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The accurate modeling of mode hybridization and calculation of radiative relaxation rates have been cru-
cial to the design and optimization of superconducting quantum devices. In this work, we introduce a spectral
theory for the electrohydrodynamics of superconductors that enables the extraction of the relaxation rates of
excitations in a general three-dimensional distribution of superconducting bodies. Our approach addresses the
long-standing problem of formulating a modal description of open systems that is both efficient and allows for
second quantization of the radiative hybridized fields. This is achieved through the implementation of finite but
transparent boundaries through which radiation can propagate into and out of the computational domain. The
resulting spectral problem is defined within a coarse-grained formulation of the electrohydrodynamical equa-
tions that is suitable for the analysis of the non-equilibrium dynamics of multiscale superconducting quantum
systems.

INTRODUCTION

Engineered superconducting systems employed in analog
quantum simulation [1, 2], quantum sensing [3, 4] and quan-
tum computing [5, 6] are described by the electrohydrody-
namic theory of superconducting systems (EHDS), first pro-
posed without justification by R.P. Feynman in a special lec-
ture he delivered in the 1960s [7]. Few attempts have been
made to either justify [8, 9] or solve [10] this model’s equa-
tions of motion exactly, but simplified versions [11–13] have
been considered via various modifications to minimal cou-
pling. This low-energy theory can be credited as the under-
pinning of Josephson phenomena, flux quantization, and, gen-
erally, the physics of vortices. The second-quantized version
of it constitutes the basis of the formulation known as circuit
quantum electrodynamics (cQED) [14], which has been the
workhorse behind the current understanding of the physics
governing superconducting quantum computers. As systems
grow increasingly sophisticated and their electromagnetic en-
vironments become more complex, efficient computational
strategies in both classical and quantum regimes are much
needed to produce accurate reduced models containing the de-
grees of freedom of interest. This has given rise to an active
research area at the intersection of computational electromag-
netism and quantum electrodynamics of superconducting de-
vices [15–21], to analyze and model the physics of these cir-
cuits.

An indispensable component in the electrodynamic model-
ing of superconducting circuits is the extraction of relaxation
rates. Purcell modification of radiative lifetimes of qubits
is today an essential mechanism for the protection of qubits
and plays an important role in the electromagnetic design of
the entire processor [22–25]. Additionally, in applications
that require strong RF or microwave excitations of individ-
ual oscillators, new dissipative processes and inter-level tran-
sitions can be activated [26–34]. These processes, in turn,
depend strongly on the spectral characteristics of the elec-
tromagnetic environment in which the non-linear elements
are embedded [30]. Resource-intensive numerical simula-

tions are needed to extract such information for complex
quantum-electrodynamic systems. Such simulations are not
only computationally demanding but also face conceptual dif-
ficulties arising from the infinite degrees of freedom inherent
in quantum electrodynamics (QED) [35]. These conceptual
issues [18, 22, 36, 37] can be effectively addressed by the in-
troduction of a rigorous spectral theory [38]. This approach
allows the accurate quantification of limitations brought about
by noise [39–41], dissipation [42, 43] and undesired interac-
tions [44, 45] within the system and its electromagnetic envi-
ronment.

In the present work, we introduce a spectral theory of
EHDS from which the relaxation rates of general three-
dimensional superconducting circuits can be obtained. This
spectral theory is adapted to a coarse-grained description of
the EHDS equations, known as DEC-QED, previously derived
and analyzed in Ref. [10]. DEC-QED provides the follow-
ing advantages: (1) through its structure-preserving geomet-
ric discretization procedure, known as discrete exterior calcu-
lus (DEC), this formulation enables stable long-time simula-
tions. (2) By virtue of the fundamental fields being hybridized
gauge-invariant fields rather than the standard electromagnetic
potentials, different materials can be handled in a uniform
fashion. (3) At a superconducting-normal-superconducting
(SNS) junction, the hybridized field is identical to the gauge-
invariant Josephson phase across the junction. (4) For trans-
mission lines and lumped-element circuits and in the limit of a
perfect superconductor (λL = 0), DEC-QED equations reduce
to the standard cQED equations.

The difficulty with developing a spectral theory stems from
the desire to solve the EHDS equations, a set of non-linear
PDEs describing the evolution of the order parameter of a
charged fluid coupled to Maxwell’s equations, in a finite spa-
tial domain. Ideally, one would like to keep the computational
domain as small as possible, just as large as the superconduct-
ing system itself. However, this is not possible, because we
also need to keep the volume as large as possible to allow for
radiative relaxation of the excitations in the superconductor.
The optimal solution to avoid this trade-off is to use a modal
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description for a finite but open domain subject to transparent
boundary conditions for electromagnetic (EM) radiation. This
allows us to keep the computational domain small enough to
be computationally feasible, while still allowing for the ra-
diative relaxation of the excitations. While boundary condi-
tions, such as the perfectly matched layer (PML) [46, 47] or
absorbing boundary conditions [48, 49] are known and very
useful in classical EM problems, it is also desirable to imple-
ment a transparent boundary so that solving the correspond-
ing spectral problem would provide a modal decomposition
which can serve as the basis for second quantizing the EHDS
equations. This, however, has been a difficult problem that
remains unaddressed since the full formulation of quantum
electrodynamics [50] because such boundary conditions re-
sult in non-Hermitian modes [51–53]. Recently, it was shown
that by using the Heisenberg equations of motion for quantum
field operators, this issue can be circumvented in the context
of one-dimensional transmission line systems through the use
of singular function expansion and a suitable spectral prob-
lem [38]. Here we generalize the statement of this spectral
problem to the solution of the non-linear EHDS equations
(the original spectral problem has been defined [38] in the
context of cQED which assumes fields do not penetrate the
superconductors), and to general three dimensional domains.
We do not address the issue of quantization but focus on the
spectral problem that arises through the linearization of the
EHDS equations, the resulting non-Hermitian modes, and the
calculation of dissipation rates for all modes. The dissipa-
tion rates for “qubit-like” modes are precisely their Purcell
radiative lifetimes [54], while for the more spatially extended
modes, they represent their losses due to their hybridization
with radiative channels in the system [55–57].

The main results presented in this paper are organized as
follows: we first discuss the electrohydrodynamic model used
to describe the dynamics of the superconducting condensate
coupled to the EM environment and derive the spectral prob-
lem to be solved. We then briefly discuss the formulation of
DEC-QED used in the rest of the article for coarse-grained
calculations. Next, we demonstrate the convergence in the
calculations for the spectral profile of a sample superconduct-
ing cavity. Both simplicial and cubical meshing strategies are
benchmarked. We then show how mode hybridization due to
accidental degeneracies can be encountered in the calculations
of the modes for a symmetric cavity and that our method can
distinguish the degenerate modes through the inclusion of a
small perturbation to the cavity shape. Next, we demonstrate
the coarse-grained calculations of hybridized modes for mul-
tiscale systems containing multiple components. Finally, we
present two main approaches for implementing open bound-
ary conditions based on (1) Green’s boundary integrals and
(2) vector spherical harmonic expansions, along with numer-
ical examples, to demonstrate the accuracy and effectiveness
of these methods. We have also made the implementation of
the formulation discussed here available as part of an open-
source DEC-QED repository [58].

RESULTS

Electrohydrodynamic formulation of superconducting materials

Consider a multiply connected region composed of dif-
ferent dielectric and superconducting materials. Well below
the critical temperature, where most superconducting devices
operate, the superconducting material can be modeled as a
charged condensate [8, 9] trapped by a background of posi-
tive charge (ρsrc). The dynamics of the condensate are wholly
determined through minimal coupling to the dynamical elec-
tromagnetic potentials (A, V ) and the Coulomb attraction to
the static positive background (U ) defining the superconduc-
tor. We refer to the resulting equations as the ElectroHydro-
Dynamics of Superconductors (EHDS) [7]

iℏ
∂Ψ(r, t)

∂t
=

[
1

2m

(
−iℏ∇−qA

)2

+qV (r, t)+U(r)

]
Ψ(r, t)

(1)
and Maxwell’s equations

∇×∇×A+ µ0ϵÄ = µ0(Js + Jsrc)− µ0ϵ∇V̇ , (2)

∇2V +
∂

∂t
(∇ ·A) = −q

ϵ
(ρ+ ρsrc). (3)

where ρ and Js are the condensate density and the supercur-
rent, respectively, and ρsrc and Jsrc are the external charge and
current sources. Here, q = 2e and m = 2me are the charge
and mass of a cooper pair, respectively, which are twice the
charge e and mass me of an electron. Generally, we include
the positive background defining the superconducting regions
in ρsrc. Dielectric regions are defined by ϵ(r) = ϵ̃(r)ϵ0, where
ϵ̃ is the step-wise constant relative permittivity function that is
unity where dielectric is not present and is greater than one
otherwise. Using the Madelung representation for the con-
densate wavefunction, Ψ(r, t) =

