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Radiative properties of an artificial atom coupled to a Josephson-junction array
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We study the radiative properties—the Lamb shift, Purcell decay rate, and spontaneous emission dynamics—
of an artificial atom coupled to a long, multimode cavity formed by an array of Josephson junctions. Introducing
a tunable coupling element between the atom and the array, we demonstrate that such a system can exhibit
a crossover from a perturbative to a nonperturbative regime of light-matter interaction as one strengthens the
coupling between the atom and the Josephson-junction array. As a consequence, the concept of spontaneous
emission as the occupation of the local atomic site being governed by a single complex-valued exponent breaks
down. This breakdown, we show, can be interpreted in terms of formation of hybrid atom-resonator modes with
radiative losses that are nontrivially related to the effective coupling between individual modes. We develop
a singular function expansion approach for the description of the open quantum system dynamics in such a
multimode nonperturbative regime. This modal framework generalizes the normal-mode description of quantum
fields in a finite volume, incorporating exact radiative losses and incident quantum noise at the delimiting surface.
Our results are pertinent to recent experiments with Josephson atoms coupled to high-impedance Josephson-

junction arrays.
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I. INTRODUCTION

Progress in the fabrication and control of superconducting
devices has provided a renewed impetus to reexamine some
of the foundational problems of quantum electrodynamics
(QED) [1] in the context of material systems. Research in the
last two decades has spawned profound questions about ra-
diative corrections and the issue of the correct gauge-invariant
description of the dynamics of artificial atoms in solid-state
electromagnetic media. These questions are fueled in part
by engineered superconducting electrodynamical systems that
feature some of the strongest interactions between light and
matter ever achieved in the laboratory [2,3], opening up ex-
citing possibilities for applications in quantum information
processing [4—7] while radically modifying various quantum
optical phenomena, e.g., Purcell effect [8], Dicke physics [9],
and ground-state properties of atoms and the vacuum field
[4,10-12].

In formulating a dynamical description of quantum elec-
trodynamical systems, one must address the question of an
appropriate basis of normal modes to express the problem
efficiently. In quantum optics and more specifically in cavity
QED (CQED), one generally operates under the presumption
that cavity normal modes have an existence that is inde-
pendent of the atomic system they are coupled to [13]. In
atomic cavity QED systems the characteristic weakness of
light-matter interaction means this is generally a good starting
point, as the hybridization of the atomic and cavity modes is
weak except in a small spectral band. In that band the full
quantum description of the atom coupled to one or few normal
modes of the bare cavity is sufficient to capture the atomic dy-
namics accurately [14]. Superconducting cavity QED systems
have brought forth conditions, however, where the atom-field
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hybridization can be substantial and give rise to significant
renormalization of the atomic dynamics. It was therefore un-
derstood within the circuit QED (cQED) framework that such
hybridization has to be accurately captured, and appropriate
theoretical and computational methods developed to do so
[15-17].

Recent experiments have shown that an artificial atom
embedded in a high-impedance Josephson metamaterial pro-
vides a setting where the strength of the coupling between
the artificial atom and its environment can no longer be
described via perturbation theory [18,19]. Such Josephson-
junction arrays (JJAs) exhibit an array of interesting physical
phenomena ranging from quantum phase transitions between
a superconducting and insulating phase persisting at zero
temperature [20] to synchronization [21], and implementing
low-loss large impedances that can be comparable to the
resistance quantum [18,19,22-24]. It has been experimen-
tally observed that such high-impedance environments can
sustain large zero-point flux fluctuations, thereby resulting
in enhanced vacuum-induced Lamb shifts and spontaneous
emission for artificial atoms coupled to JJAs [18,19]. In this
paper we examine the radiative corrections and open quan-
tum system dynamics of an artificial atom coupled to such
a high-impedance JJA, with a view to address a subset of
the aforementioned issues. We consider a variable LC coupler
between the atom and the JJA that allows one to tune between
different regimes of coupling strength and hybridization. We
demonstrate that in a particular regime that we refer to here
as “nonperturbative” (in atom-cavity coupling), one can no
longer identify an eigenmode of the total system that is lo-
calized either (1) spatially close to the atomic position or (2)
spectrally close to the bare atomic frequency. We analyze the

©2022 American Physical Society
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FIG. 1. Schematic circuit for an artificial atom coupled to a JJA. The JJA is modeled as N parallel LC circuits with inductance L and
capacitance C coupled to each other in series. Each node is connected to the ground via a capacitance C,. The waveguide is coupled to the
JJA via a coupling capacitance C,, and is described as a lumped element transmission line with inductance Ly and ground capacitance Cy .
The first element of the JJA has an inductance and capacitance value {Ly, Cy} that can be different from the rest of the array. The parameter
values assumed throughout all the calculations are (unless specified otherwise) N = 1000, L = 1 nH, C = 150 fF, C, = 0.1 fF, C. = 100 fF.
The atomic charging energy is assumed to be E2 /i = 2 x 15 GHz. The capacitance and inductance values of the coupler are assumed to be
Ly = L/x and Cy = xC, where the coupling parameter x can be varied. The transmission line is assumed to have an impedance of Zy = 50 Q.

radiative properties of the atom using non-Hermitian eigen-
modes of the finite system that bridge the perturbative and
nonperturbative regimes and provide an interpretable unified
description. We compare our results with those from second-
order perturbation theory, demonstrating a marked deviation
of the obtained radiative corrections as the atom-JJA coupling
strength is increased. The technical machinery to enable this
dynamical description is based on the extension of the singular
function expansion method to an open quantum system de-
scription. Furthermore, such an approach allows one to derive
the dynamics of the system in a multimode nonperturbative
regime.

The rest of this paper is organized as follows. Section IT A
describes the model of the system in consideration, detailing
the circuit Lagrangian and parameters. Section II B discusses
the equations of motion of the linear system, and a descrip-
tion of the open system dynamics in a reduced subspace. In
Sec. II C we describe the singular function expansion method
that we use to determine the radiative properties and open
system dynamics of the system. Section III discusses the
effective Hamiltonian for the closed artificial atom+JJA sys-
tem, defining the characteristic coupling strengths between the
atomic and the JJA modes. Section IV details the radiative
properties of the artificial atom, comparing the atomic Lamb
shifts and Purcell decay obtained via the modal analysis with
those obtained via second-order perturbation theory. The dy-
namics of the open system is illustrated in Sec. V, particularly
considering the case of an initially excited atom. We present
our conclusions and outlook in Sec. VI.

II. MODEL
A. Lagrangian

Let us consider the system of an artificial atom coupled to
a JJA (with N = 1000 junctions), which is in turn coupled to
an infinite 50-Q transmission line, as shown in Fig. 1. The
atom is modeled as a Josephson junction with a Josephson
energy E4, shunted by a capacitance with a charging en-
ergy EA = ¢?/(2Cy). In practice, the difference between the

artificial atom junction and the individual junctions of the JJA
resides in their junction areas, chosen such that the atomic
junction has a much stronger anharmonicity.

The JJA is constructed using N nominally identical compo-
nent circuits coupled in series; each circuit has a capacitance
C, with an anharmonicity engineered to be substantially
weaker than the artificial atom, allowing it to be treated as
a linear inductor to lowest order. A distinct coupling ele-
ment, realized as a parallel LC circuit with inductance and
capacitance {Lg, Cp}, connects the first element of the chain
to the artificial atom, allowing for the possibility of having a
weak or a strong coupling between the atom and the JJA. The
waveguide is modeled as a lumped-element transmission line
with inductance Ly and a ground capacitance Cy .

The total system is described by the Lagrangian

L =L+ Lya + La—yia + Lya-w + Lw, )]
where
Lo, 1,
La :ECA(DA - ECDA — Up(Py) 2

stands for the bare atomic Lagrangian with ®, as the flux
across the atom. Here U4 (Py4) is the explicitly nonlinear part
of the Josephson potential.

The bare JJA Lagrangian is given by

1 . 1
Lia = 5(C + C)d7 — Zcp%

=

-1

+ 1(2C+C)<i>2 1c1>2
2 8 n L n

n=2
1 - I,
+ E(C + Cy) Py — ZQN
—1 1
— Z [chncbn+1 - Zq)nq)n+l:|a (3)

n=1

where ®,, corresponds to the (nodal) flux at the nth node of the
JJA measured with respect to the ground, as shown in Fig. 1.
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The impedance of the array can be obtained by succes-
sively adding together the impedances of each unit of the JJA
as shown in Appendix A. In particular, we consider a JJA with
N = 1000 junctions in our calculations. As a figure of merit
for describing high-impedance JJAs, often the impedance of
an infinite JJA (with the same parameters per unit length as
the finite JJA) is used [18,19,23], which is given by

Zoo ® \JZ1cZy, 4)
where Zjc = % corresponds to the impedance of the

individual LC-oscillator units of the JJA and Z, = 1/(iwCy)
corresponds to the impedance of the capacitance to the
ground, with Q) = 1/+/LC as the plasma frequency [25].
We note that for frequencies much lower than the cutoff fre-
quency for the individual LC oscillators (v < €2p) the array
impedance can be approximated as Z,, ~ /L/C, ~ 3.16 k<2,

and for higher frequencies (@ > Q) Zoo X i/1/ (wZCCg) ~
i(%)&lé k€2, for the chosen set of parameter values as de-
tailed in the caption of Fig. 1. Experimental systems with
such large impedances comparable to the resistance quantum
(Rp =~ 6.15 k2) have been instrumental in exploring quantum
many-body effects (Z =~ 1.8 k) [18], superconducting-
insulator phase transitions (Z,, ~ 0.7-19 k) [23], and
“superstrong” coupling regimes wherein the atom-field cou-
pling strength can be comparable to the mode spacing of the
environment (Z,, ~ 5-10 k€2) [19,26].

The interaction between the atom and the JJA has both
capacitive and inductive contributions, and is given by the
Lagrangian:

L. o, 1 ,
La_ga = =Co(Dy — @ — —(Py — D)~ 5
A-NA = 5 0(Pa 1) 2L0( A 1) @)

In addition to explicit coupling contributions that arise as
cross terms, the form of the coupling leads to a renormal-
ization of the atom and JJA parameters. To parametrize the
coupling strength, we introduce the dimensionless coupling
parameter x such that

Ly=L/x and Gy = xC, (6)

such that the plasma frequency for the coupling circuit is
equivalent to that of the rest of the chain. Particularly, we note

J

that a value of x = 1 corresponds to the case of an artificial
atom galvanically coupled to a high-impedance JJA, similar
to the experimental setups in [18,19]. As we will demonstrate,
the strength of the coupling and hybridization between atomic
and JJA modes is determined by y, changing which allows us
to observe a crossover from a perturbative to a nonperturbative
regime.

