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We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile
machine learning algorithm to provide optimal processing of quantum measurement data subject to arbi-
trary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on
the essential task of qubit state readout, which has historically relied on temporal processing via matched
filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can
reliably outperform standard filtering approaches under complex readout conditions, such as high-power
readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on
the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data,
such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier.
Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a
linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most
general readout noise conditions, all while preserving a training complexity that is essentially negligible in
comparison with that of training neural networks for processing temporal quantum measurement data. The
TPP can be autonomously and reliably trained on measurement data and requires only linear operations,
making it ideal for field-programmable gate array implementations in circuit QED for real-time processing
of measurement data from general quantum systems.
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I. INTRODUCTION

High-fidelity quantum measurement is essential for
any quantum information processing scheme, from quan-
tum computation to quantum machine learning. However,
while measurement optimization has focused on quan-
tum hardware advancements [1–3], several modern exper-
iments operate in regimes where optimal hardware con-
ditions are difficult to sustain or—for machine learning
with general quantum systems [4–8]—may not always be
known. For example, in the push towards higher qubit
readout fidelities with complex multiqubit processors in
circuit QED (cQED), optimization of individual readout
resonators becomes increasingly difficult. More impor-
tantly, finite qubit coherence means that simply extending
the measurement duration is not a viable option to increase
fidelity: faster and, hence, higher-power measurements
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are needed. However, these readout powers are associ-
ated with enhanced qubit transitions, leading to the T1
versus n̄ problem [9–15] and excitation to higher states
[14,16,17] outside the computational subspace. Machine
learning with quantum devices operating in unconven-
tional regimes allows for an even broader range of complex
dynamics. Quantum measurement data obtained under
these conditions cannot be expected to be optimally ana-
lyzed with use of schemes built for more standard read-
out paradigms [18]. Therefore, a practical approach to
extract the maximum information possible from such data
is timely.

In this paper, we demonstrate a machine-learning
scheme to optimally process quantum measurement data
for completely general quantum state classification tasks.
For the most common such task of single-shot qubit state
readout, standard postprocessing of measurement records
has remained relatively unchanged (with some exceptions
[19,20]): data are filtered with use of a “matched filter”
(MF) constructed from the sample mean of measurement
records for two states to be distinguished (for example,
state |e〉 or state |g〉 of a qubit). Crucially, the MF thus
defined applies only to binary classification, and much
more restrictively is optimal only for idealized conditions
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FIG. 1. TPP for multistate classification using quantum mea-
surement data, demonstrated for dispersive qubit readout in
cQED. The objective is to process temporal data correspond-
ing to an unknown state (indexed σ ) of an arbitrary physical
system—here the state of a qubit in a quantum measurement
chain—to estimate the true label σ with maximum accuracy.
The TPP approach uses a set of weights W and biases b to
map the vector �x of measured data, comprising an instance of
NO observables each a time series of length NT, to the corners
of a hypercube in C-dimensional space. Optimal values of W
and b are learned by training to realize this mapping with mini-
mal error, in a least-squares sense. Scatter plots shown in C = 3
dimensional space are data from real qubit p ∈ {e, g, f } readout
after applying the TPP.

under which the readout signal is subject to Gaussian
white (i.e., uncorrelated) noise processes [21]. In many
deployments where complex conditions prevail (such as
multiqubit readout) an even simpler and less optimal box-
car filter is used, due to the ease of its construction. Our
approach harnesses machine learning to provide a model-
free trainable temporal postprocessor (TPP) of quantum
measurement data under the most general noise conditions,
and for an arbitrary number of states of a generic measured
quantum system (see Ref. [22] for the source code). We test
our approach by applying it to the experimental readout of
distinct qubits across a range of measurement powers. Our
results demonstrate that the TPP reliably outperforms the
standard MF whenever measured data exhibit nontrivial
temporal correlations, including those of a quantum ori-
gin. We find an important such regime that has attracted
significant attention recently to be that of high-power read-
out [16,23–26]; here we experimentally show that the TPP
can provide a reduction in errors by up to 30% in certain
cases. Furthermore, the TPP achieves this improvement
while requiring only linear weights applied to quantum
measurement data (see Fig. 1): this makes it compatible
with field-programmable gate array (FPGA) implemen-
tations for real-time hardware processing, and exacts a
lower training cost [27,28] than neural network–based
machine-learning schemes [20,29,30].