√
ρ(r, t)eiθ(r,t), and intro-

ducing the gauge-invariant hybridized field A = A− ℏ
q∇θ,

Eqs. (1)-(3) can be written in the form [10]

∇×∇×A+ µ0ϵ0
∂2A
∂t2

+
µ0q

2

m
ρA− µ0ϵ0q

2m

∂

∂t
∇
∣∣A

∣∣2

+
µ0ϵ0ℏ2

2mq

∂

∂t
∇
[∇2(

√
ρ)

√
ρ

]
= µ0Jsrc, (4)

and

∂ρ

∂t
= ∇ ·

[
q

m
ρA− Jsrc

q

]
− ∂ρsrc

∂t
. (5)

These equations were derived and the resulting real-time dy-
namics under specific conditions were analyzed in Ref. [10].
Here, we are interested in the spectral problem associated
with these non-linear equations. Linearization can be done
by splitting the condensate density ρ into the mean value ρ0
that exactly balances the positively charged ionic background
and the fluctuation δρ arising from interactions with the exter-
nal EM field. The linear sector of Eq. (4) that corresponds to
the transverse excitations then reproduces London theory [59]
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and is sourced by the fluctuation δρ. The resulting inhomoge-
neous source-field equations can be solved through the spec-
tral problem of a vector Helmholtz equation for the gauge-
invariant hybridized field A:

∇×∇×A+

(
1

λ2L(r)
− n2(r)k2

)
A = 0, (6)

where the distribution of superconducting and dielectric ma-
terials is given by the local London penetration depth func-
tion λL(r) =

√
m

µ0q2ρ0(r)
and the refractive index function

n(r) =
√
ϵ̃(r), respectively, and k is the wavenumber.

DEC-QED formulation

DEC-QED provides a spatially coarse-grained description
of a physical system governed by nonlinear PDEs. The fun-
damental field variables are small integrals of the original mi-
croscopic continuous fields over finite spatial intervals. This
results in a discretized model that is computationally efficient
and still accurate within the resolution of a given measurement
apparatus. In this section, we provide a minimal introduc-
tion to the geometric constructions in DEC that are needed for
computing electromagnetic modes in systems that may con-
tain an arbitrary distribution of superconducting and dielec-
tric materials, all within a finite computational domain. For a
more comprehensive discussion of the formulation, we refer
to Ref. [10].

In DEC, the discretization of PDEs requires a dual-mesh
construction, within which the d-dimensional computational
space is discretized by a primal mesh M that conforms to the
boundaries of the enclosed physical domain and the interfaces
between materials. The fundamental building blocks of the
primal mesh can be simplices (i.e. triangles in 2D and tetra-
hedra in 3D) or cubical elements. The vertices of the dual
mesh M† are then circumcenters of the primal d−cells, and
the edges of M† are generated by connecting the neighboring
circumcenters. Throughout this paper, we will use † to denote
a dual quantity. For elements strictly inside the computational
space, the mappings from vertices (v), edges (e), faces (f ),
and cells (c) in M to cells (v†), faces (e†), edges (f†), vertices
(c†) respectively in M† are one-to-one. This bijective corre-
spondence is not applicable at the computational boundary,
where the dual elements are truncated, which leads to auxil-
iary dual nodes lying on the boundary of M (See Figs. (1a)
and (1b)). During numerical calculations, this truncation of
the dual mesh is taken care of by the appropriate application
of boundary conditions.

In this DEC framework, scalar fields live on either primal
vertices v or their dual volume v†, while vectorial quantities
are projected onto the discrete primal edges e or assigned to
the dual faces e†. For example, given a vector field A we
construct the coarse-grained edge field

Φ(e) =

∫

e

dℓ ·A, (7)

(a) (b)

(d)(c)

Figure 1. (a) An example primal mesh. The highlighted edges at the
lower-left corner form the boundary of an auxiliary dual volume. (b)
Close-up view of a node v that lies on the boundary of the primal
mesh. The neighboring dual nodes are labeled in dark green, while
the auxiliary boundary dual nodes are labeled in bright green. The
shaded volume is the truncated volume v† dual to the node v. (c) 2D
example of a vertex that lies at the interface among multiple material
regions. The material properties assigned to this node is the weighted
average of the values in the surrounding regions. (d) 3D example of
an edge lying at a material interface composed of multiple cells ci.
The darkened triangle is the intersection of the dual face e† with the
cell ci, and the shaded volume is the portion of the support volume
of e that lies inside ci.

where the integral is done along the primal edge e. By solving
the equations governing these coarse-grained fields, we can
probe the properties of the system.

To properly account for the distribution of different materi-
als within the computational domain, material properties such
as the London penetration depth λL or dielectric function n
can be assigned to objects living on the dual mesh. For ex-
ample, for every edge e a value for λL is assigned to its dual
e†. This procedure is particularly convenient if e lies at the in-
terface between multiple materials. The dual e† in such cases
would intersect with all the different material domains that
share this edge, and the effective penetration depth λL(e

†)
there will be the weighted average of the values of λL in the
surrounding domains (See Fig. 1d). In a three-dimensional
setting, this is formally defined as followed: let {ci} be the
list of all the cells that share an edge e, then

λL(e
†) =

∑

ci

|e† ∩ ci|
∆A(e†)

λL(ci), (8)

where |e† ∩ ci| in the area of the intersection between e† and
ci, and ∆A(e†) is the area of e†.

With this setup for DEC, in the following sections, we
demonstrate with specific examples how this coarse-grained
formulation is utilized to compute electromagnetic modes.
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Ne

1×1040 2×104 3×104 4×104 5×104

Ne

1×1040 2×104 3×104 4×104 5×104

10-2

10-1

10-2

10-2.5

10-1.5

10-3

10-4

(0,1,1) - tet
(1,0,1) - tet
(1,1,0) - tet
(0,1,2) - tet
(0,1,1) - cube
(1,0,1) - cube

(0,1,1)
(1,0,1)
(1,1,0)
(0,1,2)
(1,1,1)
(1,0,2)

(1,1,0) - cube
(0,1,2) - cube

(a)

(b)

Figure 2. (a) Convergence in the eigenvalues E = k2 of the vector
Helmholtz equation applied to a perfect superconducting cavity as a
function of the number of edges Ne used in the discretization. The
solid lines correspond to results obtained using simplicial meshing,
while the dashed lines are results obtained using cubical meshing.
The relative error is calculated with respect to the exact analytical
solution. (b) The relative error in the edge fields of the eigenmodes
with respect to analytical solutions. The errors are averaged over all
edges and plotted as a function of Ne. The cavity dimensions are
Lx = 1 cm, Ly = 1.5 cm, and Lz = 2 cm.

Modes of closed superconducting systems

Performance benchmarks for simplicial- and cubical-DEC

We are interested in solving Eq. (6) for the electromagnetic
modes of systems composed of possibly spatially disjoint su-
perconducting structures. To numerically compute the modes
of such systems, we derive the DEC equations corresponding

to Eq. (6)

∑

e0∈∂(e†)

∑

e1∈∂(e†0)

∆ℓ(e0)

∆A(e†0)
Φ(e1) (9)

+

(
1

λ
2

L(e
†)

− n2(e†)k2
)
∆A(e†)
∆ℓ(e)

Φ(e) = 0,

where ∂(e†) is the boundary of the dual face e†, and {λL, n}
are defined as in Eq. (8). This form is universal and is inde-
pendent of the mesh elements used.

First, we investigate the numerical convergence of DEC
equations using two types of elements: simplicial and cubi-
cal. Simplicial elements are generally the preferred choice for
a meshing scheme that conforms to arbitrary superconducting
domains. To analyze the convergence of simplicial meshing,
we consider shapes of superconducting cavities for which an-
alytical solutions are available. A good choice is a rectangu-
lar cavity, which conforms well to cubical elements. A com-
parison of the convergence of error of simplicial and cubical
meshing would illustrate the efficacy of simplicial meshing.

Consider a three-dimensional rectangular cavity with di-
mensions Lx = 1 cm, Ly = 1.5 cm, and Lz = 2 cm, where
Lx, Ly, and Lz are the sizes of the cavity along x, y, and z
respectively. To allow for direct comparisons with analytical
solutions, we first assume the cavity walls are perfect super-
conductors (λL → 0), so that the tangential component of A
vanishes at the boundary. This is equivalent to the boundary
condition

Φ(et) = 0, (10)

where et is an edge lying tangentially on the cavity bound-
ary. The eigenmodes of the cavity are computed with two
choices of meshing: tetrahedral and cubical. The conver-
gence with respect to analytical solutions is shown in Fig. 2.
As shown in Fig. 2a, the error in the eigenvalues E = k2 of
both mesh choices converge at the same rate as the number of
edges Ne in the discretized domain increases. The effective-
ness of simplical-DEC is therefore shown to be comparable
to cubical-DEC, even when it is applied to a geometry where
cubical meshing holds an advantage due to its elements shar-
ing the same symmetry as the cavity. In Fig. 2b, we also study
how simplicial-DEC produces accurate solutions to the edge
fields of the eigenmodes. The convergence to analytical solu-
tions of the edge fields is achieved.