The Lagrangians Ly and L —w correspond to the waveg-
uide and the JJA-waveguide coupling, respectively, and are
defined as

g . 1
Lw=) §CW(‘DEJ)2 - E(q)nw ) )
n=0
1 . .
Lanw =5Ce(P ). ®)

The coupling to an external waveguide renders the atom-+JJA
system open, leading to radiative losses.

B. Equations of motion

While the inclusion of the nonlinear Josephson potential
U4 (D, ) ultimately enables the realization of an artificial atom,
a number of important physical parameters of the joint sys-
tem are already set at the linear level. These include strong
hybridization effects renormalizing the frequency and dissi-
pation rates of atomic and JJA modes. Understanding these
linear effects is crucial to the definition of an appropriate
set of normal modes that can form the basis for describing
the nonlinear quantum dynamics. We thus consider the linear
chain by dropping at the first stage the nonlinear potential
Us (D) from the bare artificial atom Lagrangian, Eq. (2),
hence considering the Josephson potential to linear order. We
will later reintroduce the nonlinearity through perturbation
theory in Sec. V.

The total Lagrangian for the linear system can be expressed
in a matrix representation as follows:

—1

Etot = %‘i)z;[étotd)tot - %‘I)tTmitot (I)totv (9)

where @ = {Dy, Oy, ..., Dy, ..., Cbg‘/, ...} represents the
flux variables for the_various _nodes, and the capacitance and
inductance matrices Cy and L are given by

oW [[Ca+Ch ~Co ) o 0 0

‘ -C, (R —C 0 0 0 0
0 —-C Cy +2C 0 0 0 0
; : : : : ; ; ' Caa

Ciot = 0 0 0 Cy +2C - 0 0 ,
0o | 0 0 —C ([TFReEnen -C. 0
0 0 0 —C. O @
0 0 0 0 0 Gy
(10)
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1/L,{ w} ~1/Lo ] 0

—1/Ly (1I/L+1/Lo)-1/L 0 0 0
0 ~1/L  2/L 0 0 0
: 5 : : : : | 1 Laa

Lot = 0 0 0 2/L —1/L| 0 0 .. A

0 0 0 ~1/L 1/L] 0 0
0 0 0 0 |0 1Lw -1/Lw
0 0 0 0 0 -1/Lw 2/Lw

As indicated in the above matrices, the atom (orange, top left)
and JJA (green, middle) subspaces are coupled capacitively
and inductively via Cy and 1/Ly, respectively (the blue sec-
tor, overlapping atom, and JJA subspaces). The waveguide
(shown in yellow, bottom right) is coupled only capacitively to
the JJA

Additionally, as discussed earlier, these terms lead to on-
site contributions that renormalize the physically coupled
elements of the atom and JJA sectors, respectively. For ex-
ample, the “bare” atomic frequency is renormalized to o), =

e Where Ly = (7 + )7 and C; = (Ga + Co).

We define the total Hamiltonian for the system via the stan-
dard Legendre transformation as Hy = (Zk deJk) — Lot
where the conjugate momenta to the node flux variables are
given by Q, = ‘Ssij"‘, for the total Lagrangian L [Eq. (9)].
We next promote”the flux and charge variables to quan-
tum operators, satisfying the canonical commutation relation
(& j» 0 7] = ihd; y. The quantized Hamiltonian can then be

written as
A =—1 A A =—1 4
1 AT 1 &T
Htot = EQtotCtot Qtot + §q>t0tl‘lot q’tob (12)

The Heisenberg equations of motion for the flux and charge
dynamical variables are

d . =—1 A

E‘Dlot =Ct01 Qlot, (13)
d ——1,
ZQlot = - L[m <I>101~ (14)

Formally, the Heisenberg equations of motion include a dis-
crete but infinite set of equations for the waveguide nodes
coupled to the atom+JJA system. While the output waveguide
is itself a multimode transmission line, its primary role is to

(

serve as a uniform environment allowing observers to direct
inputs to, and extract outputs from, the system of interest.
An analysis of the waveguide field in terms of incoming and
outgoing modes with respect to the resonator (defined as —
and +, respectively) allows the separation of the incoming
noise component of the waveguide modes from the outgoing
component carrying information about the atom and the res-
onator. We show in Appendix B I that it is then possible to
place a transparent boundary after the first waveguide node.
The remaining finite set of equations for the atom-+JJA-first
waveguide node (the latter denoted here by index zero) in-
cludes then a dissipation and noise term, given by

d N =—1 A
%‘I’red = Cred[ZOQred]a (15)

d A =1, Zo= =-1_ &
d_f[ZOQred] = _Lred (I)red - Z_5N+2Cred [ZOQred]
w

Dissipation

2 N
+ Q_[ZOQin(t)](sN-&-L (16)
0

— ——
Noise

where we have defined Zy=./L/C, 0= 1/VLC,
f=Qo, and the reduced . subspace vectors <i>red =
(@4, D1, ..., Dy, DY} and Quea = {04, 01, ....0n. OF)
that encompass the atom-+JJA+first waveguide node. The
second and third terms in the equation of motion for the charge
variables indicate dissipation and noise due to coupling to the
waveguide, with 8y = {0,0, ..., 1}, Sn42 = 85, ,8v+2, and
Oin(7) representing the input noise at the zeroth waveguide
node (see Appendix B for details). The dimensionless
capacitance and inductance matrices in the reduced subspace
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are defined as

Ca T Co G ) O 0 0
’ —Cy [Cq+C+Co] —C 0 0 )
0 e Cy+2C 0
Crea = é : : : : (17)
0 C, +2C ¢ 0
L - Cy+C+C.)] —-C,
0 -C, C. + Cw
1/La+1/Lo) —1/Lgo ] 0 0
‘ —1/L, (=TT 0 )
0 ~1/L  2/L
L=L SRR (18)
o - 2/L -1/L
| 0 ~1/L 1/L)
0 0 0

We remark that such an approach for eliminating the
environmental modes to describe the dynamics of an open
quantum system does not require one to take into account the
full Hilbert space of the bath. The effects of the system-bath
interaction are captured in terms of the appropriate effective
dissipation and noise terms at the boundary node, thereby
reducing the computational resources needed for a numerical
solution significantly.

C. Singular function expansion

We now turn to describing the open quantum system dy-
namics in terms of a singular function expansion [27-29] of
the propagator for the system dynamics. The equations of
motion Egs. (15) and (16) can be solved by taking a Laplace
transform to obtain the linear dynamics of node flux variables
as (see Appendix C for details of the derivation)

= ~ 1 i <7 = A
b =5 / 37 GEYE) (19

ioo
where the superscript (0) denotes the linear dynamics of the
system and

= = Z = T

G(3) = I:Szcred + ZSSN+2 + Lred] (20)
corresponds to the propagator for the open system dynamics.
The initial conditions and the input noise from the waveguide
are represented by the operator

~ = Zy = N A
YE) =[50 + 5542 Brea 0) + ZoQuea (0)
w

+ 2[ZoQin (5)18n 42+ (21)

(

with 0;,(3) = fooo di e~ O, (f), the Laplace transform of the
input quantum field at the first waveguide node.'

We next decompose the propagator using a singular func-

=—1 — - = -
tion expansion as G (5) = a(3)y (3)B(5), where y(3) is a
diagonal matrix with y;;(5) as the singular values of the prop-
agator and @(3) and [B(3)]” as orthogonal matrices.

We express the quantized flux field of the system as
Qﬁgg(f) = Zp e”“’l”?,,, where @, = —i5, is a set of gener-
ally complex-valued poles of the system propagator (=}(§p) =
0. The poles and the associated set of system eigenmodes
7 p» are determined by the generalized, quadratic eigenvalue
problem

[a);cmd - i@pZZ—°5N+2 - Lm'i]ﬁ,, -0.
w

The transient quantum dynamics of the linear problem (e.g.,
the spontaneous emission dynamics) is encoded entirely in
the eigenmodes and complex eigenfrequencies obtained by
solving Eq. (22). This approach makes no assumptions on the
strength of coupling between the atom and JJA sectors, and
is thus expected to be valid across regimes of varying atom-
field coupling strengths. As a consequence, there is no formal
distinction between the JJA modes and the atomic mode;
the obtained eigenmodes @ » are not necessarily restricted to
either atom or JJA sectors.

'For a coherently driven resonator, the spectral form of the input
field Qi) = >, 38%"4 + Oin(5) is analytic except at a discrete
set of real poles wq, corrensponding to the frequencies of the driving
field, with Qq, as complex-valued scalars.
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Considering the transient oscillations in an initially excited
system (which for cavitylike modes is referred to as ringdown
and for the qubitlike mode is referred to as spontaneous emis-
sion) we obtain the dynamics of the flux at node j as

ROED PRGN ACH (23)
P.q
where
By Lo
Npg(3p) = () BinGpla, y(3p), (24)
85

with @(5,) and B (5p) representing the singular vectors evalu-
ated at the poles 3,(= i@,) of the propagator evaluated using
Eq. (22).

Substituting Eq. (23) in Eq. (15), we obtain the linear
dynamics of the charge variables as follows:

200 ;) =) €7 5,0 Gp)Yy(5p), (29)
P9
where
~ o1 PN
I HEDY spwcmd, By Gy L(5,).  (26)
r 85

Thus, the linear dynamics of the open atom+JJA system is
described exactly by Egs. (23) and (25). However, an often-
used perspective is to treat the artificial atom as the system of
interest and the JJA as its environment. Next, we show how
this perspective can be obtained from our approach, with the
eventual aim of comparing how perturbation theory results us-
ing the standard perspective compare to exact results obtained
using Eq. (22). The atom+JJA description typically centers
around a Hamiltonian formulation, assuming the combined
artificial atom+JJA system to be only weakly coupled to the
lossy waveguide. We will thus begin by deriving the exact
Hamiltonian of the artificial atom+JJA system.

