mean
photon number for the case of a linear oscillator. The vertical axis
represents the relaxation rate κEME

a of the nonlinear oscillator as
a function of n̄, rescaled by the linear oscillator κa. Solving the
EME with ε = 0 amounts to simulating a driven-dissipative linear
oscillator, and the relaxation rate remains unchanged when the drive
is applied (horizontal black curve). The solid red and purple curves
show a renormalization of the nonlinear oscillator relaxation rate,
for ε = 0.2 and ε = 0.15, respectively. The dashed lines represent
an estimate of the relaxation rate obtained from the single-photon
relaxation process in Eq. (D18). This is an underestimate of the
actual relaxation rate: in fact, additional drive-induced processes in
Eqs. (D18), (D20), and (D21), among which we mention single-
photon excitation, dephasing, and multiphoton transitions, are re-
sponsible for the depletion of the first excited state and, consequently,
an enhancement of the relaxation rate.

Appendix E]:

˙̂ρa(t ) = −i[Ĥa,eff, ρ̂a(t )] +
∑
n�1

2κa,n,↓D[|n − 1〉〈n|]ρ̂a(t )

+
∑
n�1

2κa,n,↑D[|n〉〈n − 1|]ρ̂a(t )

+
∑
n�0

2κa,n,ϕD[|n〉〈n|]ρ̂a(t ), (D22)

where there is a state-dependent relaxation rate

2κa,n,↓ = n
[
1+ ε

4
(n+2|ηa,x|2)

]
S
([

1− ε

4
(n+2|ηa,x|2)

]
ωa

)
.

(D23)

Note that in deriving this form, we have averaged the effective
Hamiltonian (D14) over one period of the drive in order to
express the transition frequencies. It is remarkable to note
that after this procedure there is a symmetry between the
factor that renormalizes the qubit relaxation rate between
the states |n〉 and |n − 1〉, that is, 1 + (ε/4)(n + 2|ηa,x|2),
and the factor that renormalizes the corresponding transition
frequency, namely 1 − (ε/4)(n + 2|ηa,x|2). For single-photon
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transitions, rates and transition frequencies have equal and
opposite changes relative to the linear theory quantities.

The upward transition rate is κa,n,↑, which is quadratic in ε.
It is analogously derived from Eq. (D20) (we are considering
zero temperature and omitting all multiphoton processes for
simplicity):

2κa,n,↑ = ε2n
|ηa,x|4

64

[
S(−ωa + 2ωd)

∣∣∣∣ ωa

ωd − ωa

∣∣∣∣
2

+ S(ωa)

∣∣∣∣ 2ω2
d

ω2
d − ω2

a

∣∣∣∣
2]

. (D24)

The state-dependent dephasing rate reads

2κa,n,ϕ = ε2|ηa,x|2n2(
ω2

d − ω2
a

)2

[
ω4

dS(ωa) + ω4
aS(ωd)

]
. (D25)

Note that in the expressions of the rates above we have
dropped order-ε corrections in the argument of the spectral
function whenever those corrections would be beyond our
level of approximation.

One important conclusion drawn from this first example is
that the physics predicted by the EME depends strongly on the
properties of the spectral function in the neighborhood of the
bare qubit transition frequency, ωa. The relaxation rate (D23)
can increase or decrease with respect to κa depending on
the frequency dependence of the bath spectral function. To
better understand this, let us perform a Taylor series expansion
around ωa:

S
([

1 − ε

4
(n + 2|ηa,x|2)

]
ωa

)

= S(ωa) − ∂S

∂ω
(ωa)

εωa

4
(n + 2|ηa,x|2) + O(ε2). (D26)

Inserting this form back into (D23) and retaining up to order-ε
contributions, we arrive at

2κa,n,↓ = nS(ωa) + nε

4

[
S(ωa) − ωa

∂S

∂ω
(ωa)

]
(n + 2|ηa,x|2).

(D27)

The relaxation rate (D27) expanded to lowest order in ε illus-
trates that the correction due to nonlinearity contains contribu-
tions which are both drive dependent and drive independent.
More importantly, however, the sign of the correction of the
qubit relaxation rate depends on the details of the frequency
dependence of the spectral function in the neighborhood of
ωa, as illustrated by the factor in brackets in the second line
of (D27).

To summarize, in this section we have built a classification
of all the possible system-bath interactions induced by the
number-nonconserving terms contained in the Josephson non-
linearity, to linear order in ε. Keeping only the most relevant
contributions, corresponding to single-photon processes, we
have derived the EME for a qubit coupled to an infinite waveg-
uide, Eq. (D17). We have shown that the qubit relaxation rate
is dependent on the qubit state and on the drive power, as
shown explicitly in the Fock-state representation of the EME,
Eq. (D20).

Finally, by solving the EME numerically, we have ex-
tracted the qubit relaxation rate as a function of drive strength,

and have shown that this relaxation rate increases linearly as
a function of the anharmonicity parameter ε and the drive
strength parameter n̄.

2. First-order Schrieffer-Wolff perturbation theory

In this subsection we explicitly derive the generator Ĝ4(t )
of the unitary transformation for a driven-dissipative weakly
anharmonic qubit from Eq. (D13). The analogous problem for
the qubit coupled to a cavity is an immediate generalization of
this, but requires handling a large number of terms, for which
we have employed computer algebra.

Assume that the Hamiltonian for the driven-dissipative
qubit takes the form

Ĥs = ωaĤa − εωa

48
Ĥ4(t ),

Ĥ4(t ) = Ŝ4(t ) + N̂4(t ), (D28)

Ĥa = 1
2 (â†â + ââ†).

Note that by means of the unitary transformation introduced
in Appendix B, the time dependence due to the drive has
been placed in the quartic terms. While the expressions for
Ŝ4(t ) and N̂4(t ) will be provided below in Sec. D 3, the result
of this section holds for generic expressions. Moreover, to
model dissipation, one would add to Eq. (D28) a system-bath
coupling and a bath Hamiltonian.

We aim to find a unitary transformation generated by an
anti-Hermitian operator Ĝ4(t ), such that

e−εĜ4(t )[Hs(t ) − i∂t ]e
εĜ4(t )

= ωaĤa − εωa

48
Ŝ4(t ) − i∂t + O(ε2). (D29)

Explicitly, the unitary transformation will remove the nonsec-
ular contributions − εωa

48 N̂4(t ) in the system Floquet Hamilto-
nian Ĥs(t ) − i∂t . These contributions will reappear at a higher
order O(ε2) in the transformed Hamiltonian. The condition to
cancel the nonsecular terms determines the generator of the
unitary transformation Ĝ4(t ).

We summarize in this paragraph the main result of the sub-
section. Condition (D29) becomes equivalent to the operator-
valued differential equation in Eq. (D33), together with
the initial condition in Eq. (D34). The Ĝ4(t ) that solves
these equations is presented at the end of this subsection in
Eq. (D47), and is determined solely by N̂4(t ), in its more
explicit form in terms of harmonics at the drive frequency,
Eqs. (D35) and (D36). The remainder of this subsection
contains the derivation.

We now proceed to finding Ĝ4(t ) that cancels the nonsec-
ular terms to lowest order, i.e., satisfies condition (D29). The
transformation of Ĥs is

e−εĜ4(t )
{
ωaĤa − εωa

48
[Ŝ4(t ) + N̂4(t )]

}
eεĜ4(t )

= ωaĤa − εωa

48
Ŝ4(t ) + εωa

{
− N̂4(t )

48
+ [Ĥa, Ĝ4(t )]

}

+O(ε2). (D30)
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Under this same unitary, the energy operator transforms ac-
cording to

e−εĜ4(t )(−i∂t )e
εĜ4(t ) = −i∂t − iε ˙̂G4(t ) + O(ε2). (D31)

Collecting the transformed Hamiltonian (D30) and the trans-
formed energy operator (D31), we find that under the unitary
transformation the Floquet Hamiltonian yields

e−εĜ4(t )[Ĥs(t ) − i∂t ]e
εĜ4(t )

= ωaĤa − εωa

48
Ŝ4(t ) − i∂t

+ εωa

{
− N̂4(t )

48
+ [Ĥa, Ĝ4(t )] − i

ωa

˙̂G4(t )

}
+ O(ε2).