These results help justify our shift to using simplicial mesh-
ing onwards, as its flexibility allows us to apply DEC to com-
plicated, realistic structures where cubical symmetry is rarely
present. Moreover, simplicial meshing allows for the imple-
mentation of different spatial resolutions in different regions,
an important feature needed for the efficient application of
DEC to systems comprised of multiple spatial scales.

Next, we consider a rectangular cavity enclosed by a su-
perconducting shell that has a finite thickness. The penetra-
tion depth of this shell is set to be short enough so that the
field inside the cavity decays immediately at the material in-
terface, i.e. the inner walls of the cavity. Instead of directly
imposing the Dirichlet boundary condition at the cavity inner
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Ne

1.6×103 6×103 1.1×104 1.6×104

10-2

10-4

10-3

(0,1,1) - hard wall
(0,1,1) - embedded
(1,0,1) - hard wall

(1,1,0) - hard wall
(1,0,1) - embedded

(1,1,0) - embedded

Figure 3. Comparison between the convergence of computed eigen-
values for a cavity embedded in a superconducting shell and those
for a perfect cavity with the hard-wall boundary condition im-
posed. Ne is the number of edges used in discretizing the cav-
ity. The dimensions of the vacuum regions within both cavities are
Lx = 1 cm, Ly = 1.5 cm, and Lz = 2 cm. A schematic of the em-
bedded cavity is shown in the inset at the center top, while the inset
at the top-right corner shows schematically how the effective pen-
etration depth is assigned on the inner boundary of this cavity via
coarse-graining.

walls as in the previous case, the values of the field are left
floating there, and we only impose a “hard-wall” boundary
condition (Eq. (10)) at the outer boundary of the shell, which
is also the boundary of the computational domain. The pur-
pose of this numerical experiment is to investigate the va-
lidity of DEC when there are sharp interfaces, such as the
vacuum-superconductor boundary here, where the field un-
dergoes abrupt variations. The procedure for applying ma-
terial properties to the edges lying on the interface is given
in Eq. (8). In a non-uniform tetrahedral mesh, the partition-
ing of the dual faces e† that lie on multi-material interfaces to
the neighboring material domains is also highly non-uniform.
This leads to the effective penetration depth of each edge on
the same boundary being different from one another. One can
imagine the vacuum-material interface made of many small
patches, each with a slightly different material property, as
shown in the top-right inset in Fig. 3. We compute the eigen-
modes of Eq. (9) for an embedded cavity that has the same
dimensional ratios as in the perfect cavity case, and the con-
vergence is shown in Fig. 3. The embedded cavity calcula-
tion achieves a similar order of accuracy as the perfect cavity
case, and the two converge at the same rate as mesh density
increases.

Figure 4. Demonstration of the appearances and removals of hy-
bridization between degenerate modes in a system with hidden sym-
metries. (a) The degenerate 3rd and 4th modes of a rectangular cav-
ity with perfect superconducting boundaries and dimension ratios of
1 : 1.5 : 2. (b) The 3rd and 4th modes of a perturbed cavity, when the
dimension ratios are now 1:1.5:2.01. The two modes are now well-
characterized by their respective set of quantum numbers, which are
schematically shown below the field distributions.

Detection and removal of hybridization between degenerate modes

In symmetric structures such as the rectangular cavity dis-
cussed earlier in this article, there is a possibility of hybridiza-
tion of degenerate modes in the numerically obtained eigen-
spectrum. These degeneracies are sometimes called “acciden-
tal” because they are not predicted by the symmetry group of
the Hamiltonian but originate from a hidden symmetry of the
system [60]. In such cases, numerical solvers tend to face dif-
ficulties in distinguishing these degenerate modes. For a rect-
angular superconducting cavity, the eigenvalues correspond-
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ing to each field component Ai of the field A reads

Ei ∼
(
n2x
L2
x

+
n2y
L2
y

+
n2z
L2
z

)
, (11)

with the corresponding eigenfunction that is separable in
cartesian coordinates

Ai = Xi(x)Yi(y)Zi(z). (12)

If the ratio between any two of the three lengths Lx, Ly or
Lz are integers, then there can be degeneracies. To numer-
ically lift these degeneracies, the hidden symmetry needs to
be eliminated. In this specific case, we can do so by either
extending the cavity boundary to have a finite thickness, as
was done in our earlier discussion on the embedded cavity, or
by introducing a small perturbation to the cavity shape. To
demonstrate this, we consider again the perfect cavity with di-
mensions Lx:Ly:Lz = 1:1.5 :2. In Fig. 4a, where the 3rd and
4th modes of the unperturbed cavity are plotted, we can see
that each field component of the two modes is not character-
ized by any single set of quantum numbers (nx, ny, nz), but
rather a linear combination of the two accidentally degenerate
modes. In Fig. 4b, we plot the same modes, but the cavity is
now slightly perturbed by an amount ∆Lz = 0.01 along z, so
that now L′

z = Lz + ∆Lz = 2.01. The degeneracy is then
lifted, and each of the two modes is now well-described by a
distinct set of quantum numbers, which helps demonstrate the
sensitivity of our numerical scheme to small changes in the
geometry of the system simulated.

Calculations for closed multiscale systems

So far, in this article, we have validated the accuracy of
DEC by applying the method to simple systems with a large
degree of symmetry and comparing the results to analytical
solutions. The strength of DEC, however, lies in its ability
to correctly capture the properties of systems containing mul-
tiple spatial scales through coarse-graining. An example of
a multiscale system is a three-dimensional superconducting
cavity containing one or a few superconducting chips whose
modes can be efficiently computed using DEC. The dimen-
sions of a 3D cavity are typically on the order of ∼ 1 cm,
while a dielectric substrate holding the qubits is a few mm
in size, and a qubit itself can have its smallest components in
the range from micrometers down to tens of nanometers. To
model such systems, one possible workaround to avoid com-
putational bottlenecks is dividing the problem into individual
simulations of separate parts. However, due to hybridization,
the spectral characteristics of the entire system composed of
these devices being in the vicinity of each other can be vastly
different from that of the individual components. Hence, it is
imperative to be able to model the entire structure and directly
extract its modes.

A schematic of the system we shall consider is shown in
Fig. 5a. It consists of a 3D cavity containing two dielec-
tric substrates. A transmon qubit is mounted on each sub-
strate. Each transmon qubit is composed of two supercon-
ducting capacitor pads connected by a Josephson junction.

It is a well-known property of Josephson junctions that their
dynamics are well characterized by the coarse-grained phase
across it [61]. In other words, to an observer outside and away
from the junction and who can only make measurements with
a limited precision, the detailed dynamics inside the junction
is unimportant to the dynamics that results from its interac-
tion with the surrounding electromagnetic environment. This
property can be utilized in coarse-grained calculations using
DEC to reduce the complexity of the mesh needed; this is
done by modeling a junction by a single edge instead of finely
meshing the junction geometry. In the calculations of electro-
magnetic modes, this is equivalent to the linearization of the
junction across the edge. To obtain modes whose wavelengths
are orders of magnitude larger than the longitudinal size of the
junction, the fine details of the material distribution within the
junction are irrelevant and do not need to be resolved during
meshing. In Fig. 5b-5e, a few example modes of this multi-
scale system are shown. In this calculation, we have set the
dimensions of the cavity to be 1160×160×550 (mm), while
the sizes of the two identical substrates are both 25×50×3 (mm)
and are separated by a distance of 600mm. The size of the ca-
pacitor pads of the qubits is 6×3×0.1 (mm), and the two pads
belonging to the same qubit are connected by a 0.2mm-long
bridge. We show the results for different types of modes that
the system supports; in Figs. 5b and 5c, single qubit modes
are shown, where the hybridization with the other qubit and
the cavity field is suppressed. On the other hand, there can
also be modes in which both qubits participate, such as the
one shown in Fig. 5d. Finally, in Fig. 5e, we demonstrate a
hybridized mode in which both the qubits and the cavity par-
ticipate.