III. HAMILTONIAN FOR THE CLOSED SYSTEM:
ATOM-JJA INTERACTION

In this section we consider the atom+JJA as a closed sys-
tem without the external coupling to the waveguide (C. —
0) to describe the interaction between the atom and the ar-
ray in terms of an effective Hamiltonian. It proves useful
to separate the flux variables into atomic and JJA sectors,
q’closed = {CDA; q)]JA}, where (I>JJA = {q)l, ey @N} Then, the
full closed system Lagrangian can be equivalently written as

1. - .
L= E‘I’JTJACJJA Djja

1, =1
- 5‘1’ 1a Lyja ®uia

1 .
+ E(CA + C())Cbi - =

L1 1Y,
L' L

2

2
A

102 ,
1007 T T e T
—~ = S 3
N / ~ N -
2 AN
~— 1 0 N o
~~ AN
[ N
a1 AN
N—r ~N
=10 N .
— k@ N
SR
Wk, JJA N
1078 t— = Awg1ia N
1
Wy .
10° 10" 10? 10°
k
(a)
102

(b)

FIG. 2. Coupling coefficients gi ¢ (solid blue) and g, o (dotted
blue), as obtained numerically from Eqs. (37) and (38), correspond-
ingto (a) x = 1 and (b) x = 107>. The bare and renormalized atomic
frequencies (w4 and ) are denoted by the dashed orange horizontal
lines for each case. The dashed-dotted curves correspond to the JJA
eigenfrequencies wy jja, and the dashed curve corresponds to the free
spectral range Awy jja. The shaded regions represent the different
coupling regimes (A), (B), and (C) denoted by the blue, green, and
yellow shaded areas, respectively. We have chosen the bare atomic
frequency to be w4 /(2m) ~ 15 GHz.

More precisely, we calculate the Euler-Lagrange equations of
motion for the JJA nodes, and obtain a generalized eigenvalue
problem for eigenmodes of the JJA introduced via ®j, =
e~ i@knat @, 51, and eigenfrequencies wy jja (real in the closed

system limit), as detailed in Appendix D:

.. 1
—CoPaP) + —Pady. (27
Lo
We use the Lagrangian of the JJA as given by the first line,
thus including on-site renormalization due to the coupling to
the artificial atom, to define an appropriate set of JJA modes.

= =—1
w;%,JJACJJA‘I’k,JJA = LyaPria, (28)

assuming C, — 0 for a closed JJA. The obtained eigenvalues
form a photonic band as shown in Fig. 2, with a band edge
at Qo/(2m) ~ 12.95 GHz [see also Fig. 9(a)]. We empha-
size here that the modes ®, jjo of the JJA are calculated by

033714-6



RADIATIVE PROPERTIES OF AN ARTIFICIAL ATOM ...

PHYSICAL REVIEW A 106, 033714 (2022)

including the coupling capacitance (Co)_and induc_tance (Lo)
between the JJA and the atom in the Cys and Ljja matri-
ces. Thus, the JJA spatial eigenmodes follow the appropriate
boundary conditions (BCs) determined self-consistently by
the strength of the coupling element (see Appendix D for
details).

Having defined the JJA modes, we will now rewrite the
total closed system Lagrangian in this basis. To this end, we
can define the vector W = {®,; @y 554} as the composite of
the bare atomic mode ¥4 and the JJA eigenmodes ®; jja.
Rewriting the closed system Lagrangian in this composite
basis, we obtain

L£=1"C¥— LWL (29)

The transformed capacitance and inductance matrices are de-

finedasC =UTCU and L~ = UTl_,_lU, where the matrix U
relates the flux vector in the spatial basis to that in the partially
diagonalized basis ®joseq = U'W.

We define the conjugate momenta corresponding to the
eigenmodes of the uncoupled JJA and atomic flux variables
as Qrna = 57)%’ and Q4 = 8%1%’ respectively. This yields
Q =CV, where Q = {Q4: Qjja}). The Hamiltonian is thus
obtained via the Legendre transformation as

H=1QCT'Q+1¥'L'w. (30)

Promoting the flux and charge variables {¥, Q} to quan-
tum observables, one can express those in terms of bosonic
operators as

hZ R R
;(A) (ak(A) + aZ(A))’ (31)

i h .
Oriaw) = i (k) — aZ(A))a (32)
k(A)

where the creation and annihilation operators corresponding
to the array modes (atom) satisfy the canonical commutation
relations [&1( Ay akay] = 1. The impedances associated with

the atom and the kth JJA mode are defined as Z4 = /L) /C}
and Z; = The renormalized atomic capacitance is
given by

Dy na@) =

1
(Ce+2C)wp A~

Cy=Cy— c, +2CZCDI<JJA(1)' (33)

This allows one to rewrite the Hamiltonian in Eq. (30) as
(see Appendix E for details)

H = hojalan + Y Ao} jadfax
k

+ higr o (@a + &)@y +a))

+ figr.o(an — &))@ — a)]

+ Y (@ — al) @ — aj)l. (34)
k£k'

We emphasize that the Hamiltonian of Eq. (34) is exact
for the closed system: there is no truncation in the number
of JJA modes retained, or any weak-coupling approximations.

We have introduced the renormalized atomic and array mode
frequencies, defined, respectively, as

—1/2
" / Cg 2
a)A :a)A|:1 — W ;®k,JJA(1):| N (35)
2 —-1/2

C
0 cb,E,JJA(l)} . (36)

vhom =onm 1+ g5

We remark that the renormalized atomic frequency w) can
be drastically different from the bare atomic frequency, as
well as the physical eigenfrequency corresponding to the
atomic mode in the nonperturbative regimes, as analyzed in
Appendix E.

The flux and charge coupling coefficients between the atom
and the JJA modes, gx ¢ and g o, are given, respectively, by

N ZAZ,
gro = — ZXA% g (D), (37)
2L
= x¢ (D). (39)
80 =T S 1 20CIZaz:

We note from the above that the coupling strength between
the atom and the JJA modes goes linearly as the coupling
parameter x. It is also pertinent to note here that the amplitude
of the JJA eigenmodes at the atomic position @y jja also varies
as one changes x:

G
4(Cy + 20V’ CiZiZy

corresponds to the strength of coupling between the k and &’
JJA modes, mediated by the atom.

We plot the coupling coefficients between the atom and the
JIA, gro and grp, in Figs. 2(a) and 2(b) for x = 1 and 107>,
respectively, with increasing x indicating stronger coupling
values [see Eq. (6)]. One can approximately identify the fol-
lowing coupling regimes as indicated by the different shaded
regions in the plots.

(A) Region A is identified by the condition

& =

D ga(DPp yia(1)  (39)

8k/ok 2 0.1, (40)

where g = max{gx o, gk,¢} is defined as the maximum of the
two coupling coefficients and w; = min{w_j;,, w}} is defined
as the minimum of the bare excitation frequencies for a given
k value. In such a regime perturbation theory does not apply
anymore and non-rotating-wave-approximation (RWA) terms
become important in describing the radiative properties and
dynamics of the atomic system. Such a regime is often re-
ferred to as the “ultrastrong” or “deep strong” coupling regime
[2,3]. However, we note that, contrary to these regimes that
rely on a single environmental mode, the coupling strength in
the present system can be greater than or comparable to the
free spectral range of the environment (g 2 Awy jja), neces-
sitating a consideration of multiple environmental modes.

(B) Region B corresponds to the case where the coupling
strength is comparable to or greater than the free spectral
range but smaller than the bare excitation frequencies of the
atomic and JJA modes:

Awgna S gk <K ax, (41)
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for a specific k value. Such a regime is also referred to as
the multimode strong coupling or the superstrong coupling
regime, wherein the atomic mode couples strongly to multiple
modes of the environment [19,26,30].

(C) Region C corresponds to the case where the coupling
strength is smaller than both the free spectral range and the
individual mode frequencies.

Our analysis indicates that a careful treatment of the cou-
pling terms, incorporating the spatial dependence of the array
modes, is necessary to model the interaction between the
artificial atom and a high-impedance resonator. The atom in
such experimental setups [18,19] generally corresponds to a
junction with a distinctly different nonlinearity than the rest
of the junctions. Thus, in practice, it is convenient to identify
the atom by its locality. However, its “coupling” to the en-
vironment must be physically defined. One approach used in
the literature to arrive at a Hamiltonian description of such a
system is to carry out an equivalent circuit analysis via the
Foster theorem to derive a Caldeira-Leggett model for the
atom-environment interaction [19,31,32]. In particular, while
performing an equivalent circuit transformation the coupling
term between the atom and the JJA must be appropriately
transformed. The resulting Caldeira-Leggett model, Eq. (34),
generally contains both a flux and a charge-coupling term,
even when a further diagonalization of the JJA sector is per-
formed to remove the & » term.

Having analyzed the closed atom-JJA interaction, we now
return to the open system description.

IV. RADIATIVE PROPERTIES OF THE ATOM

A. Complex eigenfrequencies in the linear regime

We will now consider the radiative properties of the atom,
namely, the radiative frequency shift, also known as the Lamb
shift, and the spontaneous emission decay rate, also known
as the Purcell decay rate. In calculating the exact atomic
mode eigenfrequency, we must first address the question of
how the atomic mode is identified when solving Eq. (22) for
eigenmodes that are defined over the joint atom-+JJA sys-
tem. We note that in the absence of the atom-JJA coupling,
{Co, 1/Lo} — 0, Eq. (22) becomes block diagonal, reduc-
ing to two independent eigenproblems for the separate atom
and JJA modes, respectively. The atomic mode eigenproblem
yields an eigenmode @ 4 o {1;0} that is completely localized
at the spatial index corresponding to the atom, with bare
frequency wy = ﬁ

This uncoupled regime forms the starting point for an
adiabatic procedure that allows us to track the evolution
of the atomic frequency and spatial eigenmode as the cou-
pling strength is increased to a desired nonzero value,
determined by Cy, Ly. More precisely, we consider an itera-
tive procedure {C(()”), l/L(()")} — {nCy/N,, N,/ (nLy)}, for n =
0,...,N,, yielding eigenmode 72") and complex eigenfre-
quency wi‘") for the nth step, such that ?E\O)  {1;0} and
w&o) = \/#TA At each step we identify the atomic mode as
the one that has maximum overlap with the atomic mode at
the previous step. For a sufficiently large number of steps
such that the change in the eigenmode frequency between
iteration steps is smaller than other energy scales, we obtain

-3
6 x10 I
[’:}A,in !
—~5+ B ! i
N ‘ !
Kal | o 1
St i |
~ | g1
=, | 2
37 | a *
g !
— 9L 1 b
I~
WAin i WA,out i WA out
0 & i . ! ! o*—0—
4 6 8 10 12 14 16 18

Re[w]/(27) (GHz)

FIG. 3. The change in the complex atomic frequency w, when
x =0 — x = 1. Plotted is this shift for two cases: for the bare
atomic frequency in the band w4 ;n/(2) =5 GHz (squares) and
outside the band wy ouc/(27m) =15 GHz (circles). The photonic band-
edge frequency is shown as the vertical dashed-dotted line around
Qo/(2m) ~ 12.95 GHz.

a convergence to a specific eigenmode that we identify as the
atomic mode with eigenfrequency @, and the corresponding
spatial eigenfunction ¢ 4.

