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Any quantum-confined electronic system coupled to the electromagnetic continuum is subject to
radiative decay and renormalization of its energy levels. When coupled to a cavity, these quantities can be
strongly modified with respect to their values in vacuum. Generally, this modification can be accurately
captured by including only the closest resonant mode of the cavity. In the circuit quantum electrodynamics
architecture, it is, however, found that the radiative decay rates are strongly influenced by far off-resonant
modes. A multimode calculation accounting for the infinite set of cavity modes leads to divergences unless
a cutoff is imposed. It has so far not been identified what the source of divergence is. We show here that
unless gauge invariance is respected, any attempt at the calculation of circuit QED quantities is bound to
diverge. We then present a theoretical approach to the calculation of a finite spontaneous emission rate and
the Lamb shift that is free of cutoff.
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Introduction.—An atomlike degree of freedomcoupled to
the continuum of electromagnetic (EM) modes spontane-
ously decays. When the atom is confined in a resonator, the
emission rate can bemodified comparedwith its value in free
space, depending on the EM local density of states at the
atomic position [1–4], which is called the Purcell effect [5].
An accompanying effect is the Lamb shift, a radiative level
shift first observed in the microwave spectroscopy of the
hydrogen 2P1=2 − 2S1=2 transition [6]. These quantities have
been experimentally accurately characterized for super-
conducting Josephson junction (JJ) based qubits coupled
to coplanar transmission lines [7,8] and three-dimensional
resonators [9]. In the dispersive regime where a qubit with
transition frequency ωj is far-detuned from the nearest
resonant cavity mode (frequency νr, loss κr), single mode
expressions exist for the Purcell decay rate, γP ¼ ðg=δÞ2κr,
and the Lamb shift,ΔL ¼ g2=δ. Here g denotes the coupling
between the qubit and the cavity mode and δ ¼ ωj − νr
denotes their detuning [10]. However, for large couplings
accessible in circuit QED, the single mode approximation is
often inaccurate [7,8]. In addition, due to particular boun-
dary conditions imposed by the capacitive coupling of a
resonator to externalwaveguides, the qubit relaxation time is
limited by the EMmodes that are far-detuned from the qubit
frequency [8]. Similarly the measured Lamb shift in the
dispersive regime can only be accurately fitwith an extended
Jaynes-Cummings (JC)model, including several modes and
qubit levels [7]. The Purcell rate has been generalized to
account for all modes

γP ¼
X
n

ðgn=δnÞ2κn; ð1Þ

where gn and δn ¼ ωj − νn are coupling to and detuning
from resonator mode nwith frequency νn and decay rate κn.
Expression (1) is divergent without imposing a high-
frequency cutoff [8]. Divergences appear as well in the

Lamb shift and other vacuum-induced phenomena, e.g.,
photon-mediated qubit-qubit interactions [11]. These diver-
gences are neither specific to the dispersive limit nor to
the calculational scheme used to compute QED quantities.
This issue is well known for the Lamb shift [6], but less
noted for the spontaneous emission rate. Indeed, free space
spontaneous emission rate diverges as well, as we show in
Ref. [12]. The finite result byWigner andWeisskopf [13,14]
is due to Markov approximation which filters out the
ultraviolet divergence. Recent generalizations of the
Wigner-Weisskopf approach impose an artificial cutoff to
obtain a finite result [15]. So far, no satisfactory theoretical
explanation has been given for these divergences. Here we
address this issue within the framework of circuit quantum
electrodynamics [16] (QED) and show that finite expres-
sions can be obtained when gauge invariance is respected.
We focus here on a superconducting artificial atom coupled
to an open transmission-line resonator, but our results
should be valid for other types of one-dimensional open
EM environments as well.
Gauge invariance in circuit QED.—The role of gauge

invariance in accounting for light-matter interaction has
been a vexing question since the beginnings of QED (see
Ref. [17], and references therein). Hence, we first discuss
gauge invariance in superconducting electrical circuits, and
its impact on QED observables.
We consider a weakly nonlinear charge qubit (e.g., trans-

mon [18,19]) capacitively coupled to a transmission-line
resonator that in turn is coupled at both ends to semi-infinite
waveguides [Fig. 1(a)]. We assign flux variables to nodes,
ΦnðtÞ ¼

R
t dτVnðτÞ, with VnðtÞ being the instantaneous

voltage at node n with respect to the ground node [16,20].
Fixing the ground amounts to a particular gauge choice [16].
For the connection geometry in Fig 1(a), the light-matter
interaction derives from the energy on the coupling capacitor
in the dipole approximation, T int ¼ 1