Calculations of open modes

So far in this article, we have considered only closed sys-
tems, i.e. systems that only support modes that decay ex-
ponentially beyond their boundaries. We would also like to
extend our method to include the calculations of radiative
modes, which are crucial to the understanding of open sys-
tems. The correct modeling of open systems, where fields
can propagate into and out of a confined domain, has been
of great interest since it is directly related to the quantifica-
tion of qubit lifetimes and radiative losses. Beyond the realm
of superconducting microwave circuits, the problem has also
been important to the broader scope of electromagnetic de-
vices. We are particularly interested in the implementation
of finite, open boundaries that are transparent so that fields
can propagate through without any reflection. Moreover, the
formulation needs to be compatible with the eventual second
quantization of the electromagnetic field everywhere within
the system, including the boundary itself. Here, we provide
the derivations of two such implementations and present the
numerical demonstrations.
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Figure 5. (a) Schematic of a system consisting of a three-dimensional superconducting cavity containing two spatially separated chips. Each
chip is a dielectric substrate on top of which a Josephson qubit is mounted. The qubit is made of two superconducting capacitor pads connected
together by a bridge containing a Josephson junction. A few exemplary modes of the system are plotted, such as (b) the mode where only
qubit 1 participates, (c) only qubit 2 participates, (d) both qubits are activated, and (e) a hybridization of the two qubits and the cavity field.
The units for all the axes in plots (b)-(e) are in millimeters.

Figure 6. Schematic of an open system D consisting of multiple
material regions with refractive indices ni. The imaginary boundary
∂D (the dashed contour) can have an arbitrary shape as long as all
regions of interest are enclosed within it. The secondary boundary
∂D′ is created by contracting everywhere on the original boundary
∂D by an amount ∆r.

Green’s boundary integral formulation for scalar fields

First, we discuss an implementation of open boundaries us-
ing Green’s boundary integral formalism. Consider a domain
D consisting of possibly multiple disjoint regions all enclosed
by an imaginary boundary surface. Before considering the
spectral problem associated with the vector Helmholtz equa-
tion 6, we consider the warm-up problem of the Helmholtz

equation for a scalar field ϕ(r):

∇2ϕ(r) + n2i (r)k
2ϕ(r) = 0, (13)

where n(r) is the dielectric function of the ith region Γi, and
k is again the wavenumber. The Green’s function of the
Helmholtz operator reads

G(r, r′, k) =

{
− i

4H
(1)
0 (nik|r− r′|) in 2D,

− einik|r−r′|

4π|r−r′| in 3D,
(14)

where H(1)
0 is the Hankel function of the first kind. At first

glance, the Green’s functions in Eq. (14) and their derivatives
diverging at r= r′ might seem like a problem. However, this
difficulty can be circumvented by casting the boundary con-
dition in an integral form to regularize the Green’s function
singularity. Upon applying Green’s identity and taking the
limit as r′ → ∂Γi, the field value at a point r′ that lies on the
boundary ∂Γi of a domain is [62]

ϕ(r′) = 2Pd−1

∫

∂Γi

[
ϕ(r)∇G(r, r′, k)−G(r, r′, k)∇ϕ(r)

]
·ds,

(15)
where Pd−1 indicates the (d−1)-dimensional Cauchy princi-
pal value integral, with d being the dimension of the domain.
A detailed derivation of Eq. (15) is given in the Supplemen-
tary Material for completeness. In Eq. (15), the field at a point
on the boundary is determined by the field and its gradient ev-
erywhere else on the same boundary. Eq. (15) is applicable to
smooth boundaries of any form and shape. They can also be
made up of different disjoint but closed segments.

To use Eq. (15) for applying boundary condition at the
domain boundary ∂D, we need to numerically evaluate the
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normal gradient of the boundary field in a way that is self-
contained within the field living on the boundary itself. To
do so, consider a secondary boundary ∂D′ that is formed by
contracting ∂D by an amount ∆r along the normal direction
everywhere on the surface, as shown schematically in Fig. 6.
There is now a thin layer bounded by ∂D ∪ ∂D′ over which
Green’s identity can be performed to obtain Eq. (15) that de-
termines ϕ(r′) for every point r′ ∈ ∂D. The surface integral
is now done over ∂D ∪ ∂D′. Note that during the evaluation
of Eq. (15) the unit normal vector n̂ on ∂D′ points into D.

The application of open boundaries using Eq. (15) results
in a boundary condition that depends parametrically on k. To
solve for the eigenmodes of Eq. (13), we rewrite it into the
following matrix representation

[
Hs(k) + k2

]
Φ = 0, (16)

where Hs(k) is the scalar Helmholtz operator, and the vector
Φ contains the scalar field evaluated at all vertices in the com-
putational mesh. The task of finding the eigenvalues of Hs(k)
can be cast into a singular value decomposition (SVD) prob-
lem [63]. The eigenvalues kα correspond to locations of local
minima in the lowest singular value of Ms(k) = Hs(k) + k2.

We demonstrate the formulation presented here through the
calculations of the open modes of Eq. (13) applied to a dielec-
tric disk placed in a vacuum. The disk has radius Rd=5mm
and n = 1.5, while the boundary is chosen to be a concentric
circle with radius R=8mm. The results for the lowest singu-
lar value of Ms(k) is shown in Fig. 7a for k within the range
0 ≤ Re(kRd) ≤ 4π and −3.5π ≤ Im(kRd) < 0. Since
the system supports incoming and outgoing modes equally,
we only need to focus on the outgoing modes, whose real part
of k is positive. The distribution of the eigenvalues has a mir-
ror symmetry across Re(k) = 0, and the incoming modes are
only different from the outgoing ones by the sign of Re(k).
The local minima in Fig. 7a, whose locations correspond to
the eigenvalues kα, are collected and plotted in Fig. 7b. We
also compare these numerically computed eigenvalues with
the semi-analytical solutions obtained by solving the transcen-
dental equation arising from matching the continuity condi-
tion of the field and its normal derivative at the edge of the
disk. As seen in Fig. 7b, the numerically obtained eigenval-
ues (orange) agree with those obtained through the analytical
equation (blue) over a wide range of k.

The field distributions of a few eigenmodes are presented
in Fig. 8, where the real part of the fields, Re(ϕ), are plot-
ted. The numerical labeling of the modes are done first in
ascending order of Im(kαRd) within the range {−3.5π, 0},
then in ascending order of Re(kαRd) in the range {0, 4π}.
The features exhibited by these distributions can be under-
stood through analytical considerations; in polar coordinates,
one can write the fundamental solution to the scalar Helmholtz
equation as ϕ(r, θ) =R(r)Θ(θ). The angular dependence of
the fields is of the form Θ(θ) ∼ e±imθ, which is confirmed by
the curves in red in Fig. 8, where the angular dependence of
the fields are plotted at a fixed radius. The radial component,
on the other hand, is given by R(r) ∼ Zm(nkr), where Zm

is either the Bessel function of the first kind Jm, Bessel func-
tion of the second kind Ym, or the Hankel functions H(1,2)

m .

Figure 7. (a) The lowest singular value of Ms(k) computed for a
sample range of k. The physical system is a dielectric disk with
radius Rd = 5mm and n = 1.5. A schematic of the system is given
in the top-left corner. (b) The eigenvalues kn of Hs(k), are indicated
by the locations of the local minima of the lowest singular value of
Ms(k). The semi-analytical results are plotted in blue, while the
numerically computed values are plotted in orange.

Inside the dielectric disk, the radial component of the field is
given by Jm, while the field outside the disk is described by
H

(1)
m

(
H

(2)
m

)
for an outgoing (incoming) wave. This radial

dependence is shown in the blue curves in Fig. 8.