One may wonder why such an adiabatic limiting procedure
is needed to identify the atomic mode. In the perturbative
limit (x « 1), the atomic mode can easily be identified by
the local nature of the associated eigenmode. Our analysis in
Sec. IV C will show that in the nonperturbative regime such
an identification is not possible. This is also the reason why in
recent experiments accessing this regime [18] the Lamb shift
could not be directly measured. Instead, it was inferred via an
indirect measurement of the splitting between various modes
in the system.

The adiabatic procedure described here is applicable to
both closed and open system cases. As shown in Fig. 3, one
can plot the atomic eigenfrequency on the complex plane as
one increases the coupling strength between the atom and the
JJA. The Lamb shift of the atom is identified as the difference
between the real part of the eigenvalue and the bare atomic
frequency for the uncoupled atom. The spontaneous emission
rate of the atom is given by the imaginary part of the complex
atomic eigenfrequency. We note that the atom here is assumed
to not be coupled to any other bath than the waveguide. It
can be seen from Fig. 3 that for the case where the bare
atomic frequency is outside the band (at x = 0), the atomic
mode incurs a substantial Lamb shift while the spontaneous
emission rate remains negligible, as a result of the lack of
density of modes.

B. Comparison with the perturbative approach

A standard approach to calculating the field-induced mod-
ification of atomic properties is via perturbation theory.
Reintroducing the Josephson potential {4 ($,) into the linear
Hamiltonian, Eq. (34), furnishes the nonlinearity necessary
to render the bare atomic spectrum anharmonic, thus al-
lowing the addressability of two individual energy levels
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FIG. 4. (a) Atomic frequency as a function of the coupling parameter x for ws/(2m) = 15 GHz. The solid curve stands for the real part
of the numerically obtained atomic eigenmode frequency Re[@,]. The dashed-dotted curve corresponds to the renormalized atomic frequency
)y [Eq. (35)], and the dashed curve represents the renormalized atomic frequency including second-order perturbative corrections as given by
Eq. (42). (b) Atomic dissipation as a function of the coupling parameter x for ws/(2mw) = 5 GHz. The solid curve denotes the numerically
obtained atomic dissipation (Im[@4]), the dash-dotted curve represents the decay obtained via the perturbative expression ey given by Eq. (43),
and the dashed curve corresponds to the perturbative decay rate 'y, obtained with considering an infinite JJA impedance. Atomic eigenmode
as a function of spatial position and coupling strength for (¢) ws/(27) = 15 GHz and (d) ws/(27) = 5 GHz.

under coherent monochromatic input. We can thus derive
the frequency shift of the atomic mode as the second-order
perturbative correction to the difference between the energies
of these lowest two states. The corrections to the ground
and first-excited states |0)4|{0}x) and |1)4]{0};) are given

2 2
by 5(1)5;22) 1 Zk (8r,0+8k, Q) and 86‘)542)1 — th (8ko—8ko)”

a) +w a)A wk A
(8r,o+8k, Q)
2h Zk OfFap s
shift to the atomlc mode as

(8ko — 8ko)*
Z o] — o) -

" D 1A

respectlvely. This yields the perturbative

(8.0 + &r.0)°
Wi + W) yya

Ao = } (42)

We remark here that the perturbation theory is performed
by segregating the total Hamiltonian Eq. (34) into Hy =
th&;&A as the unperturbed atomic Hamiltonian, and H; =
Silhigeo@n + )@ +ay) +hgeolas — &)@y — ap)] as
the perturbative correction. Figure 4(a) shows the renormal-
ized frequency with the above perturbative corrections as a
function of the coupling parameter x. It can be seen that

including the perturbative corrections brings the renormalized
frequency closer to the exact e1genrn0de frequency, and we
see an agreement between o] + Aw > and the exact normal-
mode frequency for x < 0. 05

Figure 4(c) shows the corresponding atomic eigenmode
as a function of the array position and coupling parameter
x. It can be seen that the atomic mode is localized at the
atomic position for coupling parameter xy < 0.05, at which
point we see a concomitant breakdown of perturbation theory
in Figs. 4(a) and 4(c).

The perturbative expression for the spontaneous emission
decay rate of an atom coupled to continuum is given by [33]

1 1
FCegr = R s 43
L e[zeff(wA>] @)

where Z.i (w4 ) corresponds to the effective impedance of the
environment at the atomic frequency (see Appendix A for a
detailed derivation). We remark that the effective impedance
of the environment seen by the atom is different from that of
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FIG. 5. Eigenfrequencies of the coupled atom-+JJA system as a function of the bare atomic frequency for (a) x = 1073, (b) x = 10727,
and (c) x = 1. The atomic mode frequency is denoted by the solid orange curve in each plot and the gray curves correspond to the JJA normal
modes. The atomic eigenmodes corresponding to (a)—(c) are shown in (d)—(f), respectively. The inset shows the inverse participation ratio for
the atomic mode as a function of the bare atomic frequency as determined by Eq. (44).

an infinite JJA Z,, (see Appendix A for comparison), which
yields a spontaneous emission rate of I'o, = ﬁRe[ Zoe(lwA)].
It can be seen from Fig. 4(b) that for coupling parameter
x < 107 there is an agreement between the perturbative '
and the numerically obtained atomic decay (Im[@,4]), though
for larger coupling strengths the two differ significantly. We
further note that the perturbative I', calculated with the in-
finite array impedance is appreciably different from both the
exact decay rate as well as I'ssr. Figure 4(d) shows the atomic
eigenmode for the bare atomic frequency w4 /(27) = 5 GHz.
We find that the atomic mode is mostly localized at the atomic
position for y < 10~4, and is delocalized over the entire array
for larger coupling parameters. Specifically, the atomic mode
is pinned to the spectrally closest JJA mode corresponding to
k = 4, as we will illustrate in the following subsection, and the
decay rate saturates to the loss for that array mode for large x.

C. Atomic mode in the spatial and spectral domain

As seen in the previous section, atomic properties depend
not only on the coupling parameter x but also on the atomic
frequency, and in particular whether it is within or outside
the photonic frequency band. Realizing an artificial atom in
cQED using a superconducting quantum interference device
(SQUID) loop provides the advantage of being able to tune
the atomic mode frequency in situ; we thus explore in this
section how the spatial and spectral properties of the atomic
mode vary as its bare frequency is tuned across the photonic
band.

One can observe from Figs. 5(a)-5(c) that for small cou-
pling parameter x as one tunes the bare atomic frequency
through the photonic band the atomic mode goes through a
series of avoided crossings, while for larger x the atomic
frequency appears “pinned” to those of the array. Outside the
photonic band, for small y the atomic frequency is close to
the bare atomic frequency with a negligible shift, while for
x = 1 the atomic frequency exhibits a significant Lamb shift.
Furthermore, it can be seen from Fig. 5(c) that for a galvanic
coupling (x = 1) the eigenvalues of the array modes change
as we vary the bare atomic frequency within the band [34]. For
smaller values of x [e.g., Fig. 5(a)], while the atomic mode
goes through a series of avoided crossings, there is negligible
effect of changing the atomic frequency on the eigenvalues of
the JJA.

The corresponding atomic eigenmode is shown in
Figs. 5(d)-5(f), which show the localization of the atomic
mode. To quantify the hybridization of the atomic eigenmode
with the modes of the JJA, we define the inverse participation
ratio (IPR) as a measure of atomic mode localization as [35]

IPR = > [Gaml". (44)

We see from Fig. 5(d) that for small y the atomic mode is
spatially localized at the position of the atom except at the
points of avoided crossings where it hybridizes strongly with
the near-resonant modes of the JJA. For x = 1, for the atomic
frequency within the band the atomic mode is delocalized
over the entire array, with the mode function corresponding
to the near resonant eigenmodes of the array. For the bare
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atomic frequency outside of the photonic band the atomic
mode is spatially localized at the atomic position as seen from
Fig. 5(f). The localization increases near the band edge as the
atom hybridizes with a larger number of modes close to the
edge, which can help create an effective localized mode near
the position of the atom.

Having considered the radiative properties of the atom,
we now turn to the open quantum system dynamics in the
following section.

V. SPONTANEOUS EMISSION DYNAMICS

We now consider the evolution of the number of excita-
tions at the atomic node starting with the initial state p(0) =

J

< ~(0) (l)

p.qg,m,n

[1)4(1]4a ® [{0})({0}], such that the atomic node contains one
excitation to start with and the remainder of the nodes are in
vacuum. Such an initial state can be prepared by driving the
atomic node locally via an external drive to the first excited
state and, if necessary, switching on the coupling between the
atom and the JJA quickly compared to the time scales of the
system dynamics. The number of excitations at the atomic
node at any given time is obtained as

(@O = 5571 ( )+ 2 (@)

Substituting Egs. (23) and (25) in Eq. (45), one can obtain
the dynamics of the excitation number expectation value at
the atomic node as follows (see Appendix F for details of the
derivation):

0 7))? )] @5)

Z
7 Z €(Y”+SM)lsp§mCred 4.1Cred n1 |:77p )N Sm) + ( ) pgp)im, "(Sm)i|

+ = Z e(sil-Hm)t( ) [np l(sp)nm I(Sm) + ;p l(sp)é‘m l(sm)]

ksTZ3 1
WQZpZy 4= (5, + )

with 1, , and ¢, , defined by Egs. (24) and (26). The first
two lines in the above equation represent the contribution
from initial conditions, and the last line corresponds to the
input noise from the waveguide. The indices p and m indi-
cate the sum over the various eigenmodes of the system. We
have assumed here that the system is in the high-temperature
limit, such that the noise correlation time is much smaller
compared to the characteristic system relaxation time scale
(kBiT <« T, The input noise from the transmission line can
thus be approximated to be delta correlated:

A A kgT
(0 Qin(1)Qin(2) ) — 2—5(t1 — ). (47)
Zy

We illustrate the dynamics of the number expectation value at
the atomic position for a simple system with an atom coupled
to an open resonator, as shown in Fig. 6(a), corresponding to
the N = 1 limit of the JJA. The dominant frequencies in the
dynamics as obtained via the Fourier transform of the time
domain signal are shown in Fig. 6(c). The vertical dashed lines
in Fig. 6(c) represent various beat frequencies obtained as
Im§, + Im§,, for different poles §, ,, in the system, shown in
Fig. 6(d). The eigenmodes corresponding to the various poles
are shown in Fig. 6(e).