(D32)

Imposing the condition (D29) in the expression for the
transformed Floquet Hamiltonian (D32), we extract a first-
order linear differential equation for Ĝ4(t ):

−i ˙̂G4(t ) + [ωaĤa, Ĝ4(t )] = ωaN̂4(t )

48
. (D33)

The initial condition for Ĝ4(t ) is set such that Ĝ4(0) removes
the nonsecular terms at t = 0, N̂4(0), i.e., we require that

− N̂4(0)

48
+ [Ĥa, Ĝ4(0)] = 0, (D34)

which is an algebraic equation for Ĝ4(0). This initial condition
ensures that nonsecular terms are removed by the unitary
transformation for all t � 0.

Equation (D33) can be solved analytically. N̂4(t ) can be ex-
pressed as a sum over normal-ordered “monomials,” (â†)

m
ân,

with time-dependent coefficients

N̂4(t ) =
∑
m 
=n

n4|m,n(t )(â†)mân, (D35)

where the sum is over integer m 
= n � 0. The time depen-
dence of the coefficients of N̂4(t ) reduces to a sum over har-
monics of the drive frequency, through the complex-number
coefficients n4,m,n(t ):

n4|m,n(t ) =
∑
p∈Z

n4|m,n,peipωdt , (D36)

where Z denotes the set of integers. Let us also expand Ĝ4(t )
over the same set of normal-ordered (nonsecular) monomials

Ĝ4(t ) =
∑
m 
=n

g4|m,n(t )(â†)mân. (D37)

The operator-valued differential equation (D33) reduces to
determining the complex-valued functions of time g4|m,n(t ).
Using the identity

[Ĥa, (â†)mân] = (m − n)(â†)mân, (D38)

we may use the expanded forms for N̂4(t ), Eq. (D35), and for
Ĝ4(t ), Eq. (D37), into the operator differential equation (D33).
Collecting the coefficients term-by-term, we arrive at

(m − n)ωag4|m,n(t ) − iġ4|m,n(t ) = ωa

48
n4|m,n(t ). (D39)

The generator Ĝ4(t ) is constructed from its coefficients
g4|m,n(t ), which obey the differential equation of an oscillator
of natural frequency (m − n)ωa forced by the time-dependent
term (ωa/48)n4|m,n(t ).

First, the particular solution to the ordinary differential
equation (D39) is constructed by expanding again over the
harmonics of the drive frequency:

g(p)
4|m,n(t ) =

∑
p∈Z

g(p)
4|m,n,peipωdt . (D40)

This is an ansatz that solves (D39) provided that

g(p)
4|m,n,p = ωa

48

n4|m,n,p

(m − n)ωa + pωd
, (D41)

for all integer m 
= n � 0 and integer p.
Second, the solution to the homogeneous part of (D39),

(m − n)ωag4|m,n(t ) − iġ4|m,n(t ) = 0,

is

g(h)
4|m,n(t ) = g(h)

4|m,n(0)e−i(m−n)ωat . (D42)

The general solution to (D39) is then a linear combination of
the particular and homogeneous solutions,

g4|m,n(t ) = g(p)
4|m,n(t ) + g(h)

4|m,n(t ), (D43)

which has to obey the initial condition that derives
from (D34), namely,

g4|m,n(0) = n4|m,n(0)

48(m − n)
. (D44)

This fixes the amplitude of the homogeneous solutions to

g(h)
4|m,n(0) = n4|m,n(0)

48(m − n)
−

∑
p∈Z

ωa

48

n4|m,n,p

(m − n)ωa + pωd

=
∑

p∈Z n4|m,n,p

48(m − n)
−

∑
p∈Z

ωa

48

n4|m,n,p

(m − n)ωa + pωd

= ωa

48

∑
p∈Z

n4|m,n,p

[
1

(m − n)ωa
− 1

(m − n)ωa+pωd

]
.

(D45)

Then the solution to Eq. (D33) obeying the initial condi-
tion (D34) can be written succinctly:

Ĝ4(t ) =
∑
m 
=n

g4|m,n(t )(â†)mân,

g4|m,n(t ) = ωa

48

∑
p∈Z

{
n4|m,n,pe−i(m−n)ωat

(m − n)ωa

+ n4|m,n,p[eipωdt − e−i(m−n)ωat ]

(m − n)ωa + pωd

}
,

for m 
= n. (D46)

The coefficients n4|m,n,p are known and determine Ĝ4(t ).
We turn to their explicit expressions in the next subsection,
Appendix D 3.
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3. Qubit coupled to infinite waveguide: Explicit solution

In this section we provide the explicit solution for Ĝ4(t ) for the driven weakly anharmonic oscillator Duffing oscillator

Ĥ = Ĥs + Ĥd(t ), (D47)

with Ĥs as defined in Eq. (D29), and

Ĥd ≡ εd(−iâ + iâ†) sin(ωdt ). (D48)

The application of the displacement transformation leads to

Ĥa(t ) → Ĥa(t ) = ωaĤa − ε

48
ωaĤ4(t ), (D49)

where

Ĥ4(t ) ≡ [â + â† + xa(t )]4,

Ĥ4(t ) = Ŝ4(t ) + N̂4(t ), (D50)

xa(t ) = ηa,xe−iωdt + η∗
a,xeiωdt ,

and ηa,x is

ηa,x = εd(ωd + iκa)

ω2
a − (ωd + iκa)2

. (D51)

Explicit forms of Ŝ4(t ) and N̂4(t ) are provided in the next paragraphs.
The number-conserving terms of the Hamiltonian, Ŝ4(t ), are

Ŝ4(t ) = 6â†â†ââ + 12
[
4η2

a,x cos2(ωdt ) + 1
]
â†â + 16η4

a,x cos4(ωdt ) + 24η2
d cos2 (ωdt ) + 3

= +6â†ââ†â + 12
[
4η2

a,x cos2(ωdt ) + 1
2

]
â†â + [4η2

a,x cos2(ωdt ) + 3]2 − 6

= +6â†ââ†â + 12
[
x2

a (t ) + 1
2

]
â†â + [

x2
a (t ) + 3

]2 − 6

= +6
(
Ĥ2

a − Ĥa + 1
4

) + 12
[
x2

a (t ) + 1
2

](
Ĥa − 1

2

) + [
x2

a (t ) + 3
]2 − 6

= +6Ĥ2
a + [ − 6 + 12x2

a (t ) + 6
]
Ĥa + [

x2
a (t ) + 3

]2 − 6 − 6
[
x2

a (t ) + 1
2

] + 6
4

= +6Ĥ2
a + 12x2

a (t )Ĥa + x4
a (t ) + 6

4 . (D52)

Ŝ4(t ) is diagonal in the number basis of the qubit Hilbert space. We add it to the quadratic Hamiltonian as a correction. The
effective Hamiltonian can be expressed compactly:

Ĥa,eff = ωa

{
1 − ε

8

[
Ĥa + 2x2

a (t )
]}

Ĥa + O(ε2) = ωaĤa − εωa

16

{
Ĥa + 2x2

a (t ), Ĥa
} + O(ε2); (D53)

in the expression above, we have dropped the contribution from the time-dependent c-number term of Ŝ4(t ). There are O(ε2)
secular terms, which arise from higher-order terms in the expansion of the unitary transformation eεĜ4 . However, here we confine
ourselves to the analysis of the linear terms only.