Green’s boundary integral formulation for vector fields

A problem of greater interest is, however, the implementa-
tion of open boundaries for vector fields. For this, we have
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Figure 8. A selection of open modes of the scalar Helmholtz equation on a dielectric disk whose radius is Rd = 5mm and refractive index is
n = 1.5. In each panel: the surface plot shows the distribution of Re(ϕ) in the entire domain inside the boundary radius R. The blue curve
shows the value of Re(ϕ) at a fixed angle θ = 4π/5 as a function of the radial coordinate r. The units for the horizontal axes are in mm. The
orange vertical line indicates the edge of the disk. The red curve shows the field at a fixed radius r = 4 as a function of the angular coordinate
θ.

extended Green’s boundary integral method for scalar fields
to address the vector Helmholtz problem as well. Consider
a divergence-free vector field A(r′) that satisfies Eq. (6) de-
fined over the domain D. The dependence of the field value at
a location r′ ∈ ∂D on the field everywhere else on the same
boundary is given by

A(r′) = −2Pd−1

∫

∂D

{
G(r, r′, k)

[
(∇×A)× n̂

]
(17)

−∇G(r, r′, k)(A · n̂)−∇G× (A× n̂)

}
ds,

where G(r, r′, k) is again the scalar Green’s function as de-
fined in Eq. (14), and the principal value integral is general-
ized to the vector case. A detailed derivation of Eq. (17) is

given in the Supplementary Material.
We demonstrate the implementation of the boundary con-

dition in Eq. (17) in DEC by calculating the modes of Eq. (6)
applied to the same dielectric disk studied in the scalar case.
Consider a discretization of the computational domain into a
polar grid that has NR and Nθ vertices along each radial ray
and circle, respectively. In the case of open BC, it is natural to
allow the mesh to also be “open” such that there are additional
edges on the physical boundary of the system that protrude
outwards in the direction normal to the surface, as shown in
Fig. 9a. A primal edge e in this setup is identified by nr and
nθ, its radial and angular indices, accompanied by the super-
script {r, θ} that indicates the direction of the edge. In DEC,
applying BC to a vector field translates to the application of
BC for the normal and tangential edge fields Φ(erNR,nθ

) and
Φ(eθNR,nθ

) living on the boundary edges. The condition in
Eq. (17) then becomes

Φ(erNR,nθ
) = −Φ(erNR−1,nθ

) +
∑

θ

2

{
∂G

∂r

[
Φr

NR+1(θ) + Φr
NR

(θ)
]
R∆θ − ∂G

∂θ

[
Φθ

nθ−1(R) + Φθ
nθ
(R)

]∆R
R

}
, (18)

for the radial boundary edge, and

Φ(eθNR,nθ
) = −Φ(eθNR,nθ−1)−

∑

θ

{
2∆θ

[
G(r, r′, k)

(
1 +

R

∆R

)
−R

∂G

∂r

](
Φθ

nθ
(R) + Φθ

nθ−1(R)
)

(19)

− 2G
R∆θ

∆R

(
Φθ

nθ
(R−∆R) + Φθ

nθ−1(R−∆R)
)
− 2R

∆θ2

∆R

∂G

∂θ

[
Φr

NR+1(θ) + Φr
NR

(θ)
]

−G
R∆θ

∆R

[
Φr

NR+1(θ +∆θ) + Φr
NR

(θ +∆θ)− Φr
NR+1(θ −∆θ)− Φr

NR
(θ −∆θ)

]}
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Figure 9. Open-mode calculations of the vector Helmholtz problem for a dielectric disk placed in a vacuum. The disk has radius Rd = 5mm
and n = 1.5. (a) A schematic of the polar grid used in the calculation. (b) The surface plot of the lowest singular value of the operator Mv(k)
as a function of k. The local minima indicate the eigenvalues of the vector Helmholtz operator Hv(k). (c) The distributions of Re(A) in a
number of radiative modes (the units for all axes are in mm).

for the angular boundary edges, where ∆R and ∆θ are the spacing between consecutive grid points on a radial ray and circle,
respectively.

Similar to the scalar problem, to search for the eigenval-
ues, we compute the lowest singular values of the operator
Mv(k) = Hv(k) − k2, where Hv(k) is the vector Helmholtz
operator. The distribution of the local minima of Mv(k) in
k-space is shown in Fig. 9b. The field distributions of a few
randomly selected eigenmodes are presented in Fig. 9c, where
the plotted vector fields exhibit the correct behavior of how
radiations permeate and escape a dielectric disk.

To demonstrate the versatility of DEC in computing radia-
tive modes of arbitrarily shaped systems, we apply the formu-
lation to the modeling of a superconducting qubit chip placed
in the region between two cylindrical capacitors, as schemat-
ically shown in Fig. 10a. The qubit is made of two supercon-
ducting islands that are separated by a distance of 0.75mm
and connected by a bridge that contains a Josephson junction.
The width of both the bridge and the junction is 50µm, and
the qubit is mounted on a circular dielectric disk that has a ra-
dius Rd = 4mm with refractive index n = 1.5. We assume
the two ideal superconducting cylindrical capacitors extend
indefinitely towards both ends, and the qubit is placed in the
middle of the slit separating them. The width h of the vacuum
spacing between the two cylinders is taken to be very small
compared to their radius Rc. This allows us to effectively dis-
cretize the distance between the surfaces of the two cylinders
by two edges. Due to mirror symmetry at z = 0, the ampli-
tude of the coarse-grained field on one z-edge is identical to
that of its mirroring edge. This allows us to decouple the in-

plane field component from the out-of-plane component, and
we can focus on solving for the modes of Eq. (9) applied to
the 2D in-plane field on the z = 0 slice where the substrate
containing the qubit is located. We choose the computational
boundary to be a circle whose radius R = 8mm is half that
of the cylindrical capacitors Rc. There are two notable types
of modes, whose examples are shown in Figs. 10b-10c. Due
to the geometry of the qubit being two islands connected by a
bridge, it can act as a dipole. A mode that behaves this way
is shown in Fig. 10b, where the field lines exit in the normal
direction from one island and enter the other island. The field
also decays in the bulks of the islands at the rate determined
by their penetration depths. In another scenario, due to their
separation, the two islands can behave as individual supercon-
ducting objects around which the field lines flow with no nor-
mal component at the surfaces of the islands. A demonstration
of such a mode is shown in Fig. 10c.

As was mentioned earlier, the formulation for calculating
radiative fields using Green’s function method is flexible in
terms of the shape and topology of boundary surfaces it can
be applied. The physical boundary of the system can be made
of multiple, possibly disjoint, but closed segments that bound
a non-simply connected structure. However, the vector field
being calculated has to be divergent-free as a prerequisite. Al-
though this restriction is not a concern in many useful cases,
such as the calculation of the electric field in a source-less re-
gion or of the magnetic vector potential in the Coulomb gauge,
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Figure 10. Calculations of radiative modes of a transmon qubit sandwiched between two cylindrical superconducting capacitors. (a) The
schematic of the system considered; the qubit is mounted on a circular dielectric disk that has radius Rd = 4mm, refractive index n = 1.5.
The qubit is composed of two superconducting islands that are 0.75mm away from each other and connected by a bridge containing a junction
in the middle. The width of both the bridge and the junction is 50µm. (b) An example of a “dipole” mode; the qubit acts like a dipole with
the field lines starting from the surface of one island and ending on the surface of another island. (c) An example of a mode where the field
lines flow around the individual capacitor islands with no normal component at each island’s surface. The boundary of the qubit is painted in
yellow in the enlarged insets, and all the axes of the plots are in units of mm.

it is sometimes helpful to have the freedom of not necessarily
choosing a divergence-less field. In the following section, we
introduce an alternative formulation that achieves this.

Vector spherical harmonics expansion

In this section, we discuss the implementation of open
boundaries using vector spherical harmonics (VSH) expan-
sions. The VSH [64] is an extension for vector fields of the
perhaps more well-known scalar spherical harmonics. There
are three sub-classes of these vectors, defined in spherical co-
ordinates (r, θ, φ) as

Ylm = Ylm(θ, φ)r̂ (20)
Ψlm = r∇Ylm(θ, φ) (21)
Φlm = r×∇Ylm(θ, φ) (22)

that altogether form an orthonormal and complete basis. Any
vector field can then be expanded as follows

A(r) =

∞∑

l=0

l∑

m=−l

Ar
lmYlm +A(1)

lmΨlm +A(2)
lmΦlm, (23)

where coefficients Ar
lm,A

(1)
lm and A(2)

lm are functions of the
radial coordinate r. In Eq. (23) above, of the three mutually
orthogonal terms, the first term on the right-hand side is the
radial component of the field, while the remaining two terms
are angular contributions. Note that neither of the two angular
terms aligns with azimuthal or polar directions but is a linear
combination of both. Using Eq. (23) as an ansatz for the field,
Eq. (6) can then be split into three decoupled ODEs, each for
one of the three coefficients. Their solutions are

Ar
lm =

Zl+1/2(kr)

r3/2
, (24)

A(1)
lm =

1

l(l + 1)

{
Zl+1/2(kr)

r3/2
+

k√
r

[
Zl−1/2(kr)

− Zl+3/2(kr)
]}
, (25)

A(2)
lm =

π

2kr
Zl+1/2(kr) (26)

where Z in general can be the Bessel function of the first
kind J , the Bessel function of the second kind Y , or the Han-
kel functions H(1,2). For the outgoing(incoming) waves, the
Hankel functions of the first(second) kind provide the appro-
priate description. After the VSH expansion in Eq. (23), the
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implementation of the open boundary condition on the field
A now reduces to the BC on each of the three field compo-
nents Ar,A(1) and A(2). Here we discuss the BC for Ar

as an example, while the details about BCs for A(1) and A(2)

are given in the Supplementary Material. Consider a spheri-
cal boundary of radius R. The series expansion for the radial
component of the radiating field on the sphere is given by

Ar(R, θ, φ) =
∑

l,m

ãrlmA
r
lm(R)Ylm(R, θ, φ)