Figure 7(a) shows the dynamics of the number expectation
value at the atomic position for different coupling coefficients
in the nonperturbative regime for a larger array with N = 100
junctions. We note from Fig. 7(b) that as the coupling strength
is increased the system decays into a steady state with an
increasingly larger number of excitations. The steady-state ex-
citation number 14 oo[x] = limgﬁoo(ﬁio)(f )) can be obtained

Z\? o
[n,,N+2(s,,>nm N+2Gn) + ( Zo) Cpn42(5p)m, N+2(sm)}( — eSS0 (46)

[
from Eq. (46) as

) 1% 1 GV 2Gn)
n N m Sm
A,00l X 20 ZnZow o G+ 5m) Np.N+2{Sp)Tm,N+2
Zi\° . -
+ Z_O ;l),N+2(Sp)§l71,N+2(Sm) . (48)

The increase in the steady-state occupation of the excitation
number at the atomic node with x can be attributed to the
fact that the number nonconserving non-RWA terms become
prominent in the nonperturbative regime.

Including atomic nonlinearity

We rewrite the equations of motion for the reduced sys-
tem subspace including the nonlinear potential for the atomic
junction, using (15) and (16), as follows:

A

=—1 A
<I)red = Cred [ZOQred]a (49)

di

d A ZO = =—1 N
d_f [ZOQred] - Lred (I)red - Z_ 5N+2Cred [ZOQred]
w

2 N 1 OUs(Dy)
—[Z00in 16 — ——= . (50
+ Q(Z)[ 00inlény2 + % ey (50)
—_——

Nonlinear source

We assume the perturbative solutions up to first order in
atomic nonlinearity to be

Brea (1) = Drgg ; () + 2Py ), (51)
Orea.j (1) = Q%) ;1) + 208, (0), (52)
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FIG. 6. (a) Schematic circuit for a toy model with an artificial
atom (A) coupled to an open single LC resonator (R) via a coupler
(C). The resonator is in turn coupled to a transmission line (W).
(b) Dynamics of expected number of excitations at the atomic node
for couplings x = 1. (c) The Fourier transform of n4(f) exhibits
resonances at the beat frequencies between the various poles in the
system, as indicated by the dashed vertical lines. The pole values and
the corresponding eigenmodes are shown in (d) and (e) respectively.
The bare atomic frequency is taken to be w4/(2mw) ~ 5 GHz, and
temperature 7 = 50 mK.

where {<I>£2[)1, Qigé} represents the solution to the linear prob-

lem as derived in Egs. (23) and (25), {&féé, QS&} represents
the first-order perturbative correction, and A is the perturbative
parameter that scales with the strength of nonlinearity. Substi-
tuting the perturbative ansatz into the nonlinear equations of
motion [Egs. (49) and (50)], one can obtain the dynamics of
the perturbative corrections to the flux and charge dynamical

variables as

d .
(Y]
d_q)red

Z = =—1 A
1 1 0 1
[ZO Qie(:] red <I>§e()1 - Z_ SN +2 Cred [ZO Ql('egl]

¥ ial(—a“*‘(q)")). (54

Caal20QU]. (53)

A2 0Dy

We note that the homogeneous part of the above equations of
motion is the same as Eqgs. (15) and (16), thus corresponding
to the same propagator [G(5)] as in the linear problem. It is
pertinent to remark here that a Kerr-type nonlinearity gives
rise to secular terms, which can be addressed by a multiscale
perturbation theory [36]. For an odd-order nonlinearity, such
as a cubic potential realizable, e.g., with a Superconduct-
ing Nonlinear Asymmetric Inductive eLement (SNAIL)-based
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FIG. 7. (a) Dynamics of the number expectation value at the
atomic node for various coupling coefficients x for an array with

N = 100 junctions, with ws/(27) =5 GHz, and temperature 7 =

50 mK. (b) Steady-state excitation number values at the atomic node
n4.0[ x] as a function of the coupling strength x.

atom [37], one can obtain lowest-order nonlinear corrections
to the dynamics as follows:

q’ie]c)lj(t)—Zewl(‘symsp))ﬂw(sp)“ (GY D Gy). (55)
P

A p
ZOQred }(t) - Z speS] 5Vpp(5 )) Cred,j,q

p.q.r
x ﬁq_,p(gp)a;r(fp)Yr“)(ip), (56)
where YV (3) = [die %3 (WZ;‘TST"))] corresponds to the

nonlinear source term.
‘We can thus obtain the nonlinear corrections to the number
expectation value at the atomic node as

Dz (VD) )]
(57)

(1 ®) = 3 [(+ (85" ®)°

2hZ

The lowest-order contribution is at the second order in nonlin-
earity. For a cubic nonlinearity, the above expression can be
evaluated as described in Appendix H.
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VI. DISCUSSION

We have analyzed the radiative properties and open system
dynamics of an artificial atom coupled to a high-impedance
JJA. We study the crossover from a perturbative to a non-
perturbative regime of light-matter interaction, considering a
tunable coupler between the atom and the JJA that allows one
to isolate the atom from the array modes. We develop a sin-
gular function expansion approach to describe the atom-+JJA
system in Sec. II B, which allows one to analyze the properties
and dynamics of the system in terms of its non-Hermitian
eigenmodes. The dissipation and noise from system-bath in-
teraction are accounted for by eliminating the waveguide
modes via appropriate boundary conditions without requiring
a full consideration of the waveguide Hilbert space, thereby
making the approach computationally efficient. We derive
an effective Hamiltonian to describe the closed atom+JJA
system in Sec. III, delineating different regimes of coupling
strengths realizable in the system. It is shown that the system
can exhibit multimode nonperturbative coupling strengths be-
tween the atomic and the resonator modes (Fig. 2). Section IV
discusses a scenario of large coupling where the Lamb shift
and Purcell decay in such a system can no longer be described
via a perturbative approach (Fig. 4). We define and identify the
atomic eigenmode across different coupling regimes, and dis-
cuss its qualitative behavior in terms of the spatial and spectral
properties in Sec. IV C. In multimode nonperturbative cou-
pling regimes, it can be seen that the atomic mode is no longer
spatially or spectrally localized due to a strong hybridization
between the atomic and field modes (Fig. 5). Finally we il-
lustrate the spontaneous emission dynamics of such a system
in the nonperturbative regime in Sec. V. It is found that there
is a significant contribution from the non-RWA terms to the
steady-state occupation of the atomic node as the light-matter
coupling becomes nonperturbatively strong (Fig. 7).

This paper opens several directions to explore with regard
to fluctuation phenomena in high-impedance environments
in nonperturbative regimes of 1+1 dimensional QED. In
the presence of strongly hybridized matter and field degrees
of freedom, the quantum vacuum fluctuations are also hy-
bridized, and can lead to nonperturbatively strong dispersive
and dissipative effects as we have shown in this paper. Pre-
vious experiments have explored Lamb shifts and dynamical
Casimir effects in cQED setups [38,39]; it would be interest-
ing to extend such studies to strongly hybridized regimes and
analyze the nonperturbative effects therein.

The dynamics of the atom in such a system can be highly
non-Markovian as a result of several factors coming into play
[40—42]—particularly, a nonperturbative multimode strong
coupling between the atom and its environment, going beyond
the multimode strong-coupling regime of cavity QED [26,43].
We show that such non-Markovian effects manifest them-
selves as a multiexponential oscillatory decay of the atomic
mode, where the individual exponents can be related to a
set of discrete complex-valued poles that correspond to the
eigenfrequencies of the non-Hermitian modes of the system.
Understanding the non-Markovian dynamics in terms of these
eigenmodes can offer insights into how excitations and coher-
ences evolve in such a nonperturbative multimode regime of
light-matter interaction.

In the presence of a drive, the nonlinearity of the atom
can result in rich dynamical behavior such as bistability and
self-oscillations, leading to generation of frequency combs
[44]. While this dynamical instability has been observed for
a single mode environment [45], JJA arrays provide an ideal
platform for its study in a multimode setting, where quan-
tum features such as multipartite entanglement and soliton
formation may prevail. It has also been discussed that in the
presence of strong hybridization the atomic nonlinearity can
be transferred to the JJA modes [18], diluting the effect of the
atomic nonlinearity as predicted in [42] (see Sec. IV B), an
effect that requires further careful theoretical analysis.

Additionally, JJAs exhibit several interesting properties as
optical media. Through their strong nonlinearities and large or
negative refractive index [46], they can serve as a platform to
study electromagnetic phenomena such as slow and stopped
light [47] in new regimes. It has also been proposed that the
optical properties of the JJAs can be dynamically controlled
by quantum coherent states of qubits coupled to them [48].
The tunability of the individual junctions forming the JJA can
be used to design the spectral properties of the JJA modes and
engineer band gaps [49]. Thus coupling an artificial atom to an
optical medium that possesses a great degree of tunability and
inherent quantum nonlinearity provides for several opportu-
nities for exploring and understanding novel quantum optical
phenomena.
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APPENDIX A: JJA IMPEDANCE

One can write the effective impedance seen by the atom as
a cumulative sum of the impedance of all junctions of the ar-
ray plus the external waveguide [25]. The external impedance
is given as

Ze(®) = Z1L + s (A1)

iwC,
where Zy = 50 Q is the impedance of the transmission line.
We add the impedances of the junctions in the array suc-
cessively by defining the effective impedance after adding n
junctions as Zé?f) (w), such that

1 1 -
ZW(w) = Zic + [— + —} , (A2)

Z 2 V(o)
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FIG. 8. Real part of the admittance of the array as a function
of the atomic frequency. The solid line represents the cumulative
impedance of the JJA Ze(;’f) as given by Eq. (A2). The gray dashed-
dotted line represents the impedance of the infinite array Z., as given
by Eq. (4).
where we start with Ze(?f) (w) = Zexi(w). The impedance seen
by the atom is

-1
7M™ 0w :@ |:i ;] i A3
et (@) , Zg+Z§§}’ o) (A3)
where we note that the impedance of the coupler is Zj ¢/ x.

ure 8 compares the real part of the effective admittance
1 /Z( >(w) with that of an infinite JJA. It can be seen that for
the atomic frequency within the photonic band the effective
admittance seen by the atom exhibits an oscillatory behavior
owing to the resonances of the multimode cavity. Outside of
the photonic band we see that both 1/Z%; and Z, vanish.