2
Cg½ _Φðx0Þ − _Φj�2 [12],
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with x0 the qubit position. If from the three terms in its
expansion, TEM ¼ 1

2
Cg

_Φðx0Þ2, TEM-JJ ¼ −Cg
_Φðx0Þ _Φj, and

TJJ ¼ 1
2
Cg

_Φ2
j , only the direct interaction TEM-JJ is kept, a

multimode JC model in terms of circuit parameters can be
derived [21], but gives rise to a diverging Purcell rate using
Eq. (1). This open JC model involves a two level approxi-
mation (TLA) of the JJ Hilbert space, the rotating wave
approximation (RWA) to drop nonresonant contributions, and
the Born and Markov approximations leading to a master
equation accounting for losses due to resonator-waveguide
coupling. It is unclear which approximation underlies the
divergence, or whether the divergence can be resolved within
the effective subgap circuit QED field theory.
We first note that keeping only the direct interaction

TEM-JJ violates gauge invariance. We find that inclusion of
all terms, in particularTEM, equivalent to the diamagneticA2

term in the minimal coupling Hamiltonian ðp − eAÞ2=2m
[22], is essential to make all studied QED observables finite.
The A2 term is thought to have no impact on transition

frequencies in vacuum-induced effects such as the Lamb
shift. Because it does not involve atomic operators, it is
expected tomake the same perturbative contribution to every
atomic energy level, precluding observable shifts in tran-
sition frequencies [31]. This argument relies on perturbation
theory in the A2 term. We show that the diamagnetic term
does have an impactwhen accounted for exactly to all orders.
Heisenberg equations of motion describing the infinite

network in Fig. 1(a), extending from x ¼ −∞ to x ¼ ∞,
are [12,23]

ˆφ̈jðtÞ þ ð1 − γÞω2
j sin ½φ̂jðtÞ� ¼ γ∂2

t φ̂ðx0; tÞ; ð2Þ

½∂2
x − χðx; x0Þ∂2

t �φ̂ðx; tÞ ¼ χsω
2
j sin ½φ̂jðtÞ�δðx − x0Þ: ð3Þ

Here, φ̂jðtÞ and φ̂ðx; tÞ are dimensionless flux operators
for the JJ and the resonator-waveguide system, respectively,
γ ≡ Cg=ðCg þ CjÞ is a capacitive ratio, χs ¼ γCj=cL is the
dimensionless series capacitance of Cg and Cj, ωj is the
dimensionless transmon frequency, and χi ≡ Ci=ðcLÞ for
i ¼ g, j, R, L [12]. These two inhomogeneous equations
show that the flux field at x0 drives the dynamics of the JJ
[Eq. (2)], while the JJ acts as a source driving the EM fields
[Eq. (3)]. In addition, the fields are subject to continuity
conditions at the ends of the resonator x ¼ 0, 1 (in units ofL).
It is instructive to trace the individual terms of T int in

Eqs. (2) and (3). TJJ modifies the qubit frequency, renorm-
alizing γ from Cg=Cj to Cg=ðCg þ CjÞ, while the direct
interaction term TEM-JJ gives source terms in both equa-
tions. Most importantly, TEM introduces an effective
scattering term in the wave equation describing the fields
in the transmission line, by modifying the unitless capaci-
tance per length from 1 to χðx; x0Þ ¼ 1þ χsδðx − x0Þ.
Consequently, these equations are consistent [22] with
Kirchhoff’s law of current conservation. In particular,

at x ¼ x0, Eq. (3) yields ∂xφ̂ðx; tÞ�x
þ
0
x−
0
¼ χs∂2

t φ̂ðx0; tÞ þ
χsω

2
j sin½φ̂jðtÞ�, where the discontinuity in the resonator

current is equal to the total current through the capacitive
and Josephson branches of the transmon. Similar modifi-
cation of resonator dynamics has been pointed out before
for JJ-based qubits [9,22,32].
Equation (3) can be solved in the Fourier domain, where

~̂φðx;ωÞ ¼ R∞
−∞ dtφ̂ðx; tÞe−iωt can be expanded in the basis

~φnðx;ωÞ that solves the generalized eigenvalue problem
½∂2

x þ χðx; x0Þω2� ~φnðx;ωÞ ¼ 0, subject to continuity
conditions at the ends of the resonator, i.e., ∂x ~φnð1−; ωÞ ¼
χRω