=
∑

l,m

ãrlm
Hl+1/2(kR)

R−3/2
Ylmr̂, (27)

where ãrlm are the expansion coefficients. Performing an inte-
gral over the surface of the sphere and utilizing the orthonor-
mality condition of VSH, we arrive at an expression for the
expansion coefficients as follows

arlm ≡ ãrlmHl+1/2(kR) (28)

= R3/2

∫
dΩAr ·Y∗

lm

= R−1/2
∑

i,j

Ar(R, θi, φj)Y
∗
lm(θi, φj)∆A(f),

where
∫
dΩ is the solid angle integral that covers the entire

sphere, and the last line of Eq. (28) above is the discretized
version of the integral written as a sum over all the triangular
patches f whose centers are located at (θi, φj) on the spheri-
cal boundary. To apply the BCs, consider the sphere beneath
the boundary that has radius R−∆r (i.e. the second-to-last
layer). The radial derivative of Ar is given by

Ar(R, θ, φ)−Ar(R−∆R, θ, φ)

∆R
= (29)

∑

l,m

ãrlm

[ −3

2R5/2
Hl+1/2(kR) +

k

R3/2
H ′

l+1/2(kR)

]
Yl,m,

which allows us to write the field at the boundary Ar(R, θ, φ)
in terms of the expansion coefficients ãrlm and the field at the
layer with radius R−∆R. Using Eq. (29) and the expression
for ãrlm derived in Eq. (28), the boundary condition for Ar is
then

Ar(R, θ, φ)=
∑

l.m

∑

i,j

Ar(R−∆R, θi, φj)Y
∗
lm(θi, φj)

∆A(f)

R2

×
{
1 + ∆R

[
− 3

2R
+ k

Hl−1/2(kR)−Hl+3/2(kR)

2Hl+1/2(kR)

]}

× Ylm(θ, φ). (30)

The expression in Eq. (30) is for the radial component of
the field, which in DEC is a scalar living on vertices of
the primal mesh. To arrive at the appropriate BC for the
edge field Φ(e) governed by the discrete vector Helmholtz
equation given in Eq. (9), we need to rewrite Ar(R, θ, φ)
and Ar(R−∆R, θi, φj) in terms of the edges belonging to
the vertex located at (R, θ, φ). This means two consecutive
spherical layers beneath the boundary are needed to compute
Ar(R−∆R, θi, φj). The procedure as a whole can be sub-
stantially simplified by designing the mesh so that the bound-
ary surface and the two layers beneath it have identical tri-
angulation patterns. This ensures that for any vertex vb lo-
cated at (R, θ, φ) on the boundary surface, there is an edge
er oriented radially that connects vb with the vertex v′b at
(R−∆R, θ, φ) that has the same angular coordinates as vb.
Similarly, there is always an edge connecting v′b with a vertex
v′′b at (R−2∆R, θ, φ). Note that we only need the three out-
most layers of the mesh to be spherical and have identical tri-
angulation patterns, while the rest of the internal domain can
be freely and randomly discretized with tetrahedra. Similar to
the discussion on Green’s function approach in the previous
section, here, for open boundaries, it is convenient to use an
open mesh such that there are radial edges that protrude out
of the boundary surface. The BC applied to these boundary
radial edges erb is then

Φ(erb) = −Φ(er
′

b ) +
∑

er

∑

f⊃v|v⊂er

∑

l,m

∆A(f)

3R2
Φ(er)

{
1 + ∆R

[
− 3

2R
+ k

Hl−1/2(kR)−Hl+3/2(kR)

2Hl+1/2(kR)

]
Y ∗
lm(f)Ylm(θ, φ)

}
,

(31)

where er
′

b is the other radial edge that shares the boundary
vertex with erb . In Eq. (31), the first sum is done over all ra-
dial edges er living in the two layers beneath the boundary
surface, while the second sum is done over all faces f that
share a vertex with er. This concludes our derivation for the
open BC applied to a radial edge in the DEC framework. The
boundary conditions for edges lying tangential to the surface
are discussed in the Supplementary Material.

We apply the formulation developed here to calculate the
modes for a three-dimensional dielectric microsphere sur-

rounded by a vacuum. The radius of this dielectric sphere
is kept fixed at Rd = 12µm throughout all calculations dis-
cussed in this section. The computational boundary is an
“imaginary” spherical surface at a finite radius R > Rd, as
schematically shown in Fig. 11a. The results of the eigenvalue
search found through singular value calculations are shown in
Fig. 11b, where we have chosen R = 24µm. With a primal
mesh of ≈ 2900 vertices and ≈ 18000 edges, the local min-
ima of the smallest singular value are of order 10−7, prov-
ing them to be reliable indicators of the eigenvalues of the
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Figure 11. Results for the open-boundary modes of a dielectric mi-
crosphere. (a) Schematic of the system studied: a sphere of radius
Rd = 12µm. (b) The lowest singular value of Mv(k) as a function
of k. (c) Error of the lowest eigenvalue as a function of the largest
ordering of Bessel terms. (d) Error of the lowest eigenvalue as a
function of the boundary radius R.

system. The dielectric microsphere is chosen to demonstrate
our formulation because there exist semi-analytical solutions
that can be obtained by solving the transcendental equation
arising from enforcing the continuity of the field and its nor-
mal derivative at the dielectric-vacuum interface. We utilize
these solutions to investigate the efficacy of our method in a
number of ways. First, the numerical implementation of the
series expansion in Eq. (27) requires a truncation in the num-
ber of terms considered. We, therefore, investigate the depen-
dence of convergence rate on the number of Bessel functions
included while keeping the mesh size fixed. The results can
be seen in Fig. 11c, where we compute the error of the nu-
merically obtained lowest eigenvalue with the semi-analytical
solution. With a manageable number of Lmax = 10, where
Lmax is the largest ordering of Bessel terms in the expansion,
the error reduces to below 4%. Another important factor is
how large the computational boundary needs to be in order
to achieve precise solutions since accuracy is expected to im-
prove as the boundary is moved further away from where the
devices are concentrated, but doing so also increases mesh
complexity, and hence the computational burden is exacer-
bated. In Fig. 11d, the convergence as a function of boundary
radius R of the lowest eigenvalue is plotted. We see that even
with a tight boundary when R = 16µm (while the dielectric
sphere is kept at 12µm) the error is relatively low at 15%, and
for R = 2Rd it is reduced to < 4%. These results verify that
our coarse-grained implementation of open boundaries using
VSH is able to produce accurate solutions using a boundary
of reasonable size.

The formulation based on VSH expansions introduced here

allows for effective calculations of open modes while also re-
moving the requirement of divergence-less fields. However,
unlike Green’s boundary integral formulation, which is adapt-
able to arbitrarily-shaped boundaries, this approach needs to
be implemented on a spherical surface. This makes the formu-
lation most ideal when applied to three-dimensional structures
that have comparable lengths along three directions, such as
3D cavities. In some other specialized cases, this require-
ment may limit us from drawing the tightest boundary pos-
sible, which in turn might cause the computational domain to
be larger than it needs to be. An example could be a copla-
nar waveguide whose length is much larger than its planar
width, which in turn is much larger than the thickness along
the cross-section of the waveguide. In such a case, replac-
ing a spherical boundary with an ellipsoidal one is prefer-
able since an ellipsoid has three tuning parameters that al-
low squeezing and stretching in three directions. Fortunately,
the series expansion-based approach discussed here is extend-
able to ellipsoidal coordinates. This relies on the fact that
the Helmholtz equation is separable in ellipsoidal coordinates
as well, which allows for the expansion of functions, now in
terms of ellipsoidal waves. Although the mathematically in-
tensive discussion on how to generalize our method to ellip-
soidal coordinates is beyond the scope of this article, in the
Supplementary Material, we provide a preamble by discussing
a brief proof of the separability of the Helmholtz equation.

DISCUSSION

In this article, we have introduced a spectral theory for the
modeling of mode hybridization and relaxation rates in gen-
eral systems composed of superconducting and dielectric ma-
terials. In doing so, we have demonstrated the following im-
portant points:

(1) We show that the coarse-grained formulation of electro-
dynamics using discrete exterior calculus is adaptable to both
simplicial and complex meshing strategies with equal preci-
sion. Although based on the calculations of coarse-grained
quantities, the numerical scheme is highly sensitive to small
changes in the geometry and topology of the system, as was
demonstrated in the categorization of degenerate modes aris-
ing from hidden symmetries when a small perturbation is in-
troduced.

(2) The method, which maps the problem of modeling vec-
tor fields to the calculation of averaged projections living on
discrete edges, is particularly effective when applied to sys-
tems composed of objects of multiple spatial scales, such as
those used in superconducting electronic circuits. Since the
method keeps track of the average variables, it allows for more
efficient meshing strategies that take into account the sizes of
the Josephson junctions as well as the finite resolutions of the
measurement apparatus. This is an important advantage that
this formulation offers because, here, the mesh does not need
to be finer than the size of JJs or the measurement apparatus.