Machine learning has already been established as a pow-
erful approach to classical temporal data processing, pro-
viding state-of-the-art fidelity in tasks such as time series

prediction [31], and forecasting [32–34] and control [35]
of chaotic systems. Adapting this approach to quantum
state classification as we do here requires its application
to time-evolving quantum signals. Signals extracted from
the readout of quantum systems are often dominated by
noise, making their processing distinct from that required
of typical data from classical systems. More importantly,
the noise in such signals can arise from truly quantum-
mechanical sources, such as stochastic transitions between
states of a multilevel atom (quantum “jumps”) or vac-
uum fluctuations in quantum modes. A key finding of our
work is that the TPP is able to learn from precisely these
quantum noise correlations in data extracted from quan-
tum systems to increase classification fidelity. To uncover
this essential principle of TPP learning, we first develop
an interpretation of the TPP as the application of opti-
mal filters to quantum measurement data. This provides a
framework to quantify and visualize what is “learned” by
the TPP from a given dataset. Secondly, the TPP is tested
on simulated quantum measurement datasets with use of
stochastic master equations, where quantum noise sources
and hence their correlation signatures in measured data can
be precisely controlled.

Using simulated datasets where all noise sources
contribute additive Gaussian white noise—a reasonable
assumption for measurement chains under asymptotically
ideal conditions—we show that the TPP provides filters
that reduce exactly to the matched filter for binary clas-
sification. More importantly, as the TPP is valid for the
classification of any number of states, it provides the
generalization of matched filters for arbitrary state clas-
sification. We then provide a systematic analysis of the
TPP applied to quantum measurement with more complex
quantum noise sources, such as quantum amplifiers adding
correlated quantum noise, or noise due to state transitions.
In such scenarios the TPP provides filters adapted to the
noise characteristics: we also provide an efficient semiana-
lytic form for these general TPP filters, which can deviate
substantially from filters learned under the white noise
assumption and crucially outperform the latter in qubit
classification. By learning from quantum noise correla-
tions, the TPP therefore utilizes a characteristic of quantum
measurement data inaccessible to postprocessing schemes
relying on noise-agnostic matched filtering methods.

The established learning principles provide a structure
and interpretability to the general applicability of the TPP
which enhances its practical utility. First, the exact map-
ping to matched filters under appropriate noise conditions
places the TPP on firm footing, guaranteed to perform
at least as well as these baseline methods. Secondly, and
much more importantly, the TPP’s ability to learn from
noise (crucially, quantum noise) renders it able to then
beat the MF when noise conditions change. This theo-
retical adaptability becomes practical due to the TPP’s
straightforward training procedure, which is also ideal for
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autonomous repeated calibrations, which are necessary on
even industrial-grade quantum processors [36–38]. Ulti-
mately, the trainable TPP could provide an ideal compo-
nent to optimally process quantum measurement data from
general quantum devices used for machine learning, which
could exhibit exotic quantum noise characteristics.

The rest of this paper is organized as follows. In Sec. II
we introduce the TPP framework to multistate classifica-
tion: a model-free supervised-machine-learning approach
that can be applied to the classification of arbitrary time
series. We also introduce the task used to demonstrate
the TPP—dispersive qubit readout in the cQED archi-
tecture—and standard approaches currently used for this
task. In Sec. III we draw connections between the TPP
approach and these standard filtering-based approaches to
qubit state measurement, and provide the TPP’s general-
ization of matched filtering to arbitrary states. In Sec. IV
we apply the developed TPP framework to experimental
data for qubit readout, showing that it can outperform stan-
dard matched filtering at the high measurement powers
relevant for high-fidelity readout. Section V explores the
learning principles that enable the TPP to be more effective
than standard matched filters using controlled simulations.
We conclude with a discussion of the general applicability
of the TPP for quantum state classification and temporal
processing of quantum measurement data.