2½ ~φnð1−; ωÞ − ~φnð1þ; ωÞ� and ∂x ~φnð0þ; ωÞ ¼
χLω

2½ ~φnð0−; ωÞ − ~φnð0þ; ωÞ�, which models the coupling
to the waveguides and associated loss. The Dirac δ function
in χðx; x0Þ leads to the discontinuity

FIG. 1. (a) A transmon qubit coupled to an open superconduct-
ing resonator. The black dashed line is a cartoon of the funda-
mental bare mode of the resonator, while the red solid curve
represents the modified resonator mode. (b) The transmission jTj2
is shown versus the real frequency for the bare resonator modes
(solid black curves). Capacitively coupling the qubit, whose
transition frequencyωj is slightly above the fundamental resonator
frequency ν1, gives rise to hybridized modes (dashed red curves).
Alternatively, one may study the positions of these resonances in
the complex frequency plane, where the bare resonator and qubit
poles (black points) are displaced into hybridized resonatorlike
and qubitlike resonances (red points). The Purcell decay and the
Lamb shift are obtained as the displacement of the qubitlike pole.
The bare (hybridized) complex frequencies are the poles (zeros) of
the characteristic function DjðsÞ.
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−∂x ~φnðxÞ�x
þ
0
x−
0
¼ χsω

2
n ~φnðx0Þ; ð4Þ

resulting in a modified current-conserving (CC) basis [22].
These modifications in the spectrum of the transmission
line resonator impact the qubit dynamics that is driven by
resonator fluctuations.
The role of modal modification in Eq. (4) can be

illustrated with a phenomenological model. Previously,
the Purcell rate and the Lamb shift have been calculated
using the Lindblad formalism in the dispersive limit [10].
An effective multimode JC model

ĤJC ¼ ωj

2
σ̂z þ

X
n

νnâ
†
nân þ

X
n

gnðσ̂þân þ σ̂−â†nÞ ð5Þ

can be obtained from our first principles model [12], which
incorporates the modifications to the resonator modes and
the qubit dynamics. Resonator losses are included through
a Bloch-Redfield equivalent zero-temperature master
equation for the reduced density matrix of the resonator
and qubit _̂ρ ¼ −i½ĤJC; ρ̂� þ κnð2ânρ̂â†n − fρ̂; â†nângÞ. The
expressions of cavity frequencies νn, associated losses κn
and modal interaction strengths gn are given in the
Supplemental Material [12]. All these quantities are func-
tions of χs, the strength of the modification of the
capacitance per unit length. In particular, the light-matter
coupling is found as gn ¼ 1

2
γ

ffiffiffiffiffi
χj

p ffiffiffiffiffiffiffiffiffiffi
ωjνn

p
~φnðx0Þ. We show in

Fig. 2(a) that gn is nonmonotonic [22] for any χs ≠ 0, first

increasing, then turning over at a critical χs-dependent
mode n, decreasing as gn ∼ 1=

ffiffiffi
n

p
in the large-n limit [12].

This high frequency behavior of gn renders the multimode
Purcell rate finite, without an imposed cutoff [33].
This phenomenon is not specific to the resonator geom-

etry in Fig. 1(a). The underlying physics is the conservation
of current at the position x0 of the qubit. At high frequency,
the series capacitance χs becomes a short circuit to ground,
acting as a low-pass filter and suppressing mode amplitude
at x0. This is the cause of the power law drop of gn as n → ∞
[Fig. 2(a)]. Moreover, eliminating the continuum degrees of
freedom of the waveguides gives an effective decay rate for
each mode, κn, which increases monotonically as κn ∼ n0.3

[Fig. 2(b)]. In the Supplemental Material, we show that for
χs ¼ 0 the resulting series Eq. (1) diverges [12], as pointed
out in previous studies [8,11]. For any nonzero χs, individual
terms in the sum (1) display a universal power law ∼n−2.7
[Fig. 2(c)], which guarantees convergence [34].
Solution of the Heisenberg-Langevin equations.—