(3) We introduce two implementations of open boundaries
for the vector wave equation that are applicable to a wide
range of electromagnetic systems. By drawing “imaginary,”
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transparent boundaries that are reasonably sized, we are able
to faithfully produce the open modes that agree well with
analytical solutions. We also demonstrate the flexibility of
the formulation by applying it to the calculations of radiative
modes of a superconducting qubit.

The spectral theory presented here is suitable for the sec-
ond quantization of the electromagnetic field and the subse-
quent studies of open quantum systems with arbitrary com-
plexity. The ability to accurately and efficiently extract relax-
ation rates, as well as the quantification of mode hybridization
demonstrated here, is useful to the modeling and optimization
of superconducting circuits.

METHODS

As mentioned in the Results section, the spectral problem
of both closed and open systems are computed through the
coarse-graining of Eq. (6). Operationally, this is obtained by
evaluating the integral

∫
e
A ·dℓ along an edge e in the dis-

cretized grid of the domain, which produces Eq. (9).
For systems enclosed by a cavity with boundaries made

of either perfect (λL = 0) or non-perfect superconductors
(λL > 0), the application of the Dirichlet boundary condi-
tion on the field results in the eigenvalue problem of type
(H − k2)Φ = 0 (where H is independent of k) that can be
solved using standard eigensolvers.

For the open-boundary problem, both implementa-
tions introduced here result in an equation of the form[
H(k)− k2

]
Φ = 0 where H(k) depends non-trivially on k.

To solve for eigenvalues kα, we cast the equation into a sin-
gular value problem, in which kα ideally corresponds to when
the lowest singular value of M(k) = H(k) − k2 is zero. In
reality, due to numerical artifacts, the lowest singular value of
M never actually goes to zero. We, therefore, look for local
minima during the sweep over the complex plane of k. As
shown in the Result section, these local minima are sharp and
can be identified with high precision.

The source code for the calculations in this article is avail-
able in the open-source DEC-QED repository [58].

ACKNOWLEDGEMENTS

We gratefully acknowledge discussions with Nicholas
Bronn, Thomas G. McConkey, Anil N. Hirani, Thomas Mal-
donado, Zoe Zager, and Haley M. Cole. We are grateful
to Benjamin Lienhard and Wentao Fan for giving the paper
their critical read and for the insightful comments. We ac-
knowledge support from the US Department of Energy, Of-
fice of Basic Energy Sciences, Division of Materials Sci-
ences and Engineering, under Award No. DESC0016011.
The simulations presented in this article were performed on
computational resources managed and supported by Prince-
ton Research Computing, a consortium of groups including
the Princeton Institute for Computational Science and Engi-
neering (PICSciE) and the Office of Information Technology’s
High-Performance Computing Center and Visualization Lab-
oratory at Princeton University.
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DERIVATION OF GREEN’S BOUNDARY INTEGRALS

In this Section, we show the derivations for the integral forms of the boundary fields that obey the scalar and vector
Helmholtz equations as were shown in Eqs. (15) and (17) in the main text, respectively.

Consider a homogeneous domain Γi bounded by the boundary ∂Γi, the Green’s function is the solution of the
impulse response of scalar Helmholtz operator and is defined by

[
∇2 + n2i k

2
]
G(r, r′, k) = δ(r− r′), (S1)

where δ(r−r′) is a d−dimensional Dirac δ−function. Multiplying Eq. (13) by G(r, r′, k) and Eq. (S1) by ϕ(r), then
applying Green’s theorem gives

ϕ(r′) =
ˆ

∂Γi

[
ϕ(r)∇G(r, r′, k)−G(r, r′, k)∇ϕ(r)

]
· ds, (S2)

for r′ strictly inside the domain boundary ∂Γi. As we take the limit r′ → ∂Γi, both G(r, r
′, k) and its normal gradient

diverges. However, we can show for the 3D case that Eq. (S2) is still integrable. A proof for 2D can be found in Ref. 1.
We first consider an infinitesimal half-spherical deformation C of the boundary at r′ such that the surface now avoids
and encloses the singular point inside the domain Γi as seen Fig. (S1a). Let the radius of the deformation be ϵ, then
at the limit ϵ→ 0 the integral of second term in Eq. (S2) over C vanishes

lim
ϵ→0

ˆ

C

G(r, r′, k)∇ϕ(r) · ds = lim
ϵ→0

−∂ϕ
∂n

∣∣∣∣
r′

1

4π

(
1

ϵ
+ inik + ...

)
2πϵ2 = 0, (S3)

while the integral of the first term over C gives

lim
ϵ→0

ˆ

C

ϕ
∂G

∂n
ds = lim

ϵ→0
−ϕ(r′)e

inikϵ

4π

(
inik

ϵ
− 1

ϵ2

)
2πϵ2

=
1

2
ϕ(r′), (S4)

where in the maneuvers above we have used the series expansion of the Green’s function, which reads

G(r, r′, k) = −e
inik|r−r′|

4π|r− r′| = −
(

1

|r− r′| + inik + ...

)
. (S5)

From the results in (S3) and (S4) it follows that the integral in Eq. (S2) when r′ ∈ ∂Γi evaluated over the entire
boundary surface is indeed the form shown in Eq. (15) in the main text.

For the vector case, we start by introducing the vector analog of Green’s identity

ˆ

Γi

(
u · ∇×∇×v − v · ∇×∇×u

)
dV =

ˆ

∂Γi

(
v×∇×u− u×∇×v

)
· ds, (S6)

where u and v are vector fields. We now choose v = (r), our field of interest, and u = G ≡ G(r, r′, k)ν̂, where ν̂ is a
unit vector that has a randomly selected, but constant, orientation. For a point r′ outside of Γi, Eq. (S6) reduces to

ˆ

Γi

(ν̂ ·∇G)(∇·A)dV =

ˆ

∂Γi

{
(ν̂ ·∇G)(A·n̂) +A×(∇G×ν̂)−G×∇×A

}
· ds (S7)

=

ˆ

∂Γi

{
(ν̂ ·∇G)(A·n̂) + (ν̂ ·A)(∇G·n̂)− (ν̂ ·n̂)(∇G·A)−G·

[
(∇×A)×n̂

]}
ds,
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(a)

(b) (c)

FIG. S1. Sketches of how deformations are done to evaluate diverging integrals containing the Green’s function. (a) A
deformation on the boundary to include the boundary point. (b) The insertion of a hollow region internal to Γi surrounding
the point of interest. (c) Deformation of the boundary to exclude the boundary point of interest.

where n̂ is the unit normal vector on ∂Γi. Since ν̂ is a common factor in all the terms, it can be dropped and we
arrive at

ˆ

Γi

∇G(∇·A)dV =

ˆ

∂Γi

{
∇G(A · n̂) +∇G×(A×n̂)−G

[
(∇×A)×n̂

]}
ds. (S8)

We are interested in, however, the evaluation of the field inside Γi. To proceed, consider when r′ is inside the material
region enclosed by ∂Γi, but there exists an infinitesimally small spherical hole S of radius ϵ centered around r′. The
boundary of Γi now consists of the original outer surface ∂Γi and the boundary of the sphere, as seen in Fig. (S1b).
At the limit ϵ→ 0, each term in Eq. (S8) evaluated on the sphere gives

lim
ϵ→0

ˆ

S

G
[
(∇×A)×n̂

]
ds = lim

ϵ→0
−e

injkϵ

4πϵ

[
(∇×A)×n̂

]∣∣∣∣
r′
4πϵ2

= 0, (S9)

also

lim
ϵ→0

ˆ

S

{
∇G(A · n̂) +∇G×(A×n̂)

}
ds = lim

ϵ→0

ˆ

S

(1
ϵ
− inik

)einikϵ

4πϵ
Ads

= A(r′). (S10)

Therefore, the integral form of the field at r′ inside Γi is given by

A(r′) =
ˆ

∂Γi

{
G
[
(∇×A)× n̂

]
−∇G(A · n̂)−∇G× (A× n̂)

}
+

ˆ

Γi

∇G(∇ · A)dV, (S11)

where the volume term on the right hand side is an improper integral. However, this term vanishes if the field is
divergence-free, in which case the field at anywhere strictly inside Γi is determined by the field on the boundary ∂Γi.