II. TRAINABLE TEMPORAL POSTPROCESSOR
FOR MULTISTATE CLASSIFICATION

To provide an overview of its key features, we first
introduce the mathematical framework underpinning our
trainable TPP, which is defined as follows. We consider
NO continuously measured observables, each measurement
yielding a time series of length NT. All measured data
corresponding to an unknown state with index σ can be
compiled into the vector �x(σ ), which thus exists in the
space �x(σ ) ∈ R

NONT , where �(·) specifies vectors containing
vectorized temporal data; examples are provided shortly
(see also Fig. 1).

Formally, operation of the TPP is then described as an
input-output transformation, mapping a vector �x(σ ) from
the space of measured data, R

NONT , to a vector y ∈ R
C in

the space of class labels; the scalar predicted class label
σ est is given by an operation F[·] on this vector y, so the
complete transformation is

σ est = F[y] = F
[
W�x(σ ) + b

]
. (1)

Crucially, the TPP transformation—defined by a trainable
matrix of weights W ∈ R

C×NONT and a trainable vector
of biases b ∈ R

C—is linear. Machine learning using only
linear trainable weights has shown remarkable success
in time-dependent supervised-machine-learning tasks to

TABLE I. Summary of components of the TPP learning frame-
work and their dimensions.

Component Symbol Dimensions

TPP output y R
C

Weights W R
C×(NONT)

Data �x R
NONT

Bias b R
C

Data means, state p �s(p)
R

NONT

Noise process, state p �ζ (p)
R

NONT

“Gram” matrix G R
(NONT)×(NONT)

Correlation matrix V R
(NONT)×(NONT)

map time series to a dynamically evolving target func-
tion, although with a focus on classical data with weak
noise [27,28]. Here we adapt this framework to process-
ing of temporal measurement data from a quantum system
and with a time-independent target, as is relevant for initial
state classification [21].

More precisely, W and b are both learned from sampled
data �x(p) with known labels p (C in total) in a supervised
learning framework. The target y ∈ R

C for any instance
of �x(p) is taken to be a vector with only one nonzero
element—a single 1 at index p , defining a corner of a
C-dimensional hypercube (referred to as one-hot encod-
ing, see Fig. 1). Then the optimal Wopt and bopt minimize
a least-squares cost function to achieve this target with
minimal error:

{Wopt, bopt} = argmin
W,b

||Y − (WX + b) ||2. (2)

Here X is the matrix containing the complete training
dataset, comprising Ntrain instances of �x(p) for each class p ,
while Y is the corresponding set of targets (see Appendix C
for full training details).

A distinguishing feature of the TPP framework among
other ML paradigms is that its optimization is convex
and hence guaranteed to converge. The function F[·] used
to map the TPP output to an estimated class label is
untrained, and hence does not effect the training com-
plexity; it is often taken to be the argmax{·} function that
extracts the position of the largest element in y. However,
it can also be a more general classifier, such as a Gaus-
sian discriminator (clarified shortly). The dimensions of
the various components making up the TPP framework are
summarized in Table I.

A. Learning from noise correlations

While Eq. (1) presents a formal mathematical formula-
tion of the TPP framework in the machine-learning con-
text, we can develop further understanding of how the TPP
learns from data to enable classification. To this end, we
first note that these stochastic measurement data can be
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written in the very general form

�x(σ ) = �s(σ ) + �ζ (σ )
. (3)

Here �ζ (σ )
describes the stochasticity of the measured data:

most importantly, we are interested in data where �ζ (σ )

will be dominated by contributions from quantum noise
sources. We take the noise process to have zero mean,
E[�ζ (σ )

j ] = 0, where E[·] describes ensemble averages over
distinct noise realizations (obtained for distinct measure-
ments). Then �s(σ ) = E[�x(σ )] is simply the sample mean
of the measured data traces for state σ . Crucially, the
noise is characterized by nontrivial second-order tempo-
ral correlations, which we define as �

(σ )

jk = E[�ζ (σ )

j
�ζ (σ )

k ].
Higher-order correlations of the noise can also be gener-
ally nonzero, but they are not explicitly analyzed here due
to the TPP’s use of a quadratic loss function.