The eigenstates and eigenenergies of Ĥs,eff can be readily obtained. The instantaneous eigenstates are exactly the eigenstates
of ωaĤa, |n〉 for any n � 0 integer. The instantaneous eigenenergies corresponding to these kets are

En(t ) = ωa

{
1 − ε

8

[(
n + 1

2

)
+ 2x2

a (t )

]}(
n + 1

2

)
+ O(ε2). (D54)

The nonsecular part of the quartic nonlinearity is

N̂4 = â4 + (â†)4 + 4[â†â3 + (â†)3â] + 4Xη(t )[â3 + (â†)3] + 12Xη(t )[â†â2 + (â†)2â]

+ 6
[
x2

a (t ) + 1
]
[â2 + (â†)2] + 4xa(t )

[
x2

a (t ) + 3
]
(â + â†). (D55)

This allows us to read off the coefficients n4|m,n(t ) of Eq. (D35) and n4|m,n,p of Eq. (D36).
We may now obtain the generator of the Schrieffer-Wolff unitary transformation, to linear order in ε, in the form

Ĝ4(t ) = [g4|4,0(t )(â†)4 + g4|0,4(t )â4] + [g4|3,1(t )(â†)3â + g4|1,3(t )â†â3] + [g4|3,0(t )(â†)3 + g4|0,3(t )â3]

+[g4|2,1(t )(â†)2â + g4|1,2(t )â†â2] + [g4|2,0(t )(â†)2 + g4|0,2(t )â2] + [g4|1,0(t )â† + g4|0,1(t )â]. (D56)

Due to the anti-Hermiticity of Ĝ4, Ĝ4(t ) = −Ĝ†
4(t ), the following conditions must hold:

g4|0,4(t ) = −g∗
4|4,0(t ), g4|1,3(t ) = −g∗

4|3,1(t ), g4|0,3(t ) = −g∗
4|3,0(t ), g4|1,2(t ) = −g∗

4|2,1(t ),

g4|0,2(t ) = −g∗
4|2,0(t ), g4|0,1(t ) = −g∗

4|1,0(t ). (D57)
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The expression of Ĝ4(t ) is determined by the time-dependent complex coefficients:

g4|4,0(t ) = 1

192
, g4|3,1(t ) = 1

24
, g4|3,0(t ) = + 1

18
ηa,xe−3itωa + ωa

48

[
4ηa,x(e−itωd − e−3itωa )

−ωd + 3ωa
+ 4ηa,x(eitωd − e−3itωa )

ωd + 3ωa

]
,

g4|2,1(t ) = +1

2
ηa,xe−itωa + ωa

48

[
12ηa,x(e−itωd − e−itωa )

−ωd + ωa
+ 12ηa,x(eitωd − e−itωa )

ωd + ωa

]
,

g4|2,0(t ) = + 1

16

{
2η2

a,xe−2itωa + 2η2
a,x + 1

} + ωa

48

[
6η2

a,x(e−2itωd − e−2itωa )

−2ωd + 2ωa
+ 6η2

a,x(e2itωd − e−2itωa )

2ωd + 2ωa

]
,

g4|1,0(t ) = + 1

12

[
6
(
1 + 2η2

a,x

)
ηa,x + 2η3

a,x

]
e−itωa + ωa

48

[
12ηa,x

(
η2

a,x + 1
)
(e−itωd − e−itωa )

−ωd + ωa
+ 12ηa,x

(
η2

a,x + 1
)
(eitωd − e−itωa )

ωd + ωa

]

+ωa

48

[
4η3

a,x(e−3itωd − e−itωa )

−3ωd + ωa
+ 4η3

a,x(e3itωd − e−itωa )

3ωd + ωa

]
. (D58)

Table I summarizes the terms entering the transformation of
the qubit quadrature, according to the equation

e−εĜ4 X̂aeεĜ4 = X̂a + ε[X̂a, Ĝ4]. (D59)

APPENDIX E: GENERAL DERIVATION OF THE
EFFECTIVE MASTER EQUATION

This section contains a general derivation of the EME, with
particular focus on the obtainment of the corrected system-
bath couplings, and the application of the Born-Markov and
secular approximations. We start with the von Neumann equa-
tion for the density matrix defined over the tensor product
Hilbert space of the system coupled to the environment:

˙̂ρs⊗b(t ) = −i[Ĥ(t ), ρ̂s⊗b(t )], (E1)

where

Ĥ(t ) = Ĥs(t ) + Ĥb + Ĥsb (E2)

is the full system Hamiltonian. We are considering the situ-
ation where a displacement transformation has already been
applied, so the drive term is absorbed in Ĥs(t ).

EMEs are obtained by performing a unitary transformation
onto the system Hamiltonian, then obtaining the corrections
that this unitary transformation induces onto the system-bath
couplings. We therefore consider the transformed density
matrix:

ρ̂ ′
s⊗b(t ) = e−Ĝ(t )ρ̂s⊗b(t )eĜ(t ), (E3)

where Ĝ(t ) is the anti-Hermitian generator of the unitary
transformation. The density matrix ρ̂ ′

s⊗b(t ) obeys the follow-
ing von Neumann equation:

˙̂ρ ′
s⊗b(t ) = −i[e−Ĝ(t )[Ĥ(t ) − i∂t ]e

Ĝ(t ), ρ̂ ′
s⊗b(t )]. (E4)

The generator Ĝ(t ) is needed to eliminate the number-
nonconserving terms in the system Hamiltonian Ĥs(t ),
amounting to condition (11) in the main text. The resulting
effective von Neumann equation is

˙̂ρ ′
s⊗b(t ) = −i[Ĥs,eff(t ) + Ĥb + Ĥsb,eff(t ), ρ̂ ′

s⊗b(t )], (E5)

where

Ĥsb,eff(t ) = Ĥsb + ε[Ĥsb, Ĝ4(t )] + O(ε2). (E6)

After transforming to the interaction picture with respect to
the effective system and bath Hamiltonian Ĥs,eff(t ) + Ĥb, and
expanding the differential equation to second order in the
perturbative system-bath coupling Ĥsb,eff(t ), in what amounts
to the Born-Markov approximation, and performing a trace
over the bath degrees of freedom, we arrive at the Redfield
equation [51,56] for the reduced density matrix ρ̂ ′

s,I (t ) =
Trb{ρ̂ ′

s⊗b,I (t )}:

˙̂ρ ′
s,I (t ) =

∫ ∞

0
ds Trb{Ĥsb,eff,I (t − s)ρ̂ ′

s,I (t )

⊗ ρ̂b(0)Ĥsb,eff,I (t ) (E7)

− Ĥsb,eff,I (t )Ĥsb,eff,I (t − s)ρ̂ ′
s,I (t )

⊗ ρ̂b(0)} + H.c., (E8)

where we have defined interaction picture operators with the
subscript I as follows:

ÔI (t ) = ei
∫ t

0 dt ′[Ĥs,eff (t ′ )+Ĥb]Ôe−i
∫ t

0 dt ′[Ĥs,eff (t ′ )+Ĥb]. (E9)

Note that the time-ordering operator is absent from this ex-
pression since the effective Hamiltonians at different times,
being diagonal in the number basis, commute. We have also
assumed that at the initial time the bath is in thermal equilib-
rium at temperature T :

ρ̂b(t ) = 1

Zb(kBT )
e−Ĥb/kBT , (E10)

where the normalization constant is the inverse partition func-
tion, such that Trbρ̂b = 1.