Finally, to find the integral form of the field on the boundary, at r′ ∈ ∂Γi, we consider a half-spherical deformation
of ∂Γi such that the boundary avoids r′ and leaves it outside of the enclosed domain Γi, as shown in Fig. (S1c). Note
that this deformation is in the opposite direction as in the scalar case discussed earlier, where r′ was included into
Γi. By following a similar limiting procedure as was laid out above for r′ strictly inside Γi but now applied to a
half-sphere, we arrive at the self-consistent integral form for the boundary field shown in Eq. (17) in the main text.

COARSE-GRAINED OPEN BOUNDARY CONDITIONS USING VSH

In this Section, we derive the boundary conditions for the angular components of the field A(r) satisfying the vector
Helmholtz equation. We also discuss the DEC implementation of such conditions on the tangential boundary edges.
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The series expansion of the A(1) component is

A(1)(r, θ, φ) =
∑

l,m

ã1lmA(1)
lmΨlm(r, θ, φ)

= ãlm
1

2l(l + 1)

[
Hl+1/2(kr)

r3/2
+

k√
r

(
Hl−1/2(kr)−Hl+3/2(kr)

)]
Ψlm(r, θ, φ).

The coefficients a1lm(R) in the expansion of the field on the boundary surface are then given by

a1lm(R) = ã1lmA(1)
lm(R)

1

2l(l + 1)

[
Hl+1/2(kr)

r3/2
+

k√
r

(
Hl−1/2(kr)−Hl+3/2(kr)

)]

=
1

l(l + 1)

ˆ

dΩA(1) ·Ψ∗
lm

=
1

l(l + 1)

∑

f

∆A(f)

R2
At(f) ·Ψ∗

lm(f), (S12)

where At is the component of A(r) tangential to the boundary surface, and the sum is perform over all the triangular
faces f on the boundary. In the last line of Eq. (S12) we have utilized the orthogonality between A(1) and Ψ∗

lm to
switch to using At instead of A(1) in the computation of a1lm(R), since the former is more readily accessible during
numerical implementation. The field A(1) can be decomposed into azimuthal and polar contributions, for each of
which we derive the boundary condition. The radial derivative of the polar component of A(1) at the boundary is
given by

A(1)
θ (R, θ, φ)−A(1)

θ (R−∆R, θ, φ)

∆R
=

∑

l,m

ã
(1)
lm

1

2l(l + 1)

[
Hl+1/2(kr)

r1/2
+ k

√
r
(
Hl−1/2(kr)−Hl+3/2(kr)

)]′∣∣∣∣
R

(∇Ylm)θ

(S13)

from which the expression for A(1)
θ on the boundary surface can be extracted

A(1)
θ (R, θ, φ) =

∑

l,m

a
(1)
lm(R)


R+∆R




1 +R

[
Hl+1/2(kr)

r3/2
+ k√

r

(
Hl−1/2(kr)−Hl+3/2(kr)

)]′∣∣∣
R[

Hl+1/2(kR)

R3/2 + k√
R

(
Hl−1/2(kR)−Hl+3/2(kR)

)]






 (∇Ylm)θ, (S14)

where (∇Ylm)θ is the polar component of ∇Ylm, and a1lm(R) given as in Eq. (S12). The expression for the azimuthal

component A(1)
φ (R, θ, φ) is exactly similar, with a replacement of θ → φ in the subscripts in Eq. (S14).

Similar to the steps for A(1), the derivation of BC for A(2) starts with the expansion

A(2) =
∑

l.m

ã
(2)
lm

π

2kR
Hl+1/2(kR)Φl.m(r, θ, φ) (S15)

from which the coefficients a
(2)
lm can be computed

a
(2)
lm(R) = ã

(2)
lm

π

2kR
Hl+1/2(kR)

=
1

l(l + 1)

ˆ

dΩA(2) ·Φ∗
lm

=
1

l(l + 1)

∑

f

∆A(f)

R2
At(f) ·Φ∗

lm(f). (S16)

We also write the boundary conditions for A(2)
θ and A(2)

φ separately using their discrete form of radial derivative at
the boundary. This leads to

A(2)
θ (R, θ, φ) =

∑

l,m

a
(2)
lm(R)

{
R+

∆R

2

[
1 + kR

Hl−1/2(kR)−Hl+3/2(kR)

Hl+1/2(kR)

]}
(r̂ ×∇Ylm)θ, (S17)

and by replacing θ with φ in the subscripts, we obtain the expression for A(2)
φ (R, θ, φ).
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The boundary conditions given in Eqs. (S14) and (S17) are for vector individual components, which are scalars
living on vertices of the primal computational mesh. We would like to translate these BCs to fields living the edges
that lie on the boundary surface. First of all, the practical computation of the expansion coefficients in Eqs. (S12) and
(S16) requires knowledge about the tangential field At defined on the centers of the triangular faces f that discretize
the boundary surface. In DEC, however, vectors are replaced by their projections onto the discrete edges, which are
quantities that we have access to. Therefore, at each triangular face, given the edge fields that are on the three sides
of the triangle, we need to determine the value of the vector At at the circumcenter f†. This mapping from primal
edge field to dual vector field is done through a sharp (#) operator, whose formal definition is given in Ref. 2. Now
given that the coefficient expansions are obtained, for every vertex on the boundary, the polar(azimuthal) component
of At is the sum of projections from A(1) and A(2)

Aθ(φ)(R, θ, φ) = A(1)
θ(φ)(R, θ, φ) +A(2)

θ(φ)(R, θ, φ). (S18)

For an edge e[v1, v2] lying on the boundary, where v1 and v2 are the starting and ending vertices of the edge, the edge
field is given by

Φ(e[v1, v2]) =

[
At(v1) +At(v2)

]

2
· (v2 − v1), (S19)

where v1 and v2 are the locations of the vertices v1 and v2, respectively, with the components of At on the boundary
given in Eq. (S18). Eq. (S19) is the boundary condition to be imposed on the edges lying tangentially to the boundary
surface.

SEPARABILITY OF HELMHOLTZ EQUATION IN ELLIPSOIDAL COORDINATES

The ellipsoidal coordinate system is based on the equations

x2

ξ2i − a2
+

y2

ξ2 − b2
+

z2

ξ2 − c2
= 1, (S20)

where a ≥ b ≥ c, with i = 1, 2, 3 such that

ξ1 > a > ξ2 > b > ξ3 > c. (S21)

Eqs. (S20) represent three families of confocal quadric surfaces sharing the same foci. In the discussion here, to simplify
the algebraic manipulations we consider the case where c = 0. The relationship between the ellipsoidal coordinates
(ξ1, ξ2, ξ3) and the Cartesian coordinates are given by

x =

√
(ξ21 − a2)(ξ22 − a2)(ξ23 − a2)

a2(a2 − b2)
,

y =

√
(ξ21 − b2)(ξ22 − b2)(ξ23 − b2)

b2(b2 − a2)
, (S22)

z =
ξ1ξ2ξ3
ab

,

with the scale factors being

h1 =

√
(ξ21 − ξ22)(ξ

2
1 − ξ23)

(ξ21 − a2)(ξ21 − b2)

h2 =

√
(ξ22 − ξ21)(ξ

2
2 − ξ23)

(ξ22 − a2)(ξ22 − b2)
. (S23)

It is known that the Helmholtz equation (Eq. (13) in the main text) is separable in eleven three-dimensional coordinate
systems, with the ellipsoidal coordinates being the most general of them and the remaining ten - including the spherical
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coordinates used in the main text - are derived from it through limiting processes [3]. The separability in ellipsoidal
coordinates can be shown by using the ansatz

ϕ(ξ1, ξ2, ξ3) = ψ1(ξ1)ψ2(ξ2)ψ3(ξ3) (S24)

for the field in Eq. (13), resulting in the separated ODEs of the form

4
√
f(κi)

d

dκi

(√
f(κi)

dψi

dκi
+ (λ1 + λ2κi + k2κ2i )

)
ψi = 0, (S25)

where f(κi) =
√
(κi − a2)(κ2i − b2)κi, with κi = ξ2. Upon performing a change of variables

κi = b2sn2
(
α,
b2

a2

)
, (S26)

where sn(u,m) is a Jacobi elliptic function, we can write

f(κi) = b4a2sn2
(
α,
b2

a2

)
dn2

(
α,
b2

a2

)
cn2

(
α,
b2

a2

)
, (S27)

with dn(u,m) and cn(u,m) also Jacobi elliptic functions. Eq. (S25) can then be written in terms of the new variable
as

d2ψi

dα2
+

[
λ1
a2

+
λ2
a2
sn2

(
α,
b2

a2

)
+
k2

a2
sn4

(
α,
b2

a2

)]
ψi = 0. (S28)

Eq. (S28) is the ellipsoidal wave equation whose solutions are known as ellipsoidal wave functions. With the Helmholtz
equation being separable in ellipsoidal coordinates with known solutions, the generalization to this coordinate system
of our spherical harmonics method for open systems is therefore straightforward.
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