The use of a least-squares cost function in Eq. (2) is now
crucial: it means that a closed form of the optimal weights
Wopt and biases bopt learned by the TPP can be obtained
(see Appendix D). Furthermore, the form of Eq. (3) allows
us to write these learned weights and biases as

(
Wopt bopt) = MD−1. (4)

Here M is a matrix that depends only on the mean traces
(full form in Appendix D). In contrast, D is the matrix of
second-order moments,

D =
(

G + V
∑

c �s(c)

∑
c(�s(c)

)T C

)
, (5)

which depends on the “Gram” matrix of mean traces, G =∑
c �s(c)

(�s(c)
)T, but also on the temporal correlations via the

matrix V ≡ ∑
c �(c). Both these quantities emerge natu-

rally in the analysis of the resolvable expressive capacity
of physical systems that are subject to noise [39]. Here,
Eq. (4) implies that weights learned by the TPP are not
determined only by data means via G but are also sen-
sitive to temporal correlations through V. This simple
feature will distinguish the TPP from standard classifica-
tion approaches, a result we demonstrate in the rest of our
analysis.

B. Quantum noise in dispersive qubit readout

We demonstrate the utility of the TPP framework for
contemporary cQED applications by focusing on readout
of dispersive qubit-cavity systems. However, we empha-
size that the TPP is model-free: it can process data �x
generated by an arbitrary physical system, without any
knowledge of its underlying physical model. Nevertheless,
we introduce a simplified theoretical model of dispersive

qubit-cavity systems below to erect a foundation for the
interpretability of the TPP [40]. First, this enables us to
identify the sources of quantum noise at play in dispersive
qubit readout. More importantly, we use this model to gen-
erate benchmarking datasets with controlled, practically
relevant quantum noise characteristics: the TPP’s applica-
tion to these datasets with known temporal correlations in
Secs. III and V allows us to interpret its learning princi-
ples. The ultimate test for the TPP is still in its application
to real qubit readout data, in Sec. IV.

The standard quantum measurement chain for hetero-
dyne readout of a multilevel artificial atom (here, a trans-
mon) dispersively coupled to a readout cavity is depicted
schematically in Fig. 1 and can be modeled via the stochas-
tic master equation (SME)

dρ̂c = Lsysρ̂c dt + Lenvtρ̂c dt + Lmeas[dW]ρ̂c. (6)

Here the Liouvillian superoperator Lsys defines the quan-
tum system whose states are to be read out. For dispersive
qubit readout, Lsysρ̂ = −i[Ĥdisp, ρ̂], where the dispersive
Hamiltonian Ĥdisp for a multilevel transmon takes the form
(for cavity operators in the interaction frame with respect
to an incident readout tone at frequency ωd and with our
setting � = 1)

Ĥdisp �
∑

p

ωp |p〉〈p| − �daâ†â +
∑

p

χp â†â|p〉〈p|. (7)

Here �da = ωd − ωa is the detuning between the cavity
and the readout tone, while χp is the dispersive shift per
photon when the artificial atom is in state |p〉 [41,42].
Unfortunately, the artificial atom can undergo transitions
from its initial state to unmonitored loss channels, which
can reduce readout fidelity; all losses through such chan-
nels are described by the general Liouvillian Lenvt.

The final superoperator Lmeas defines measurement
chain components that are actively monitored to read out
the state of the quantum system of interest. Here we con-
sider continuous heterodyne monitoring of a single quan-
tum mode of the measurement chain, generally labeled
d̂. In the simplest case, Lmeas defines readout of the cav-
ity itself (then, d̂ → â); however, it can also describe
the dynamics (coherent or otherwise) of any other mon-
itored quantum devices in the measurement chain. The
most pertinent example is readout of the signal mode of
an (ideally linear) quantum-limited amplifier that follows
the dispersive qubit-cavity system via an intermediate cir-
culator, as shown schematically in Fig. 1. Most generally,
Lmeas can describe the monitoring of several modes of a
general quantum nonlinear processor that is embedded in
the measurement chain [5]. Crucially, Lmeas must include
a stochastic component (indicated by the Wiener incre-
ment dW), describing measurement-conditioned dynamics
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of the dispersive qubit-cavity system under such continu-
ous monitoring (see Appendix B).