Next, we need to formulate the Redfield equation for our
particular problem. The first step is to simplify the expressions
for the interaction-picture operators based on our expansion
of the system Hamiltonian. To this end, we express separately
in the effective Hamiltonian the quadratic, time-independent
terms of Ŝ4, and time-dependent terms of Ŝ4, respectively, as
follows:

Ĥs,eff(t ) = Ĥ2 − εŜ4,i − εŜ4,d (t ), (E11)
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where the subscripts i and d refer to time-independent and
time-dependent contributions in Ŝ4, respectively. We note that
the time-dependent terms are quadratic in ηx and only contain
harmonics at integer multiples of the drive frequency einωdt ,
with n 
= 0, as can be easily verified by inspecting Ŝ4(t ) in
Eq. (25).

For concreteness, we provide here the expressions for
Ŝ4,d (t ) and Ŝ4,i(t ) as obtained from Eq. (25):

Ŝ4,d (t ) = λa,d (t )n̂a + λc,d (t )n̂c,
(E12)

Ŝ4,i(t ) = λa,in̂a + λc,in̂c + χacn̂an̂c + αa ˆ̄n2
a + αc ˆ̄n2

c,

with

λa,d (t ) = ω̄a

2
u2

aaη
2
x cos(2ωdt ),

λc,d (t ) = ω̄a

2
u2

acη
2
x cos(2ωdt ),

λa,i = ω̄a

8
u2

aa

[
4η2

x + u2
aa + 2u2

ac

]
,

λc,i = ω̄a

8
u2

ac

[
4η2

x + u2
ac + 2u2

aa

]
,

χac = ω̄a

4
u2

acu2
aa, αa = ω̄a

8
u4

aa, αc = ω̄a

8
u4

ac. (E13)

We may now factorize the unitary that takes us to the
interaction picture as

e−i
∫ t

0 dt ′Ĥs,eff (t ′ ) = e−i(Ĥ2−εŜ4,i )t e−i
∫ t

0 dt ′εŜ4,d (t ′ )

= [1 − ε Î4(t )]e−i(Ĥ2−εŜ4,i )t + O(ε2), (E14)

where Î4(t ) = i
∫ t

0 dt ′Ŝ4,d (t ′), and it is linear in the number
operators:

Î4(t ) = i
ω̄a

4ωd
η2

x sin(2ωdt )
(
u2

aan̂a + u2
acn̂c

)
. (E15)

Notice that in the second row of Eq. (E14) we have performed
a Taylor expansion of the second exponential. Its exponent is
Î4(t ) and it is a bounded function of time. On the other hand,
the exponent that was not expanded is linear in t and would
lead to unbounded expressions in a Taylor expansion. How-
ever, this term can be handled fully and will yield the order-ε
corrections from the Kerr theory to the eigenfrequencies of the
system Hamiltonian.

The system-bath coupling in the interaction picture be-
comes (recall that the bare cavity mode couples to the bath
via the charge quadrature, ˆ̄Yc)

Ĥsb,eff,I (t ) = Ŷb,I (t ) ⊗ ei(Ĥ2−εŜ4,i )t { ˆ̄Yc+ε[ ˆ̄Yc, Î4(t )+Ĝ4(t )]}
× e−i(Ĥ2−εŜ4,i )t , (E16)

with

Ŷb,I (t ) =
∑

k

gk (−iBke−iωkt + H.c.), (E17)

in accordance with our notations in the main text.
Our handling of the quartic terms of the Josephson nonlin-

earity has led to a renormalized system quadrature coupling to

the bath. Let us define this quadrature as

Ĉ(t ) = ˆ̄Yc + ε[ ˆ̄Yc, Î4(t ) + Ĝ4(t )]. (E18)

This is a Hermitian operator:

Ĉ(t ) = Ĉ†(t ). (E19)

We further express the interaction-picture system-bath cou-
pling of Eq. (E16) as a sum of harmonics upon decomposing
the operator Ĥ2 − εŜ4,i into its (Fock-space) eigenstates. This
amounts to

ei(Ĥ2−εŜ4,i )tĈ(t )e−i(Ĥ2−εŜ4,i )t

=
∑

n̄an̄cm̄am̄c

ei(ωn̄a n̄c −ωm̄am̄c )t |n̄an̄c〉〈n̄an̄c|Ĉ(t )|m̄am̄c〉〈m̄am̄c|

≡
∑

j

Ĉ(ω j )e
iω j t . (E20)

In the last row of Eq. (E20), we have introduced a sum
over a set of distinct frequencies {ω j}, which are obtained
from the transition frequencies ωn̄a,n̄c − ωm̄a,m̄c , plus linear
combinations of ωa, ωc, and ωd arising from the phase factors
present in Ĉ(t ). These phase factors can be traced back to the
commutator with the time-dependent generator Î4(t ) + Ĝ4(t )
in Eq. (E18). The energies ωn̄a,n̄c are the eigenvalues of the
time-independent part of the effective Hamiltonian, to wit,

ωn̄a,n̄c = n̄aωa + n̄cωc − ε
(
λa,in̄a + λc,in̄c

+χacn̄an̄c + αan̄2
a + αcn̄2

c

)
. (E21)

More explicitly, the term of the sum introduced in the last
row of Eq. (E20) indicates that Ĉ(ω j ) is the coefficient of
the harmonic eiω j t of Ĉ(t ). Note that the Hermiticity of Ĉ(t )
together with the expansion over Fock states (E20) imply that

Ĉ†(ω j ) = Ĉ(−ω j ), (E22)

and that the set of frequencies {ω j | j = 0, 1, 2, . . .} must in
fact be symmetric: i.e., for every frequency present in the set,
the negative frequency is also present in the set.

These expressions enter the system-bath Hamiltonian in
the interaction picture. From Eq. (E16), we may derive

Ĥsb,eff,I (t ) = Ŷb,I (t ) ⊗
∑

j

Ĉ(ω j )e
iω j t . (E23)

The Redfield equation (E8) becomes

˙̂ρ ′
s,I =

∫ ∞

0
dsTrb

{
Ŷb(t )Ŷb(t − s)ρb(0)

}∑
j j′

eiω j (t−s)eiω j′ t

× [Ĉ(ω j )ρ
′
s,I (t )Ĉ(ω j′ ) − Ĉ(ω j′ )Ĉ(ω j )ρ̂

′
s,I (t )] + H.c.

(E24)

To bring this into a more compact form, let us define the
unilateral power spectral density:

s(ω) =
∫ ∞

0
dτ e−iωτ Tr[(1/Zb)e−Ĥb/kBT Ŷb(τ ) Ŷb(0)]. (E25)

Assuming that the bath density matrix at the initial time t = 0
corresponds to thermal equilibrium,

ρ̂b(0) = (1/Zb)e−Ĥb/kBT , (E26)
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we simplify (E24) as follows:

˙̂ρ ′
s,I =

∑
j j′

ei(ω j+ω j′ )t s(ω j ) (E27)

× [Ĉ(ω j )ρ
′
s,I (t )Ĉ(ω j′ ) − Ĉ(ω j′ )Ĉ(ω j )ρ̂

′
s,I (t )] + H.c.

(E28)

Now let us denote

s(ω) ≡ S(ω) + iP(ω)

2
, (E29)

where both S(ω) and P(ω) are real functions of frequency.
Recall that we introduced in the main text the bilateral power
spectral density:

S(ω) =
∫ ∞

−∞
dτ e−iωτ Tr[(1/Zb)e−Ĥb/kBT Ŷb(τ ) Ŷb(0)]. (E30)

One can check the following identity:

s(ω) + s(ω)∗ = S(ω), (E31)

which follows from the Hermiticity of Xb(τ ) at all τ . We can
reexpress the master equation as follows:

˙̂ρ ′
s,I = +

∑
j j′

ei(ω j+ω j′ )t i

2
P(ω j )[Ĉ(ω j )ρ

′
s,I (t )Ĉ(ω j′ ) − Ĉ(ω j′ )

× Ĉ(ω j )ρ̂
′
s,I (t )] + H.c. +

∑
j j′

ei(ω j+ω j′ )t 1

2
S(ω j )

× [Ĉ(ω j )ρ
′
s,I (t )Ĉ(ω j′ ) − Ĉ(ω j′ )Ĉ(ω j )ρ̂

′
s,I (t )] + H.c.