Although we showed that the expression (1) for the
Purcell decay rate converges, it is only valid in the dispersive
regime gn ≪ δn. This estimate for the Purcell decay rate
and the Lamb shift will deviate substantially from the exact
result for a range of order gn around each cavity resonance,
diverging as the qubit frequency approaches the resonance
(see Fig. 3). This fictitious divergence can, in principle, be
cured by solving the full multimode master equation. Even
if computational challenges relating to the long-time dynam-
ics in such a large Hilbert space can be addressed, the
resulting rate would still be subject to the TLA, RWA, Born,
andMarkov approximations, casting a priori an uncertainty
on its reliability.
An improved analytic result that is uniformly valid in the

transmon frequency, and is not limited by the aforemen-
tioned approximations can be found by solving Eqs. (2)–(3)
perturbatively in the transmon’s weak nonlinearity. EM
degrees of freedom can be integrated out by solving Eq. (3)
exactly, plugging into Eq. (2), and tracing over the photonic
Hilbert space. To lowest order in the transmon nonlinearity
ϵ ¼ ðEc=EjÞ1=2, where Ec and Ej are the charging and
Josephson energy, respectively, the effective equation for
the qubit is [23]

ˆẌjðtÞ þ ω2
j ½1 − γ þ iK1ð0Þ�X̂jðtÞ

¼ −ω2
j

Z
t

0

dt0K2ðt − t0ÞX̂jðt0Þ; ð6Þ

where X̂jðtÞ ¼ Trphfρ̂phð0Þφ̂jðtÞg=ϕzpf is the reduced flux
operator traced over the photonic degrees of freedom and
ϕzpf ≡ ð ffiffiffi

2
p

ϵÞ1=2 is the magnitude of the zero-point phase
fluctuations. This delay equation features the memory
kernels KnðτÞ≡ γχs

Rþ∞
−∞ ðdω=2πÞωnGðx0; x0;ωÞe−iωτ,

where Gðx; x0;ωÞ is the classical EM Green’s function
defined by ½∂2

x−χðx;x0Þ∂2
t �Gðx;x0;ωÞe−iωt¼e−iωtδðx−x0Þ

implying that Gðx; x0;ωÞ is the amplitude of the flux field

(a)

(c)

(b)

FIG. 2. Dependence of (a) coupling strength gn, (b) resonator
decay rate κn (See Ref. [12] for derivation), and (c) Purcell decay
rate in the dispersive regime ðgn=δnÞ2κn on mode number n for
different values of χs ¼ f0; 10−3; 10−2; 10−1g. Other parameters
are set as χR ¼ χL ¼ 10−3 and x0 ¼ 0þ.
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created at x by a transmon oscillating with a frequency ω
at x0 [23]. The term on the right-hand side of Eq. (6) is
therefore proportional to the fluctuating current driving the
qubit at time t, that was excited by itself at an earlier time t0.
This Green’s function correctly encodes the modification of
the capacitance per length. Equation (6) can be solved
exactly in the Laplace domain

~̂XjðsÞ ¼
sX̂jð0Þ þ _̂Xjð0Þ

DjðsÞ
; ð7Þ

where ~hðsÞ≡ R∞
0 dthðtÞe−st, with DjðsÞ defined as [23]

DjðsÞ≡ s2 þ ω2
j ½1 − γ þ iK1ð0Þ þ ~K2ðsÞ�: ð8Þ

We express the characteristic function DjðsÞ in meromor-
phic form

DjðsÞ ¼ ðs − pjÞðs − p�
jÞ
Y
m

ðs − pmÞðs − p�
mÞ

ðs − zmÞðs − z�mÞ
: ð9Þ

The poles of 1=DjðsÞ are the hybridized qubitlike
and resonatorlike complex-valued excitation frequencies,

pj ≡ −αj − iβj and pn ≡ −αn − iβn, respectively, of the
qubit-resonator system, while its zeroes zn ≡ −iωn ¼
−κn − iνn correspond to bare non-Hermitian [12] cavity
resonances. The real part of the qubitlike pole, αj, is the
Purcell loss rate, while βj − ωj is the Lamb shift, as shown
in Fig. 1(b). In the Supplemental Material [12] we show
that DjðsÞ is convergent, and, hence, so are all hybridized
frequencies for any nonzero χs.
The A2 term kept in our calculation to enforce gauge

invariance plays the role of the “counterterm” discussed by
Caldeira and Leggett to cancel infinite frequency renorm-
alization [36,37]. This problem has also been discussed in
the context of the quantum theory of laser radiation [38].
Perturbative corrections.—The transmon nonlinearity

neglected in Eq. (6) can be reintroduced as a weak
perturbation. The leading order correction to the hybridized
resonances amounts to self- and cross-Kerr interactions
[9,32]. Using multiscale perturbation theory [23,39], the
correction to the transmon qubitlike resonance βj is given by