For a qubit in the (a priori unknown) initial state |σ 〉
before measurement, continuous monitoring of the mea-
surement chain then yields a single “shot” of heterodyne
records {I (σ )(t), Q(σ )(t)} contingent on this state σ . The
complexity of this readout task can be appreciated given
the form of raw heterodyne records even under a simplified
theoretical model:

I (σ )(ti) = √
κ〈X̂ (σ )(ti)〉 + ξI (ti) + ξ

QM
I (ti) + ξ cl

I (ti), (8a)

Q(σ )(ti) = √
κ〈P̂(σ )(ti)〉 + ξQ(ti) + ξ

QM
Q (ti) + ξ cl

Q (ti).
(8b)

We consider discretized temporal indices ti, for i ∈ [NT]
and NT = Tmeas/�t, where Tmeas is the total measurement
time and �t is the sampling time set by the digitizer. Het-
erodyne measurement is intended to probe the expectation
values 〈X̂ (σ )(ti)〉, 〈P̂(σ )(ti)〉 of canonical quadratures X̂ =

1√
2
(d̂ + d̂†), P̂ = − i√

2
(d̂ − d̂†) of the monitored mode d̂;

however, any individual measurement record is obscured
by noise ξ from various sources.

Vacuum noise ξI (ti), ξQ(ti) is associated with heterodyne
measurement of even an empty cavity, and is modeled as
zero-mean Gaussian white noise,

E[ξI ,Q(ti)] = 0, E[ξI ,Q(ti)ξI ,Q(tj )] = 1
�t

δij δI ,Q. (9)

More importantly, ξQM
I (ti), ξ

QM
Q (ti) describe quantum noise

contributions to measurement records, whose origin is
intrinsically tied to the nature of quantum measure-
ment. The measurement of a quantum system imposes
an evolution of its state, so a given measurement affects
the outcome of subsequent measurements. This effect is
described via a measurement-conditioned stochastic quan-
tum state ρ̂c (referred to as a quantum trajectory), which
is distinct from the unconditional quantum state ρ̂ for-
mally obtained from ensemble-averaging over repeated
measurements. Consequently, for any given measurement
instance, observables such as the conditional quadrature
expectation 〈X̂ (σ )(ti)〉c = Tr{X̂ ρ̂(σ )

c (ti)} under heterodyne
monitoring can deviate from the unconditional ensem-
ble average 〈X̂ (σ )(ti)〉; this difference, given by ξ

QM
I (ti) =

〈X̂ (σ )(ti)〉c − 〈X̂ (σ )(ti)〉, manifests itself as quantum noise.
These terms include amplified quantum fluctuations when
one is measuring the output field from a quantum ampli-
fier (see Sec. V A) or the influence of quantum jumps in
the measured cavity field due to transitions of the disper-
sively coupled qubit (see Sec. V B). Finally, ξ cl

I (ti), ξ cl
Q (ti)

describe classical noise contributions to measurement
records, for example, noise added by classical HEMT

amplifiers. While the statistics of this noise may take differ-
ent forms, it is formally distinct from heterodyne measure-
ment noise, as it has no associated stochastic measurement
superoperator in Eq. (6).

The objective of the qubit readout task is then to use
noisy single-shot [43] temporal measurement data to
obtain an estimated class label σ est that is ideally equal to
the true class label σ . Within the TPP framework, NO = 2
and �x(σ ) =

( �I (σ )

�Q(σ )

)
, where �Ii = I(ti). The noise �ζ in Eq. (3)

then contains the terms ξ , ξQM, and ξ cl. However, before
describing TPP results, we first briefly review standard
approaches to qubit state classification.

C. Standard postprocessing for binary qubit state
readout: Matched filters

The standard classification paradigm in cQED to obtain
σ est from raw heterodyne records would formally be
described as a filtered Gaussian discriminant analysis
(FGDA) in contemporary learning theory [44], sometimes
also referred to as a “Gaussian mixture model”. This com-
prises two stages: (1) temporal filtering of each measured
quadrature and (2) assignment of a class label to filtered
quadratures that maximizes the likelihood of their obser-
vation among all C classes as determined by a Gaussian
probability density function. Formally, this procedure can
be written as

σ est = G

[∑
i

(
hI (ti)I (σ )(ti)
hQ(ti)Q(σ )(ti)

)]
= G

[( �hT
I
�I (σ )

�hT
Q

�Q(σ )

)]
.