APPENDIX B: WAVEGUIDE DISSIPATION AND NOISE

1. Incoming and outgoing waveguide modes

We define the bosonic operators associated with the waveg-
uide modes as [50]

_ 7o 4 K gw
be(t) = mZe [ Qn+ﬁ® ] (B1)
AT +) — ikn| _ - AW k| 2w
bk(t)—m;e [ iNZy O +J_CD ] (B2)‘

—Zm{be ot

k>0 k>0

1 [hzZw 1
- o b —iwt ¢ ik
L | 2Ny [Z e e

+ Z —{b eftwt (efzk

k>0 |k|

doy hZy _ .

—_ b i(wt—k) bt i(wt— k)

dt LW 2Ny [Z |k|{ ¢ )+ Z |k|
_Blteiwt}_z_{b e —iwt

_ b;ela)f (e—lk

One can note from the above that the bosonic operators by and
b,, satisfy the commutation relations:

(b, b}, 1 = K|y i (B3)

The waveguide node flux and charge variables can be defined
in terms of incoming and outgoing sets of modes as follows:

OV (1) =DV (1) + DY (1), (B4)
V) =0"" )+ 0 (), (B5)
where
. hZ 1
Nw o k|
X [l;ik(o)efi(wt:Fkn) + Elk(o)ei((ut?kﬂ)]’ (B6)
. K
Vi) =—
O ==k N

« Z [Eik(o)e—i(wtq:kn) _ Elk(O)ei(wﬁka], (B7)
k>0

such that @ and k are related by the waveguide dispersion
relation:

0)2

o = 2(1 — cosk), (BY)
w

where Qw = 1//LwCy corresponds to the plasma frequency
of the transmission line.

We write the Heisenberg equations of motion at the first
waveguide node as follows:

onW Loaw  aw
——(dY — W), B9
dt LW( 0 1) ( )

d<I>W ddDN

¢ =0y

(B10)

We note that the only coupling between the first waveguide
node and the rest of the waveguide is inductive. In order to
eliminate the remainder of waveguide, we expand the right-
hand side of Eq. (B9) in terms of the incoming and outgoing
modes (Eq. (B6)) as follows:

b ke—i(a)l-‘rk) l’;t‘ i(wt+k) }

k>0

. BTkeiwt}:|

(B11)

-1}

) _ Bikeiwt(eik _ 1)}}
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1 hZ 1 ~ . e
d |:Z —{bre ™ (cosk — 1 +isink) — bZe“”’(cosk — 1 —isink)}

 Lw\ 2Ny | & 1K
[ —iwt . ot ot .
+ Z m{b,ke (cosk — 1 —isink) — b, e (cosk — 1+ isink)} |. (B12)
k>0

We use the dispersion relation for the waveguide [Eq. (B8)], keeping terms up to lowest order in w/Qy in the continuum limit
of the waveguide, to simplify the above as

oy 1 [KZw 1 jiwN ~ . o 1 i\ .~ JU
- — (= b ot b( iwt (== \ip_ iwt bf iwt B13
di o \| 2Ny g |k|<QW>{ we ' +be }+; |k|( QW){ ke b e} (B13)

1 (ddy*t addy-
=—— - (B14)
Zw dt dt

=———0 420, (B15)
el
Dissipation

where we have defined Oy, (1) = Qw QSV_ (). The first and the second terms in the above equation correspond to the dissipation
and noise, respectively. We thus obtain the equations of motion in the reduced subspace as in Egs. (15) and (16).

2. Noise correlation

We evaluate the noise correlation function between the input noise at two times as follows:

he2,

(: On()Oin(12) 1) = _2ZWNW (: [b_ye i — E’f_keiwkﬁ][[;_k/e—iw;tz . Eik/eiw’/fh] 3 (B16)
kK’
HQ o
~Z 1\‘; > o) — 1 CO8 [kt — 1)) (B17)
WiVW —
k
B[ »
~ mZn / dox ehw/(kgl;) [ coslon(t — )] (B18)
o -
__h 1 nzcosechz(—”kﬂgl —h)) 510
T AnZy | (1 -0 (h/ (kg T))?

where we have assumed the continuum limit for the waveguide. This can be rewritten as Eq. (F5).

APPENDIX C: SOLVING EQUATIONS OF MOTION IN REDUCED SUBSPACE

Let us consider the Laplace transform of the equations of motion in Eqgs. (15) and (16) as follows:
~ A =—1 ~
S:q)red(g) = <I>red (0) + Cred [ZOQred(g)]v (Cl)
- ~ " A =—1 ~ " Z() = =—1 ~ - 2 ~ -
51Z0Qrea3)] = ZpQred(0) — L g Prea(5) — Z_5N+2Cred [Z0Qrea(5)] + Q—O[ZoQin(S)]5N+2, (C2)
W

where we have defined O(3) = fooo die ¥ O(F) as the Laplace transform of the operator O (7).
One can use Eq. (C2) to express Z0Qrea(5) in terms of @,.4(3) and the initial conditions and noise as

~ Zoz  =17'T., A —15 2
Z0Qua(s) =[5+ 7 8wsaCr | [onred(m ~ Lreg®ra® + Q—[Zon<s>]aN+z]. (C3)
w 0

033714-15



SINHA, KHAN, CUCE, AND TURECI

PHYSICAL REVIEW A 106, 033714 (2022)

Substituting above in Eq. (C1), we obtain
~ - oy - Z() = =—1 -1
Dq(5) =|35Crea + SZ_WSN+2 + Lred
~ = Z(] = a
X §Creq + Z_8N+2 D,4(0)
W

A 2 -
+ ZpQrea(0) + Q_O[ZOQin(E)]8N+2i|- (C4)

Taking the inverse Laplace transform of the above equa-
tion we obtain Eq. (19).

APPENDIX D: JJA EIGENVALUES AND EIGENMODES
1. Plane-wave basis

Let us consider the eigenvalue problem Eq. (28) for par-

tial diagonalization of the JJA, expressing the eigenmodes

in a plane-wave basis ®; jja = Z(p[iil(%:) 2 Ckp®p, such that

1

where the terms By ¢ ~ 1/N correspond to the boundary con-
tributions and the effective inductance and capacitance values
corresponding to the JJA modes are given as

2k
CkECg+2C l—COS T s

L
2[1 — cos (%)] .
We can thus arrive at the dispersion relation in the limit of

N > 1, such that the contribution of the boundary terms is
negligible:

(D5)

L= (D6)

1 1 — cos (342)

S o (B)

D7)

Furthermore, considering the diagonal forms of the matri-
ces Ly 11\ and Cyja, it can be shown that

¢p(n) = J—ﬁeZ”i”P/N . One can rewrite such a plane-wave ex- £0, ifk =4k
pansion of the eigenmodes in a matrix representation as Ck! {: 0, otherwise. (D8)
@, = 501« (D1) This allows us to write the eigenmodes as
< [ % _xP— . D
where B ={b-v_1y2. . bv-1)2) and ¢ = kA (1) X Cyppyr(n) + ckp_i(n) (D9)
{Ck(—(N—l)/2)’ - Ck(_(N_l)/z)}T. One can thus substitute ‘We now app]y the BCs
the plane-wave expansion in the eigenvalue problem Eq. (28) )
to obtain i yal(C + Cg + Co)Pppya (1) — CPry1a(2)]
_ __ 1 1 1
o yaCuaci = Ljjach, (D2) = <Z + L_> D yja(l) — Zq>k,JJA(2), (D10)
0
_ =t = =
where we have defined M = ¢ M¢. 2 C1C. +CHD N) — Cd N —1
It can be shown that 0 gal(C + Gy + Co) Py 1ja (N) & J9A ( )]
1 1
- 1 =-o N)— -0 N —1). DI11
(Tnd), o = b+ B,. D3) 7 PenalN) = = Praal ) (D11)
' k o o
_ Substituting the plane-wave decomposition of the flux vec-
(Coadiw = Cidew + Be, (D4 tor in Eq. (D10) we obtain
|
Ci (C+ Cg 4 CO)a)]%,JJAeznik/N _ Cw]%’JJA€4nik/N _ (% + ﬁ)e.Znik/N 4 %e4nik/N D12
Cik - (C+C,+ Co)w]%,HAe—zmk/N _ Cw]%,JJAe—Mrik/N _ (% + Llo)e—zmk/N + %6_47”-;(/1\/-
We note from the above that |c;¢| = |c_x|. From the right boundary condition Eq. (D11) one further has that
e (C+Co+ Cc)a);%JJAezmk _ Cwi”AeZnik(N—l)/N _ %ezm'k + %ezmk(N—l)/N D13
cir - (C + Cy + Co)? jype~ ik — Ca? jp, e 2TkN=D/N _ %e—Zm'k + %e—erik(N—l)/N’

which provides the allowed values of k. We consider the
following approximate parameter values to determine the
allowed values of k: C;, < C, C.~C, N> 1, and (a)
{1/Lo, Co} ={1/L,C} and (b) {1/Lo,Co} < {1/L,C}. We
look at the two cases of homogeneous array and weakly cou-
pled atom as follows.

(a) For a homogeneous array with {1/Ly, Co} = {1/L, C}
one obtains from the left BC [Eq. (D10)] & ~ — {550 ~
—1. Together with the right BC [Eq. (D11)], this yields
sin(2 k) ~ 0, such that the allowed k values are 2k = g, with
qg el

(

Using the normalization condition <I>,f JJAC]JA DA = Sk
we can determine the eigenmodes of the JJA as

2 [2c+cC 2k
! + gsin( il ”) (D14)

0] N —
1A () N 3¢, N

(b) For a weakly coupled atom with {1/Ly, Cp} K
{1/L, C}, we obtain from the left BC % ~ 1, which taken
together with the right BC gives cos(2wk) = 0. Thus for a
weakly coupled atom one obtains that k = g + %, with g € [.
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The eigenmodes are thus given as

(D15)

® - 2 2C+C, 2mkn
n)~ — cos .
k.JIA N 2 N

2. JJA modes

Let us consider the equations of motion for the JJA sub-
space as follows:

= . =—1
Ciia®ua = —Lyja Pyia, (D16)

where the matrices Cyjs and EJ_JL are the capacitance and
inverse inductance matrices as indicated in Egs. (10) and
(11), and @y = {Py, ..., Dy} represents the flux on the
JJA nodes. The generalized eigenvalue problem for the JJA
subspace is thus given by Eq. (28).