= +
∑

j j′
ei(ω j+ω j′ )t i

2
P(ω j )[−Ĉ(ω j′ )Ĉ(ω j )ρ̂

′
s,I (t )

+ ρ̂ ′
s,I (t )Ĉ(ω j )

†Ĉ(ω j′ )
†] +

∑
j j′

ei(ω j+ω j′ )t 1

2
S(ω j )

× [Ĉ(ω j )ρ
′
s,I (t )Ĉ(ω j′ ) − Ĉ(ω j′ )Ĉ(ω j )ρ̂

′
s,I (t )] + H.c.

(E32)

Above, in simplifying the terms containing the imaginary
part of the spectral function, P(t ), we have removed the
terms of the form Ĉ(ω j )ρ ′

s,I (t )Ĉ(ω j′ ) by adding the Hermitian
conjugate, then renaming the summation indices ω j ↔ −ω j′ ,
by virtue of the fact that the set {ω j} is symmetric.

It is common to perform a rotating-wave approximation at
the level of Eq. (E32) which assumes that the smallest nonzero
|ω j + ω j′ | is large compared to the typical relaxation rate of
the system, and thus the contribution from terms oscillating at
this frequency averages to zero. Retaining only those terms in
Eq. (E32) which have no oscillatory phase factor,

˙̂ρ ′
s,I = +

∑
j

i

2
P(ω j )[−Ĉ(ω j )

†Ĉ(ω j )ρ̂
′
s,I (t )

+ ρ̂ ′
s,I (t )Ĉ(ω j )

†Ĉ(ω j )] +
∑

j

1

2
S(ω j )

× [Ĉ(ω j )ρ̂
′
s,I (t )Ĉ†(ω j ) − Ĉ†(ω j )Ĉ(ω j )ρ̂

′
s,I (t )] + H.c.

= −i[ĤLamb, ρ̂
′
s,I (t )] +

∑
j

S(ω j )D[Ĉ(ω j )]ρ̂
′
s,I (t ).

(E33)

We have denoted the Lamb shift Hamiltonian as

ĤLamb =
∑

j

1

2
P(ω j )Ĉ(ω j )

†Ĉ(ω j ). (E34)

Undoing the interaction-picture unitary transformation,
one arrives at a master equation in Lindblad form:

˙̂ρ ′
s(t ) = −i[Ĥs,eff(t ) + ĤLamb, ρ̂

′
s(t )]

+
∑

j

2κ (ω j )D[Ĉ(ω j )]ρ̂
′
s(t ), (E35)

where 2κ (ω) = S(ω). Equation (E35) is an EME to order ε,
within a Born-Markov approximation, as well as the rotating-
wave approximation introduced in the paragraph of Eq. (E33).
In the main text, we have neglected the Lamb shift contribu-
tion as we assume weak system-bath couplings gk . These con-
tributions can be reinstated should one require a calculation of
bath-induced corrections on the system transition frequencies.
Equation (E35) yields the state-resolved EME of Eq. (D22) in
the main text.

To obtain the more compact form of the EME, Eq. (D17),
one further approximation is in order. To make this approx-
imation, we return to the definition of Ĉ(ω j ), implicit from
Eq. (E20). The approximation that we make is that ωn̄an̄c =
n̄aωa + n̄cωc; i.e., we neglect the ε-order corrections to the
eigenenergies of the effective Hamiltonian, the second line of
Eq. (E21). Inspection of (E21) shows that these corrections
become large with increasing n̄a,c. However, this is not a
problem, because it is the transition frequencies that enter
Ĉ(ω j ). Transition frequencies will suffer minor corrections
from order-ε terms since Ĉ(t ) connects at most Fock states
whose photon numbers differ by 3. To us, this approximation
means that frequencies ω j are linear combinations of ωa and
ωc, consisting of any transition frequency of the linear system,
plus integer multiples of ωd:

{ω j | j non-negative integer}
= {d̄aωa + d̄cωc + ddωd|d̄a, d̄c, dd integers}. (E36)

The essential point here is that, in truncating the transition fre-
quencies to zeroth order in epsilon, infinitely many transitions
will occur at the same transition frequency, and consequently
the transition operators can be summed over to obtain a
single collapse or jump operator at the respective frequency.
Hence, the dissipators of the EME will contain polynomial
expressions in the creation and annihilation operators. In this
way one obtains an EME of the form of Eq. (D17) in the main
text.

We should point out that the rotating-wave approximation
(RWA) is not justified if the frequencies corresponding to
distinct transitions can come close enough to each other
(i.e., |ω j + ω j′ | is small in the expressions above without
ω j = −ω j′ ). This is the situation of the nonlinear transmon
spectrum [4], whose high-energy states form a continuum. We
therefore quote the non-RWA EME, obtained by undoing the
interaction picture of (E32), as our more general result:

˙̂ρ ′
s = −i[Ĥs,eff(t ), ρ̂ ′

s(t )] +
∑

j j′
s(ω j )e

i(ω j+ω j′ )t [Ĉ(ω j )

× ρ̂ ′
s(t )Ĉ(ω j′ ) − Ĉ(ω j′ )Ĉ(ω j )ρ̂

′
s(t )] + H.c. (E37)
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Without the RWA, the Lamb shift contribution is no longer
in commutator form as in Eq. (E33). While more exact, this
form is rather unwieldy. We have not used it for our numerics,
primarily since we expect that for weak drives the density
matrix will have nonzero weights primarily on states with

low photon number, where transition frequencies are well
separated.

We finish this section by providing expansions over bath
modes of the bath spectral function. The first step is to
evaluate the trace over the bath modes, which amounts to
calculating

Trb{Ŷb(t )Ŷb(t − s)ρb(0)} =
∑

kl

gkglTrb{(−iB̂ke−iωkt + H.c.)(−iB̂l e
−iωl (t−s) + H.c.)}

=
∑

kl

gkglδlk (1 + nk )e−iωkt eiωl (t−s) +
∑

kl

gkglδklnkeiωkt e−iωl (t−s)

=
∑

k

g2
k (1 + nk )e−iωk s +

∑
k

g2
knkeiωk s, (E38)

where we have assumed that Trb{B̂kB̂†
l } ≡ δlk (1 + nk ) and

Trb{B̂†
k B̂l} ≡ δkl nk; nk = [eωk/(kBT ) − 1]−1 is the value of the

Bose-Einstein distribution at energy ωk and temperature T .
We have assumed that anomalous bath correlation functions,
i.e., Trb{B̂kB̂l}, are all vanishing.

Expanding the bath quadrature Ŷb over the modes B̂k ,
we need the Sokhotski-Plemelj formula,

∫ ∞
0 ds e−i(ω−ω0 )s =

πδ(ω − ω0) − iP 1
ω−ω0

, where P denotes the Cauchy princi-
pal value, and we arrive at

S(ω) =
∑

k

2πg2
k[(1 + nk )δ(ω + ωk ) + nkδ(ω − ωk )],

P(ω) = P
∑

k

2g2
k

[
(1 + nk )

−1

ω + ωk
+ nk

−1

ω − ωk

]
.