(10)

The function G[·] then assigns class labels according to the
aforementioned Gaussian discriminator.

A fact seldom mentioned explicitly is that both the
temporal filters and the Gaussian discriminator must be
constructed with use of a calibration dataset, analogous to
the training phase of the TPP: a set of Ntrain heterodyne
records obtained when the initial qubit states are known
under controlled initialization protocols. For example, for
the most commonly considered case of binary qubit state
classification to distinguish states |e〉 and |g〉, and under
the assumption that the noise in heterodyne records is addi-
tive Gaussian white noise, an optimal filter is known: the
matched filter [21,45,46]. The empirical matched filter is
constructed from the calibration dataset, where (n) indexes
distinct records, via

�hI = 1
Ntrain

Ntrain∑
n=1

(
�I (e)
(n) − �I (g)

(n)

)
, (11)

with �hQ defined analogously for I → Q. The function G[·]
requires the fitting of Gaussian profiles to measured proba-
bility distributions of known classes, and hence uses means
and variances estimated from calibration data.
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While a Gaussian discriminant analysis can be applied
to classification of an arbitrary number of states C and
beyond white noise constraints, the choice of an opti-
mal temporal filter in these more general situations is not
straightforward [47]. Because of its ease of construction, a
matched filter akin to Eq. (11), or an even more rudimen-
tary boxcar filter (a uniform filter that is nonzero only when
the measurement signal is ON) is often deployed, regardless
of the complexity of the noise conditions (for example,
when qubit decay is significant and more optimal filters
can be found [21]). We will show how the TPP approach
provides a natural generalization of matched filtering to
multistate classification and furnishes a trainable classifier
that can generalize to more complex noise environments.

III. TPP LEARNING AS OPTIMAL FILTERING:
GENERALIZED MATCHED FILTERS

To understand how the TPP generalizes standard
matched filtering approaches, we first show an important
connection between the two schemes. Note that the learned
matrix of weights Wopt ∈ R

C×NONT can be equivalently
expressed as

Wopt =

⎛
⎜⎜⎝

�f T
1
...

�f T
C

⎞
⎟⎟⎠ , (12)

where �f k ∈ R
NONT for k ∈ [C]. With this parameterization,

Eq. (1) for the k th component of the vector y can be
rewritten as

yk = �f T
k �x + bk, k ∈ [C]. (13)

When Eq. (13) is compared against Eq. (10), the interpreta-
tion of �f k becomes clear: this set of weights can be viewed
as a temporal filter applied to the data �x. TPP-based clas-
sification can therefore be interpreted as the application of
C filters (one for each k) to obtain the estimated label σ est.
The optimal Wopt therefore defines the optimal filters that
enable this estimation with minimal error. The use of C
optimal filters for a C-state classification task indicates the
linear scaling of the TPP approach with the complexity of
the task.

Remarkably, the optimal Wopt given by Eq. (4), and
hence the C optimal filters, can be expressed in the simple
semianalytic form

�f k =
∑

p

CkpV−1�s(p), k ∈ [C], (14)

where the mean traces �s(p) and correlation matrix V =∑
p �(p) can both be empirically estimated from data under

the known initial state p ,

�s(p) � 1
Ntrain

Ntrain∑
n=1

�x(p)

(n) ,


(p) � 1
Ntrain

Ntrain∑
n=1

�x(p)

(n) �x(p)T
(n) − �s(p)�s(p)T,

(15)

while the coefficients Ckp can also be shown to depend
only on �s(p) and V (see Appendix D for full details). Fur-
thermore, the C filters are not all independent; they can be
shown to satisfy the constraint (see Appendix D)

C∑
k=1

�f k = �0, (16)

where �0 ∈ R
NONT is the null vector. This powerful con-

straint, which holds regardless of the statistics of the noise
�ζ , implies that only C − 1 of the C filters need to be learned
from training data.