The generalized eigenvalue problem can be solved numer-
ically to obtain the eigenfrequencies wy jja and eigenmodes
@, jja of the JJA. We choose the normalization of the eigen-

modes such that

q’l{,JJAC:‘JJA(I’k’,JJA = (Cg + 2C)dk 1
2
=1 w
@ aLya Pria = kZJA Sk (D17)

In the limit of a large JJA, the eigenmodes of the array can
be well approximated as two counterpropagating plane-wave
solutions which yield approximate analytical expressions for
the eigenvalues and eigenvectors. While we are exclusively
considering the JJA subspace here, the first element of the
inductance and capacitance matrices includes the coupling
term {Lgy, Cp}, which is crucial in determining the BC at the
atomic end. We consider the two hybridization regimes corre-
sponding to the two coupler values as follows.

a. Strongly hybridized regime

The strongly hybridized (SH) regime corresponds to hav-
ing a Dirichlet BC at the atomic end, with the dispersion
relation given by substituting the allowed values of & in the
dispersion relation Eq. (D7) as

DN 1 —cos[(k+1/2)m/N]
pa = $20 — ,
Co/(2C)+ 1 —cos[(k+1/2)m /N]

with the band-edge frequency w. = 1/,/L(C,/2 + C).

The corresponding eigenmodes of the JJA can be obtained
as [see Eq. (D14)]

(D18)

C,+2C
N{C[l — cos (%)] +

<n(k~|—%)n)
XCcos\ ———— ).

DN ~
Dy jia(n) ~

G
2

N (D19)

We note that in the SH regime the array eigenmodes have a

minimum at the atomic end.

20

5L
© w38, WH
DN
—-Wg JJA
) o wigga, SH
03 ‘ ‘ :
0 5 10 15 20 25 30 35 40 45 50
k
4 : 4 :
(b) — | ®@raaal k=2 (c) — | ®p aaal k=2
35- == |®p gyl k=3 35 == |®pg5al, k = 3|
- \QEE]AH\\,ICZQ - |®giJA‘ak:2
3t e [ @R Ygal B =3 3 e | @R Nga L B = 3] |
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FIG. 9. Eigenfrequencies and eigenmodes for the uncoupled JJA.
(a) The black solid curve represents the analytical dispersion relation
for the JJA assuming Neumann BC at both ends of the JJA [see
Eq. (D20)] and the gray curve represents the JJA dispersion assuming
Dirichlet BC at the atomic end and Neumann at the waveguide end
[see Eq. (D18)]. The squares and circles represent the numerically
obtained JJA eigenfrequencies for x = 107 and 1, respectively. The
band-edge frequency is w./(27) =~ 12.99 GHz, as depicted by the
horizontal dashed-dotted line. The JJA eigenmodes correspond to
(b) x =1 and (c) x = 107>. The numerically obtained eigenmodes
are depicted in blue solid and dashed-dotted curves for k = 2 and
3, respectively. For x = 1 (x = 1079), the black dashed and dotted
curves represent the k = 2 and 3 eigenmodes corresponding to the
approximate analytical solution with Dirichlet (Neumann) BC at the
atomic end given by Eq. (D19) [Eq. (D21)], respectively.

b. Weakly hybridized regime

For {1/Ly, Cy} < {1/L, C}, we obtain the Neumann BC at
the atomic end, and substituting the allowed values of k in the
dispersion relation Eq. (D7) we obtain

wo_g 1 —cos (km /N)
Wi JjA = 340 Co/(2C) + 1 — cos (kn /N)'

The corresponding eigenvectors for the Neumann-Neumann
BCs are [see Eq. (D195)]

(D20)

C,+2C kn
OVN (n) ~ i & sin <—> (D21)
o \/N[C[l —cos(3)+5] O\ N

The array modes have a maximum at the atomic end in the
weakly hybridized (WH) regime.

033714-17



SINHA, KHAN, CUCE, AND TURECI

PHYSICAL REVIEW A 106, 033714 (2022)

70 , 14.856382
SR RE Y] —" - (a) (b)
60— -wi(k) |134 s
= o wap(k)| 132 & - -| 148663815 === m === === = -
50 e @A . . 7 /
\C_D/ 0 50 1000 "
— 40 k, 14.856381
o /
01010.0.0.6:0:0.5.5-5.6-0.0.6-0-0.0.-
=30 /
3 . 14.8563805
20 _”
10 14.85638
0 200 400 600 800 1 0 200 400 600 800 1000
k k
-9
1000 i 1000 <10
e "
800 - 800 . o
ES
~
600 —_— 600 6 9
e st
400 0.04 400 4 a
5
200 0.02 200 5 —
0 0
0 500 1000 0 500 1000
k k

FIG. 10. Renormalized atomic frequency «; (dashed curve) as a function of the number of modes incorporated, for (a) x = 1 and (b) x =
107>. The bare atomic frequency is wa/(27) &~ 15 GHz, and the atomic frequency in the presence of on-site coupling w, is denoted by the
solid horizontal line. The gray circles denote the eigenfrequencies wy ,(k), corresponding to the eigenmode of the Hamiltonian H (k) with the
highest amplitude at the atomic position and the dotted horizontal line corresponds to the adiabatically obtained atomic mode frequency @,.
The inset illustrates the convergence of w, ,(k) to @4. The coupling coefficient & , between the JJA modes k and k" is shown for (c) x =1

and (d) x = 107>,

We note that having a general strength of the coupler
corresponds to mixed BCs at the atomic end, as can be de-
termined from Eq. (D13). The eigenvalues for x = 1 (SH)
and x = 1073 (WH) are plotted in Fig. 9(a). It can be seen
from Fig. 9(a) that the eigenvalues for the SH case agree
with the approximate analytical dispersion relation for the
Dirichlet BC at the left end and the Neumann BC on the
right [Eq. (D18)] and those for the WH case agree with
the dispersion relation for the Neumann BC at both ends
[Eq. (D20)]. Similarly, the eigenmodes corresponding to the
Dirichlet-Neumann (Neumann-Neumann) BC agree well with
the numerically obtained eigenmodes for the SH (WH) case,
as shown in Figs. 9(b) and 9(c).

APPENDIX E: HAMILTONIAN DERIVATION

Using the partially diagonalized basis for the JJA, we can
write the atom+JJA Lagrangian in Eq. (29) as
1. . L!
L=Ls+ ; <§Ck¢i,JJA - %q’%,JJA)

. . 1
— CoPy Z 8T @y yia — ITOCDA Z 8T ®pya,  (ED)

k k

where 87 @ 54 = @4 ja(1), and C; and L, ' represent the
(k + 1)th diagonal element of the matrices C and L~'. From
the normalization conditions [Eq. (D17)] we note that G =
Co+2Cand L' = wf 1, /L.

Let us define the conjugate momenta corresponding to the
flux variables for the atom &, and the uncoupled JJA ®; jja
as

5L . .
Os=——=C,P4 — () Z 8] @) 11as (E2)
5Dy p
Quia =— = (Ce+20)®y yja — Codad1.  (E3)
L FRN
This allows us to write the Hamiltonian as
H=0s®s+ ) Qf s ®rin — L. (E4)

k
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We can simplify the above Hamiltonian to obtain

102 12 0}
Hz_%+_4+zz_l&_
2C; 2L, 4| 2C+20)
q)I%,JJA Go

2
T T oG+ 20)

1
X Op(1)0a 0k 1a — L_ch(l)q)A(bk,JJA]
0

2
G
+ W (Z q’k(l)Qk,JJA) , (ES)

k

where the renormalized capacitance Cj is defined in Eq. (33).
Defining the renormalized mode frequency to include the self-
interaction terms between the JJA modes [see Eq. (36)], and
promoting the flux and charge variables to quantum operators
as defined in Egs. (31) and (32), yields the Hamiltonian in
Eq. (34).

It can be seen from Figs. 10(a) and 10(b) that for a
galvanically coupled atom (x = 1) the renormalized atomic
frequency can be drastically different from the bare atomic
frequency and does not actually correspond to a physical
eigenfrequency of the total system. As a benchmark for
comparison, one can define the frequency wy ,(k) of the
eigenmode of the Hamiltonian that has the largest amplitude at

J

1

~(0)
<nA (l )) ZhZA

the atomic position. The eigenmode corresponding to wy, ,(k)
is obtained by numerically diagonalizing the Hamiltonian
H (k) defined as

H(k) = %(Q<k>)T(C<k>)—1Q</<>
+3(¥) (L9) ", (ES)

where WX = (@4 @ jaj € 1...k}, QY = {04;Q;ualj €
I... k}’ (C(k))mn = (C)l1ln, and (Z(k))mn = (i)mn(m’ ne
1...k). Thus, diagonalizing the Hamiltonian after including
the coupling terms, we find that the mode frequencies of the
total system do not see as large a renormalization as indicated
by w).

It can also be seen from Figs. 10(c) and 10(d) that the
coupling & between the modes k and k' of the JJA can be
as large as ~0.1 GHz for x = 1, while it remains negligibly
small for y = 107>,

APPENDIX F: AVERAGE NUMBER OF EXCITATIONS
AT THE ATOMIC NODE

The average number of excitations at the atomic node is
given by Eq. (45), which can be simplified by substituting
Egs. (23) and (25) as follows:

_[< (0 ) :) + Zj<: 0OV @) >] (F1)

2 2
1 . N Za\? . N
sz (omonon) )+ G [ (Somomon) )] e

1 il i Z\ ~ N
7 {Z D el [np,qup)nm,n(sm) + (Z—A) cp,q<sp)cm,n<sm)}<: A AGH) :>}. (F3)

p.q mn 0

We can now evaluate the correlation (: Yq(ip)fn(im) :) explicitly for an initial state of the system p(0) = |1)4 (1|4 ® |{0})({0}] as

. . N Z X A ~
<: Yq(gp)yn(gm) :> = <: {ip Z Cred,q,rq)red,r(o) + Z_Osq,N+2q>red,q(O) + ZOQred,q(O) + 2[ZOQin(§p)]8N+2,q}
- w

A Z A A ~
=§m > Creani Preas (0) + Z—O3n,N+2 DPreda,n(0) + ZoQrea.n(0) + 2[ZoQin(§m)]5N+2,n} > (F4)
W
I

We note that the normal-ordered expectation values of the flux and charge variables for the initial state in consideration are
given by (: @req p(0)Preq,m(0) 1) = AZs8p 16,1 and (: Ored, p(0)Ored,m(0) 1) = ZEASPJS,,,J. The autocorrelation function of the
input noise quadratures is given by (see Appendix B2 for derivation)

LA A N (kBT)2 (1) Sh—h kBT
(: Qn(t1)Qin(12) 1) = 3z Re{lﬁ [1 - l( 5 )“ - ES(h — ), (F5)
Q0

where = ZB—T, and ¥ (V(z) represents the trigamma function of z € Z [51]. We assume a high-temperature limit, such that
the input noise from the transmission line can be approximated to be delta correlated [Eq. (47)], which can be justified for the
parameters in consideration.