(E39)

APPENDIX F: TRANSFORMATIONS OF QUBIT AND
CAVITY QUADRATURES AND FULL EXPRESSIONS

OF RESULTING DISSIPATORS

In Sec. III, we needed to calculate the effect of the unitary
transformation onto the system quadrature coupling to the
bath in order to derive the effective collapse operators entering
the EME. That is, we needed to obtain

[ ˆ̄Yc, Ĝ4(t )] = [vcaŶa + vccŶc, Ĝ4(t )] (F1)

and then to express these operators in the interaction picture
with respect to H2.

To that end, we needed to first find the operator Ĝ4(t ) that
obeyed Eq. (14), which we reproduce here:

−i ˙̂G4(t ) + [Ĥ2, Ĝ4(t )] = N̂4(t ). (F2)

This equation is solved monomial-by-monomial. It is impor-
tant to stress that the number-nonconserving terms on the
right-hand side act as forcing terms at frequencies which are
integer multiples of the drive frequency ωd, and that there is no
other time-dependent contribution apart from these. We may
write the right-hand side of (F2) as follows:

N̂4(t ) =
∑

m 
=n or p
=q

Nm,n,p,q(t )â†mânĉ†pĉq, (F3)

where the sum runs over non-negative integers, and Nm,n,p,q(t )
are periodic complex functions of time with period 2π/ωd.

Let us provide an explicit example of how the term âĉ can
appear in the dissipator at the qubit normal-mode frequency
ωa. We first go to a frame rotating at the frequencies of the
normal modes, so let ˆ̃O(t ) ≡ eiĤ2t Ô(t )e−iĤ2t , which implies
from (F2) that

−i ˆ̃G4(t ) = ˆ̃N4(t ). (F4)

The number-nonconserving terms on the right-hand side act as
forcing terms, but now, by virtue of the change of frame, they
are rotating at frequencies different from multiples of ωd:

ˆ̃N4(t ) =
∑

m 
=n or p
=q

Nm,n,p,q(t )ei(m−n)ωat+i(p−q)ωct â†mânĉ†pĉq.

(F5)

A correction of the form âĉ to the system operator coupling
to the bath comes from the following terms in N̂4(t ):

â†âĉe±iωdt , â2ĉe±iωdt , âĉ†ĉe±iωdt , âĉ2e±iωdt , (F6)

where the time-dependent phase factors can only be at the
drive frequency (and not at higher harmonics) due to power
counting (there are three operators, and one factor coming
from the displacement transformation, in the fourth-order
term of the expansion of the Josephson potential). Of the
monomials enumerated above, let us focus on

â†âĉ(η∗
x eiωdt + η∗

x e−iωdt ), (F7)

which in ˆ̃N4(t ) takes the form

â†âĉe−iωct (η∗
x eiωdt + η∗

x e−iωdt ). (F8)

We are now equipped to solve for the time-dependent coeffi-
cient of this monomial in Eq. (F4). Letting

ˆ̃G4(t ) =
∑

m 
=n or p
=q

Gm,n,p,q(t )ei(m−n)ωat+i(p−q)ωct â†mânĉ†pĉq

≡
∑

m 
=n or p
=q

G̃m,n,p,q(t )â†mânĉ†pĉq, (F9)

we find that

−i ˙̃G1,1,0,1(t ) ∝ e−iωct (η∗
x eiωdt + η∗

x e−iωdt ), (F10)
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TABLE II. Operators acting on the qubit only, resulting from the expansion of [Ŷa, Ĝ4(t )]. Explanation of the information provided by the
various columns is given in the text (Appendix F).

Hybridization Operator Phase factor Time-dependent Probes bath
Operator coefficients in N̂4(t ) with respect to Ĥ2 coefficient at frequency

â u2
aa â2 e−itωa − iω̄aη2

x (−e−2itωd +e2itωa )
8(ωd+ωa ) ωa + 2ωd, −ωa

− iω̄aη∗2
x (e2itωa −e2itωd )

8(ωa−ωd ) −ωa, ωa − 2ωd

+ iω̄a[(η2
x +η∗2

x )e2itωa +u2
aa+u2

ac+2|ηx |2]
8ωa

−ωa, +ωa

â† u2
aa â†2 eitωa c.c. − above

â2 u3
aa â†â2 e−2itωa − iω̄aη∗

x (eitωa −eitωd )
4(ωa−ωd ) ωa, 2ωa − ωd

â†â2 − iω̄aηx (−e−itωd +eitωa )
4(ωd+ωa ) 2ωa + ωd, ωa

â3 − iω̄aη∗
x (eit3ωa −eitωd )
4(3ωa−ωd ) −ωa, 2ωa − ωd

â3 − iω̄aηx (−e−itωd +eit3ωa )
4(ωd+3ωa ) 2ωa + ωd, −ωa

â†â2, â3 + iω̄a (ηx+η∗
x )(3eitωa +e3itωa )

12ωa
ωa, −ωa

â†2 u3
aa â†3, â†2â e2itωa c.c. − above

â†â u3
aa â†2â, â†â2 1 − iω̄a (η∗

x eitωd −η∗
x e−itωa +ηxeitωa −ηxe−itωd )

2(ωd+ωa ) −ωd, ωa, −ωa, ωd

â†2â, â†â2 − iω̄a (−η∗
x eitωd +η∗

x eitωa −ηxe−itωa +ηxe−itωd )
2(ωa−ωd ) −ωd,−ωa, ωa, ωd

â†2â, â†â2 + iω̄a (ηx+η∗
x )(−e−itωa +eitωa )

2ωa
ωa, −ωa

â3 u4
aa â4 e−3itωa iω̄a

16ωa
3ωa

â†3 u4
aa â†4 e3itωa c.c. −3ωa

â†ââ u4
aa â†â3 e−itωa iω̄a

8ωa
ωa

â†â†â u4
aa â†3â eitωa c.c. −ωa

where we omitted a factor coming from the normal-ordered
expansion of N̂4(t ); this is not of concern for our argument.
Now the particular solution to Eq. (F10) is of the form

G̃(p)
1,1,0,1(t ) ∝ η∗

x

ωd − ωc
e−i(ωc−ωd )t + η∗

x

ωd + ωc
e−i(ωd+ωc )t .

(F11)
There is also a solution of the homogeneous equation, which
is just G̃(h)

1,1,0,1(t ) = constant. After imposing the boundary
condition (15), we obtain:

G̃1,1,0,1(t ) = Ae−i(ωc−ωd )t + B

ωd − ωc
+ Ce−i(ωd+ωc )t + D

ωd + ωc
, (F12)

where A, . . . , D have dimensions of frequency. In order to
derive the dissipators, we reexpress the corrections to the
system quadrature, Eq. (F1), in the interaction picture with
respect to Ĥ2,

[ ˆ̃Yc(t ), ˆ̃G4(t )]. (F13)

In this expression, there will be an âĉ term coming from the â
term of the cavity bare quadrature:

[âe−iωat , G̃1,1,0,1(t )â†âĉ] = e−iωat G̃1,1,0,1(t )âĉ, (F14)

which by virtue of the above, Eq. (F12), gives the operator
âĉ times one of the three time-dependent factors: ( B

ωd−ωc
+

C
ωd+ωc

)e−iωat , A
ωd−ωc

e−i(ωa+ωc−ωd )t , or C
ωd+wc e−i(ωa+ωc+ωd )t . By

virtue of its phase factor, the first term is the one that will con-
tribute a term âĉ to the dissipator at ωa. This term can be found
in full detail on the third to last line of Eq. (F19). Importantly,

note that this contribution arises from the imposition of the
boundary condition (15).

Let us now move to the general result in which we provide
all the possible contributions together with their exact coeffi-
cients.