A. TPP performance under Gaussian white noise in
comparison with standard FGDA

We can now analyze the case most often assumed
in cQED: that the dominant noise source in heterodyne
records I , Q is stationary Gaussian white noise (inde-
pendent of the undetermined state), an assumption under
which matched filters are optimal for binary classifica-
tion. Engineering of cQED measurement chains is geared
towards approaching this limit, by (1) developing large-
bandwidth, high-dynamic-range amplifiers that operate
with fast response times and minimal nonlinear effects
even at high gain and high input signal powers [48–53], (2)
increasing qubit T1 and tolerance to strong cavity drives
to reduce transitions during Tmeas [3], and (3) controlling
technical noise sources such as electronic white noise from
classical cryo-HEMT amplifiers and room-temperature
electronics.

In this relevant limit, the correlation matrix V of Eq. (5)
becomes proportional to the identity matrix, and the result-
ing TPP-learned filters depend chiefly only on the mean
traces �s(p). For any C = 2 state classification task, for
example p ∈ {e, g} qubit readout, we can show that Cke =
−Ckg , which reduces �fk exactly to a standard binary
matched filter. Remarkably, the TPP-learned optimal filters
in the Gaussian white noise approximation then provide
a semianalytically calculable generalization of matched
filters to C states.

We can now analyze the multistate classification per-
formance enabled by these TPP-learned optimal filters in
comparison with the standard FGDA approach. To guar-
antee dispersive qubit readout data that are subject only to
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FIG. 2. Multistate (C = 3) classification performance of the
TPP versus FGDA under Gaussian white noise conditions.
We consider dispersive qubit readout to distinguish states p ∈
{e, g, f } as a function of measurement power. For a transmon
χp/κ ∈ {−χ , χ , −3χ}, χ/κ = 0.195, and κ/2π = 1.54 MHz.
More-opaque markers indicate higher measurement tone ampli-
tudes. The inset shows induced dispersive shifts for each state
(not to scale). Standard FGDA is performed with one of three
MFs corresponding to each distinct state pair, as well as a boxcar
filter. TPP filters are also followed by a Gaussian discriminator
for an equivalent comparison. Only one of the binary MFs allows
the FGDA to approach the TPP in performance, while all other
filters chosen yield a worse performance.

white noise, we use a theoretical simulation of Eq. (6) to
generate measured heterodyne records for C qubit states,
under the following assumptions: (1) all qubit state transi-
tions are ignored, (2) any additional classical noise sources
in the measurement chain are ignored, and (3) therefore
direct readout of the cavity can be considered instead of
the use of a quantum amplifier and the potential quan-
tum noise added by it. We take the cavity measurement
tone to be applied for a subset of the total Tmeas, namely,
for [Ton,Toff], and to be coincident with the cavity center
frequency so that �da = 0, which is usual for transmon
readout (for full details, see Appendix B 1). Other system
parameters can be found in the caption for Fig. 2.

The TPP can be used to generate optimal filters, and
hence perform classification, for arbitrary C; for exam-
ples of calculated filters, see Fig. 10 in Appendix D. For
concreteness, here we analyze the classification perfor-
mance enabled by the TPP to distinguish C = 3 states
p ∈ {e, g, f }. Our choice of resonantly driving the readout
cavity means the sign of cavity dispersive shifts for trans-
mon states e and f is the same, and is opposite that for
g, making them harder to distinguish (see also the inset in
Fig. 2). The specific details of the readout scheme do not
change the TPP learning procedure.

For this three-state classification task, a unique filter
choice for the FGDA is not known. While certain

approaches for constructing filters have been attempted
[54], boxcar filtering is still commonly used. Another
approach might be to use a matched filter that optimizes
distinction of just one pair of states. There are three such
filters in total: for discrimination of e-g states as defined in
Eq. (11), as well as analogously defined filters for e-f and
g-f states.