Thus we can simplify Eq. (F4) as follows:

2kpTZ}
+ —
hQOZAZW (Sp + Sm)

s Zo\?
<: Yq(sp)yn(gm) :> = hZA [Spgmcred,q,lcred.n,l + (_0> 8(/,181@1

N +28n N2 (e Gt r— 1)] . (Fo)
Zy
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We use the above correlation to simplify the excitation number at the atomic position in Eq. (F3) as follows:

Zs
(AP @) = Z ettt [npq<s,,>nmn(sm>+( ) ;pq(spxmn(sm)]

p q,m,n
2kpT 7}
hQOZAZW (Sp +5m)

Gp+5m)i Zy 2 ’
=5 Z e’ Mp, q(sp)nm a(8m) + {p q(sp)gm n(8m) Spsm red,q, 1Cred,n,1 + ZA 8q,18n,1

qulVl

.- %\’ — Gyt
X I:Spsmcred,q,lcred,n,l + (Z_> aq,lan,] + 8q,N+28n.N+2(e (er m)f - 1)]
A

kgT Zg Gptm)i
hQOZAZW P (S:p + gm)

Zy\* L
|:np.N+2(§p)nm.N+2(§m) + (Z_z) é‘p,N+2(§p)§m,N+2(§m):| (e—(s[,-i—sm)t - 1) (F7)

The above equation can be rewritten as Eq. (46) and the t+ — oo limit of the above expression yields Eq. (48).

APPENDIX G: DYNAMICS OF AN ARTIFICIAL ATOM COUPLED TO A SINGLE OPEN RESONATOR

In this section we analyze the spontaneous emission dynamics of an artificial atom coupled to an open LC resonator, as shown
in Fig. 6(a). We can write the equations of motion for the reduced subspace of the atom+-coupler+resonator+first waveguide
node explicitly as follows [see Egs. (15) and (16)]:

T T N N )
N SR = N N
(?C 0 0 0 0 (ér;é) 31 (é;"b 3 (é';é) 33 <é;;> 34
dal 1o o o o @ @ @ e
E q)(z =Q - -1 -1 ’
ZyOa (Lred>n (Lred) 2 (Lred>13 0 0 0 0 0
ZOQC (i;g) ([z,r_e(ll) (i;g) 0 0 0 0 0
70 T U A\
Z(E)Q(v)l; (£r°‘11>31 (Lre‘ll)_z (£r°‘11>33 0 (i . O_ | O_ . (i .
0 0 0 0 _Zz_vt(ér_ed)ﬁ _ZZT(*)/(C;’d>42 _ZZ_‘Z<C;d>43 _ZZ_VUV<C;d>44
®
o :
?R 0
J5 el @
ZOQ:C 0
Z’gg} ZQLOZOQin

=—1 =—1
where (C4)x and (L4);x indicate the {j, k} elements of the inverse capacitance and inductance matrices in the reduced
subspace as defined in Egs. (17) and (18).
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Taking the Laplace transform of the above and rearranging terms, we get

C?A ci’A(O)
@c Dc(0)
dp Dr(0)
% |- lg by (0)
2004 | Qo Zy04(0) ’
ZyQc ZQc(0)
ZoQr ZyQr(0)
20y ZoQy (0) +2Zo0in

(G2)

where we have defined the Laplace transform of the fluxes at various nodes as O(s) = fooo dt e O(t). The propagator matrix

G is defined as

§ 0 0 0 _(égé) 1" _<C}_""}>12 _(é;%> 13 _<§;%> 14
0 § 0 o - (Srf?) a (fr_e‘lj)zz B (C:‘r_e‘:) 23 B (Sf‘:) 24
0 0 5 0 _(Sr_e?)ﬂ _<ff?)32 _(frf?>33 _(frf?)34
G=| ,. 701 = 701 = 701 S (C“’d) a (Cred>42 - (C“’d) 43 B (Cmd) 44
(Lred) 1 (Lred) 12 (Lred) 13 0 § 0 0
(I}_e‘} 21 (éf‘} 2 (ér_""} » Y 0 ; 0 0
(L“"d 31 (Lred) 2 (L“"d 33 0 0 0 ’ 0
o000 2, 20, 2(C), 2,
with § = 5/Q.

We can take the inverse Laplace transform of Eq. (G2) to obtain the dynamics of the atomic observables as follows:
u(7) =G (HP4(0) + G )P (0) + Gig (H)PR(0) + Gy (D Pw (0) + G (D[ Z00A(0)]
+ G2 (O Z0Qc(0)] + G (D) ZoQr(0)] + Gi? (D[ ZoOw (0)] + /O fdfovg(f — f)[gioonm (Qio)]
Z0Qa(0) = G (DA (0) + G52 (1) Dc(0) + G5 ()P (0) + Gy (H)dw (0) + G2 (D204 (0)]
+ G (D[ZoQc (0)] + G5E (D[ ZoQr(0)] + GS2 () [ZoQw (0)] + /0 Ed%vag(f - f)[giozoéin<gio)},

where we have defined 7 = Qo and the inverse Laplace transform of the propagator matrix G as

G(1) GP2(1) G¥1) G2 G4y G¥u) G¥a) Ga)
G (1) G GR® Gy® G Ge®) GR®  GH®
1 ie0 dse i) = GRP()  GRE() GR() G Grl(t)  Gre(t) Gret)  Gro(®)
270 oo G2 () G2t G Gty G%(r) G221 G%a1) G%«)
Gt GRe®  GRR®) Gi®) Gyl Gye(t) Gyg) Gy ()
Gua®)  Ge®)  Gagt) Gy () Gpi)  GRe() Gz  Gig, ()

We obtain the normal-ordered expectation values of &/2, (t) and Qﬁ (t) as follows:

.o - ~ 72 _ 472 f g _ _ ~ (F\ A
(:cbf,m:):hZA<(G/§’A‘D<r>)2+Z—‘;(Gj’fa))2><ﬁA(0>>+Q—§ f d% / dng§’§<t—%1)G§’v8<r—fz><:Qm(i)gm(
‘A 0o Y0 0

(Z202(F) :) = iza (G2 (0)*+22(GL2(D)’ ) (aa (0))+
Z
‘A

ZZ

472
2

Qo

/ dt, f dHG42(F—7)GS9 (T — 7f’z)< : Qm(sz—l)Qin(
0 0 0

where we have assumed that the total system is initially in a vacuum state for all nodes except the atomic node.
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FIG. 11. Comparison of the atomic excitation number dynamics for the toy model of an atom coupled to an open resonator [see Fig. 6(a)]
for x =1, T =50 mK, and w4 /(27) ~ 5 GHz. The analytical solution is obtained from substituting Egs. (G9) and (G10) in Eq. (45), and the
numerical solution in matrix representation is obtained from substituting Egs. (23) and (25) in Eq. (49).

Substituting the noise correlation in the high-temperature limit in the above [Eq. (47)], we obtain

oy - 72 2UTZ2 (7 s
(: &2 :):th<( *0)’ + ( 20) )(;@@)HM/ dz (G2 - 7)), (G9)
VA QoZw Jo
2 2 i
(- 2103 () ;):th((ng ©) + —Z(G,?E(f))z)mm» 4 2ol% / 4t (GG — 1)), (G10)
Z; QoZw Jo

The atomic excitation number dynamics resulting from the above equations is plotted in Fig. 11.

APPENDIX H: INCLUDING THE ATOMIC NONLINEARITY PERTURBATIVELY

In this Appendix, we evaluate the perturbative corrections due to nonlinearity considering a cubic form of the nonlinear
potential Uy (P4) = —EAC3( )3 = A<I>3 We simplify the following two constituent terms in the nonlinear corrections to the

number expectation value Eq (57) separately:

)\'2 N
<”i‘11><f>>—zn_z< [Zeﬂ(aw 5P <fp>Yq(”(§”)}

p.q 85

[Z e (aym@m)) i Bim G, (smﬁ,f“(sm)D, (H1)

rAZ, o
(o @ ——A<[Zsp By—(s)cred,1,qﬁ;;<sp>a;1<sp)Y,<'>(s,,)}
p.q,r
|
x [ szes"mcred1mﬂmz<s,>a,n(snY“)(s,)} > (H2)
l,m,n 85

The nonlinear source term for the case of cubic nonlinear potential is given as
N . i = 2 0),o02
Y5) = f die | oA (3189 0) | (H3)

Substituting the linear solution [Eq. (23)] in the above we obtain the nonlinear source term as follows:
P0G) = [ aie] 24 Zes ——tlC I P A )
j - o dj1 (syp,,(sp)) 1Lp\P/%p.g\°p P
. 1 o T
x [Z eSm’Wﬁl,,‘,xsm)am}n(sm)n(sm)] } (H4)
m,n 83
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We now substitute the nonlinear source term in Eqs. (H1) and (H2), which yields

(ZoA)
2hZ,

(o) =

{ze

my,ny

{Ze%x ((Symm(vm))ﬁl :n(sm)ol l(sm)/dtze Ymtz|:|:z esl)zt2

[ E e?mz 2

my,ny

YA!]I (gpl )?m (§m| )Yqz

)93 3 3paf

psm pi1,q1 my,ny p2,q2 mz,ny

X (e*(fpfsm S N l) (67(§m7§p2 ~m r— 1) |: (‘Sypﬁ@

1

1
-1 (= -1 (= -1 (% -1 -
x [ (5}’171171 (§p1 )) '81*1’1 (Spl )aplvql (spl )i| [ (5)/m]m| (§m1 )) ﬂl’ml (Sml )aml’"l (Sml )

85 o5

(8Vpp(vp>) Sy Pl p(sf’)“p l(sl’) / die” i |:|:Z el
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1 ~
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1
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P2,q2 ( )

(H5)
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R e T T
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1 1 ]
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55 55
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The above expressions for (nﬁ‘lzb(f )) and (nil)Q

fourth-order correlation function (: ?ql Gp, )Ym S, )Yq

(: Y G )Y, G )Y,

Bimy G )ty Gy )} } .

~ o~ T T 't'
spsle(ép-‘rbl)
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(f)) can be simplified by substituting the linear solution Eq. (21) to obtain the
2(§p2 )Y\vnz (Emz) :>’
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