Due to space constraints, we list partial results in the
following three tables of this Appendix: Tables II–IV for
qubit-only, mixed, and cavity-only processes arising from
[Ŷa, Ĝ4(t )]. There are three more sets of terms arising from
the commutator with the charge operator of the cavity normal
mode [Ŷc, Ĝ4(t )]. Those can be obtained by changing indices
in the expressions as follows:

â ↔ ĉ, ωa ↔ ωc, uaa ↔ uac, ucc ↔ uca, and vca ↔ vcc,

while ω̄a remains fixed. (F15)

To order ε, the effective collapse operators can be found
by reading off the information in the tables that follow for
[Ŷa, Ĝ4(t )] (and their counterparts for the cavity quadrature,
not reproduced).

For example, in order to obtain the effective collapse
operator probing the bath at the qubit frequency ωa, the task
is to collect all the operators from

[ ˆ̄Yc, Ĝ4(t )] = [vcaŶa + vccŶc, Ĝ4(t )], (F16)

which, in the interaction picture with respect to the free
Hamiltonian Ĥ2, oscillate at the qubit frequency ωa.

In the three tables in this section, the first column indicates
the operator monomial in [Ŷa, Ĝ4(t )]. The third column indi-
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TABLE III. Correlated operators acting on both cavity and qubit, resulting from the expansion of [Ŷa, Ĝ4(t )] . Same column conventions
as for Table II apply here.

Hybridization Operator Phase factor Time-dependent Probes bath
Operator coefficients in N̂4(t ) with respect to Ĥ2 coefficient at frequency

âĉ uacu2
aa â2ĉ e−it (ωa+ωc ) − iω̄aη∗

x (eit (ωc+2ωa )−eitωd )
2(ωc−ωd+2ωa ) −ωa, ωa + ωc − ωd

uacu2
aa â2ĉ − iω̄aηx (−e−itωd +eit (ωc+2ωa ) )

2(ωc+ωd+2ωa ) ωa + ωc + ωd,−ωa

uacu2
aa â†âĉ − iω̄aη∗

x (eitωc −eitωd )
2(ωc−ωd ) ωa, ωa + ωc − ωd

uacu2
aa â†âĉ − iω̄aηx (−e−itωd +eitωc )

2(ωc+ωd ) ωa + ωc + ωd, ωa

uacu2
aa â2ĉ + iω̄aRe(ηx )eit (ωc+2ωa )

ωc+2ωa
−ωa

uacu2
aa â†âĉ + iω̄aRe(ηx )eitωc

ωc
ωa

â†ĉ† uacu2
aa â†2ĉ†, â†âĉ† eit (ωa+ωc ) c.c. − above

âĉ† uacu2
aa â2ĉ† e−it (ωa−ωc ) iω̄aη∗

x (eit (−ωc+2ωa )−eitωd )
2(ωc+ωd−2ωa ) −ωa, ωa − ωc − ωd

uacu2
aa â2ĉ† + iω̄aηx (−e−itωd +eit (−ωc+2ωa ) )

2(ωc−ωd−2ωa ) ωa − ωc + ωd,−ωa

uacu2
aa â†âĉ† − iω̄aη∗

x (−e−itωc +eitωd )
2(ωc+ωd ) ωa, ωa − ωc − ωd

uacu2
aa â†âĉ† − iω̄aηx (−e−itωc +e−itωd )

2(ωc−ωd ) ωa, ωa − ωc + ωd

uacu2
aa â2ĉ† − iω̄aRe(ηx )e−t (iωc−2iωa )

ωc−2ωa
−ωa

uacu2
aa â†âĉ† − iω̄aRe(ηx )e−itωc

ωc
ωa

â†ĉ uacu2
aa â†2ĉ, â†âĉ eit (ωa−ωc ) c.c. − above

âĉ†ĉ u2
acu2

aa â2ĉ†ĉ e−itωa iω̄a
4ωa

ωa

â†ĉ†ĉ u2
acu2

aa â†2ĉ†ĉ eitωa c.c. −ωa

ĉâ†â uacu3
aa ĉâ†2â, ĉâ†â2 e−itωc − iω̄a

2(ωa−ωc ) + iω̄auacu3
aa

2(ωc+ωa ) ωc

ĉ†â†â uacu3
aa ĉ†â†2â, ĉ†â†â2 eitωc c.c. −ωc

âĉ2 u2
acu2

aa â†âĉ2, â2ĉ2 e−it (ωa+2ωc ) iω̄a
8(ωc+ωa ) + iω̄a

8ωc
ωa + 2ωc

â†ĉ†2 u2
acu2

aa â†âĉ†2, â†2ĉ†2 eit (ωa+2ωc ) c.c. −ωa − 2ωc

âĉ†2 u2
acu2

aa â2ĉ†2, â†âĉ†2 e−it (ωa−2ωc ) − iω̄a
8ωc

− iω̄au2
acu2

aa
8(ωc−ωa ) ωa − 2ωc

â†ĉ2 u2
acu2

aa â†2ĉ2, â†âĉ2 eit (ωa−2ωc ) c.c. −ωa + 2ωc

â2ĉ uacu3
aa â3ĉ, â†â2ĉ e−it (2ωa+ωc ) iω̄a

4(ωc+3ωa ) + iω̄a
4(ωc+ωa ) 2ωa + ωc

â†2ĉ† uacu3
aa â†3ĉ†, â†2âĉ† eit (2ωa+ωc ) c.c. −2ωa − ωc

â2ĉ† uacu3
aa â3ĉ†, â†â2ĉ† e−it (2ωa−ωc ) − iω̄a

4(ωc−ωa ) − iω̄a
4(ωc−3ωa ) 2ωa − ωc

â†2ĉ uacu3
aa â†3ĉ, â†2âĉ eit (2ωa−ωc ) c.c. −2ωa + ωc

cates the operator in N̂4(t ) [or equivalently in Ĝ4(t )] which
generated this monomial via the solution to the differential
Eq. (14). Between this operator in N̂4(t ) and the “hybridiza-
tion coefficient” in the preceding second column there is a
one-to-one correspondence coming from counting the powers
of the creation and annihilation operators for each of the two
bosons: â, ĉ. For example, the operator â2 has coefficient
u2

aa in Table II, the operator âĉ has hybridization coefficient
uaauac in Table III, etc. The first index on each hybridization
coefficient is a since we are concerned with the lowest-order
effect of the unitary operation to the qubit (i.e., mode â)
dressed quadrature, through the quantity [Ŷa, Ĝ4] (we remind
the reader that not shown are the three tables for [Ŷc, Ĝ4(t )]
where the first index on the hybridization coefficients would
be c). The fifth column contains the time-dependent coeffi-

cient of the operator in the first column within the normal-
ordered expansion of [Ŷa, Ĝ4(t )], apart from the hybridization
coefficient. This time dependence arises from solving Eq. (14)
monomial-by-monomial.

To summarize, all terms in [Ŷa, Ĝ4(t )] can be extracted
from the tables as follows:

[Ŷa, Ĝ4(t )] =
∑
rows

(operator) × (hybridization coefficients)

×(time-dependent coefficient), (F17)

where the sum goes over all rows of the three tables presented
here.

In order to work out the frequency at which the bath
is probed, one needs to multiply the “time-dependent
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TABLE IV. Operators acting on the cavity only, resulting from the expansion of [Ŷa, Ĝ4(t )]. Same column conventions as for Table II apply
here.