β̂j ¼ βj −
ffiffiffi
2

p
ϵ

4
ωj

�
u4jĤjð0Þ þ

X
n

2u2ju
2
nĤnð0Þ

�
; ð10Þ

where the coefficients uj;n define the transformation from
the hybridized to the unhybridized modes and Ĥj;nð0Þ are
the free Hamiltonians of the transmon and mode n, respec-
tively. For χg → 0, we find uj → 1, un ¼ 0 and βj → ωj

such that we recover the frequency correction of free
quantum Duffing oscillator ˆ̄ωj ¼ ωj½1 − ð ffiffiffi

2
p

ϵ=4ÞĤjð0Þ�
[40]. We note three features of this result. First, the
correction is an operator and that expresses the fact that
transmon levels are anharmonic. The anharmonicity can be
calculated from the expectation value of a corrected quad-
rature operator [12]. Second, by virtue of the lowest order
result being convergent without a cutoff, the perturbative
corrections are also convergent in the number of modes
included. Finally, this result is not limited by the qubit-
resonator coupling strength or the openness of the cavity.
The final result is finite for all qubit frequencies, as opposed
to the dispersive-limit result. The correction to the Purcell
decay is higher order and forms the subject of future work.
We compared the spontaneous decay from the linear

theory (blue solid) to the dispersive limit estimate γP in
Eq. (1) (black dashed) as the transmon frequency is tuned
across the fundamental mode in Figs. 3(a)–3(b). First, the
spontaneous decay is asymmetric, since there are (in)
finitely many modes with frequency (larger) smaller than
ωj. This feature is captured by both theories. Second, the
spontaneous decay is enhanced as the qubit frequency
approaches the fundamental resonator frequency. However,
the dispersive limit estimate is perturbative in gn=δn and
hence yields a divergent result (fake kink) on resonance
regardless of coupling constant, contrary to our result (9)
which predicts a finite value even at ultrastrong coupling
[Fig. 3(b) and caption].

(a) (b)

(c) (d)

FIG. 3. Comparison of (a), (b) spontaneous decay rate between
the linear theory (blue solid) and the dispersive limit result γP
(black dashed) as a function of ωj. (c), (d) Lamb shift between the
linear theory (blue solid), leading order perturbation (red dotted)
and the dispersive limit result ΔL (black dashed). (a),
(c) χg ¼ 0.001 and (b), (d) χg ¼ 0.1. Both values of χg are in
strong coupling regime, i.e., g1=αj ≫ 1. However, χg ¼ 0.1
(g1=ν1 ¼ 0.1033) reaches ultrastrong coupling [35], where multi-
mode effects are non-negligible. The nonlinearity is set as
ϵ ¼ 0.1, while other parameters are χR ¼ χL ¼ 10−3 and
χj ¼ 0.05. The vertical dash-dotted black line shows the position
of the fundamental frequency of the resonator.
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In Figs. 3(c)–3(d) we compare the Lamb shift from the
linear theory (blue solid) and the leading order perturbation
theory (red dotted) to the dispersive multimode estimate
(black dashed)

P
ng

2
n=δn [10]. Below the fundamental

mode, the Lamb shift is negative due to the collective
influence of all higher modes that redshifts the qubit
frequency. Above the fundamental mode, there appears a
competition between the hybridization with the fundamen-
tal mode and all higher modes. Close enough to the
fundamental mode, the Lamb shift is positive until it
changes sign, as predicted by all three curves.
Conclusion.—Wehave presented a framework to calculate

the spontaneous decay and the Lamb shift of a transmon
qubit, convergent in the number of resonator modes without
the need for rotating-wave, two-level, Born or Markov
approximations, or a high frequency cutoff. This is achieved
by an ab initio treatment of the quantum circuit equations of
motion containing the A2 term to enforce gauge invariance.
Therefore, the modes of the resonator are modified such that
the light-matter coupling is suppressed at high frequencies.
Formulating the cavity resonances in terms of non-Hermitian
modes provides access to the spontaneous decay, the Lamb
shift, and any other QED observables in a unified way.

We acknowledge helpful discussions with Zlatko Minev
and S. M. Girvin. This work was supported by the US
Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering, under
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Note added.—Recently, we became aware of Ref. [41],

which arrives at a similar conclusion for the Lamb shift in
the dispersive regime through a different approach.
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