Hybridization Operator Phase factor Time-dependent Probes bath
Operator coefficients in N̂4(t ) with respect to Ĥ2 coefficient at frequency

ĉ uaauac â†ĉ e−itωc − iω̄aη2
x (−e−it2ωd +eit (−ωa+ωc ) )

4(−ωa+2ωd+ωc ) ωc + 2ωd, ωa

â†ĉ − iω̄aη∗2
x (eit (−ωa+ωc )−e2itωd )
4(−ωa−2ωd+ωc ) ωa, ωc − 2ωd

â†ĉ + iω̄a[2Re(η2
x )eit (−ωa+ωc )+u2

aa+u2
ac+2|ηx |2]

4(ωc−ωa ) ωa, ωc

âĉ + iω̄a[2Re(η2
x )eit (ωa+ωc )+u2

aa+u2
ac+2|ηx |2]

4(ωa+ωc ) −ωa, ωc

âĉ − iω̄aη2
x (−e−it2ωd +eit (ωa+ωc ) )

4(ωa+2ωd+ωc ) ωc + 2ωd, −ωa

âĉ − iω̄aη∗2
x (eit (ωa+ωc )−e2itωd )
4(ωa−2ωd+ωc ) −ωa, ωc − 2ωd

ĉ† uaauac ĉ†â, ĉ†â† eitωc c.c. − above

ĉ2 uaau2
ac â†ĉ2 e−2itωc − iω̄aη∗

x (eit (−ωa+2ωc )−eitωd )
4(−ωa−ωd+2ωc ) ωa, 2ωc − ωd

âĉ2 − iω̄aη∗
x (eit (ωa+2ωc )−eitωd )
4(ωa−ωd+2ωc ) −ωa, 2ωc − ωd

â†ĉ2 + iω̄aηx (−eit (2ωc−ωa )+e−itωd )
4(−ωa+ωd+2ωc ) ωa, 2ωc + ωd

âĉ2 − iω̄aηx (−e−itωd +eit (ωa+2ωc ) )
4(ωa+ωd+2ωc ) 2ωc + ωd, −ωa

â†ĉ2 + iω̄aRe(ηx )eit (2ωc−ωa )

2(2ωc−ωa ) ωa

âĉ2 + iω̄aRe(ηx )eit (ωa+2ωc )

2(ωa+2ωc ) −ωa

ĉ†2 uaau2
ac ĉ†2â†, ĉ†2â e2itωc c.c. − above

ĉ†ĉ uaau2
ac â†ĉ†ĉ, âĉ†ĉ 1 − iω̄a (+η∗

x eitωd −η∗
x e−itωa +ηxeitωa −ηxe−itωd )
8(ωa+ωd ) −ωd, ωa, −ωa, ωd

â†ĉ†ĉ, âĉ†ĉ − iω̄a (−η∗
x eitωd +η∗

x eitωa −ηxe−itωa +ηxe−itωd )
8(ωa−ωd ) −ωd,−ωa, ωa, ωd

â†ĉ†ĉ, âĉ†ĉ + iω̄aRe(ηx )e−itωa (−1+e2itωa )
4ωa

ωa, −ωa

ĉ3 uaau3
ac âĉ3, â†ĉ3 e−3itωc iω̄a

12(ωa+3ωc ) + iω̄a
12(3ωc−ωa ) 3ωc

ĉ†3 uaau3
ac âĉ†3, â†ĉ†3 e3itωc c.c. − above

ĉ†ĉ2 uaau3
ac âĉ†ĉ2, â†ĉ†ĉ2 e−itωc iω̄a

4(ωa+ωc ) + iω̄a
4(ωc−ωa ) ωc

ĉ†2ĉ uaau3
ac âĉ†2ĉ, â†ĉ†2ĉ eitωc c.c. − above

coefficient” by the “phase factor” in the preceding fourth
column, corresponding to evolution with respect to the free
Hamiltonian Ĥ2. This results in the sixth and last column,
which enumerates the frequencies at which the bath is probed.
To obtain a dissipator at a given frequency, say ωa, one
begins with the last column, collects operators that probe the

bath at that frequency, and multiplies the operator by the
coefficient in the sixth column (omitting the phase factor)
and by the corresponding hybridization coefficient (second
column). To summarize these steps in an equation, let us
take the correction coming from the qubit part of the cavity
quadrature in Eq. (18):

ei
∫ t

0 dt ′Ĥs,eff (t ′ ){[Ŷa, Ĝ4]}e−i
∫ t

0 dt ′Ĥs,eff (t ′ ) ≈ eiĤ2t {[Ŷa, Ĝ4]}e−iĤ2t

=
∑
rows

(operator) × (hybridization coefficients) × (phase factor with respect to Ĥ2)

× (time-dependent coefficient). (F18)

Collecting all operator monomials that have phase factors e−iωat allows us to construct the effective dissipator probing the bath
at the qubit normal-mode frequency. Reminding ourselves to collect all contributions from [Ŷc, Ĝ4(t )], via the transformations
listed in (F15), we may reassemble the full corrected bare cavity quadrature according to Eq. (F1). The resulting operator entering
the dissipator that probes the bath at ωa is

Ĉ(ωa) = −i

[
vca − ε

8

(
ω̄a

ωa
vcau2

aa − 4
ω̄aωa

ω2
c − ω2

a

vccuacuaa

)(
u2

aa + u2
ac + u2

aan̂a + 2u2
acn̂c + 2|ηx|2

)]
â

− i
ε

8

ω̄aωd

ωa
vcau2

aa

[
η2

x

ωd + ωa
+ η∗2

x

ωd − ωa

]
â† + iε

2

ω̄aωd

ωc − ωa
vcauaauac

[
η2

x

2ωd + (ωc − ωa)
+ η∗2

x

2ωd − (ωc − ωa)

]
ĉ
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− iε

2

ω̄aωd

ωc + ωa
vcauaauac

[
η∗2

x

2ωd + (ωc + ωa)
+ η2

x

2ωd − (ωc + ωa)

]
ĉ†

− i
ε

2

ω̄aωd

ωa
vcau3

aa

[
η∗

x

ωd + ωa
+ ηx

ωd − ωa

]
n̂a − i

ε

8

ω̄aωd

ωa
vcauaau2

ac

[
η∗

x

ωd + ωa
+ ηx

ωd − ωa

]
n̂c

+ i
ε

4

ω̄aωd

ωa
vcau3

aa

[
η∗

x

ωd − ωa
+ ηx

ωd + ωa

]
â2 − i

ε

4

ω̄aωd

3ωa
vcau3

aa

[
ηx

ωd − 3ωa
+ η∗

x

ωd + 3ωa

]
â†2 + i

ε

4

ω̄aωd

2ωc − ωa
vcauaau2

ac

×
[

ηx

ωd + (2ωc − ωa)
+ η∗

x

ωd − (2ωc − ωa)

]
ĉ2 − i

ε

4

ω̄aωd

2ωc + ωa
vcauaau2

ac

[
η∗

x

ωd + (2ωc + ωa)
+ ηx

ωd − (2ωc + ωa)

]
ĉ†2

+ iε

2

ω̄aωd

ωc
vcauacu2

aa

[
η∗

x

ωd − ωc
+ ηx

ωd + ωc

]
âĉ − iε

2

ω̄aωd

ωc
vcauacu2

aa

[
ηx

ωd − ωc
+ η∗

x

ωd + ωc

]
âĉ†

+ iε

2

ω̄aωd

ωc − 2ωa
vcauacu2

aa

[
ηx

ωd + (ωc − 2ωa)
+ η∗

x

ωd − (ωc − 2ωa)

]
â†ĉ

− iε

2

ω̄aωd

ωc + 2ωa
vcauacu2

aa

[
η∗

x

ωd + (ωc + 2ωa)
+ ηx

ωd − (ωc + 2ωa)

]
â†ĉ†. (F19)

One can determine the effective collapse operator for the cavity normal mode, Ĉ(ωc), by making the replacements (F15). We
note that there are other single-photon contributions resulting in dissipators at frequencies different from ωc and ωa. Nonetheless,
these contributions are order ε2 in the EME, and we therefore neglect them.
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