In Fig. 2, we show classification infidelities 1 − F cal-
culated for datasets with increasing measurement tone
amplitude (more opaque markers) with both the opti-
mal TPP filter and the FGDA with the four aforemen-
tioned filter choices. We emphasize again that these
datasets are generated via simplified theoretical simula-
tions guaranteeing white noise conditions, in particular
ignoring any nonidealities associated with strong read-
out drives; under these conditions, classification perfor-
mance improves steadily with increasing measurement
tone amplitude, as shown. Even in this regime, we clearly
observe that the FGDA infidelities for most filter choices
are worse than the TPP infidelities. Interestingly, the poor-
est performer is not the boxcar filter; rather, it is the e-g
filter, which would be optimal if we were distinguishing
only {e, g} states, which yields the worst performance.
This is because the e-g filter is completely unaware of the
f state: it attempts to best discriminate e and g, but in
doing so, it substantially confuses e and f states, which
are already the hardest to distinguish. The e-f filter cor-
rects this major problem and hence performs better, but
does not discriminate e and g states as well as the e-g
filter would. Because of the specific driving conditions
and phases, the g-f filter unwittingly does a good job at
addressing both these problems, yielding the best perfor-
mance. Nevertheless, it can only match the performance of
the TPP.

This trial-and-error approach relies on knowledge of
optimal matched filtering from binary classification, but
clearly cannot be optimal for C > 2: none of the fil-
ter choices are informed by the statistical properties of
measured data for all C classes to be distinguished. Alter-
native approaches, such as use of multiple classifiers
with up to C − 1 independent filters (for an equivalent
resource cost to the TPP) can account for all classes,
but as we show in Appendix D 7, they do not outper-
form the TPP, and also exhibit a dependence on readout
conditions. In either case, the brute-force determination
of pairwise matched filters scales at least with the num-
ber of distinct state pairs, which grows quadratically
with C; this is before one even accounts for fine-tuning
of filter coefficients (analogous to learning Ckp in the
TPP approach). In contrast, the TPP approach provides
a simple automated scheme to learn optimal filters, takes
data for readout of all classes into account, is model-
free and thus applicable to arbitrary readout conditions,
and scales only linearly with the task dimension set
by C.

020364-7



SAEED A. KHAN et al. PRX QUANTUM 5, 020364 (2024)

However, the true strength of TPP learning arises when
noise in measured heterodyne records no longer satisfies
the additive Gaussian white noise assumption, which may
arise if any of conditions (1)–(3) for qubit measurement
chains listed earlier are not met. Departures from this
ideal scenario are widely prevalent in cQED, and will be
apparent in experimental results presented in the following
section. Throughout the rest of this paper, we show how the
trainability of the TPP approach enables it to learn filters
tailored to these more general noise conditions and con-
sequently outperform the standard FGDA based on binary
matched filters.

IV. TPP LEARNING FOR REAL QUBITS

A. Experimental results

To demonstrate how the general learning capabilities
of the TPP approach can aid qubit state classification in
a practical setting, we now apply it to the readout of
finite-lifetime qubits in an experimental cQED measure-
ment chain. The essential components of the measurement
chain are as depicted schematically in Fig. 1 and described
by Eq. (6). The actual circuit diagram is shown in Fig. 8
in Appendix A, and important parameters characterizing
the measurement chain components are summarized in
Fig. 3(a).

We consider two distinct cavity systems for the disper-
sive readout of distinct single qubits A and B to discrimi-
nate states p ∈ {e, g}. For lossless qubits that are read out
dispersively for a fixed measurement time Tmeas, the ratio
χ/κ determines the theoretical maximum readout fidelity;

in particular, an optimal value of this ratio is known under
these ideal conditions [42]. However, experimental consid-
erations mean that operating parameters must be designed
with several other factors in mind. At high χ/κ ratios with
modest or higher κ , for large κ with modest χ/κ ratios, and
especially when both are true, the experiment is sensitive
to dephasing from the thermal occupation of the readout
resonator at a rate proportional to n̄κ [55]. This can be quite
limiting to the T2 dephasing time of the qubit if the read-
out resonator is strongly coupled to the environment and/or
the environment has appreciable average thermal photon
occupation n̄. In the opposite, low-χ/κ limit, the qubit
is shielded from thermal dephasing, but readout becomes
very difficult as the rate at which one learns about the
qubit state from a steady-state coherent drive is propor-
tional to χ/κ [42]. In this experiment, the lower-than-usual
χ/κ ≈ 0.2 in qubit B represents a compromise between
these two limits, while also enabling the high-fidelity dis-
crimination of multiple excited states of the transmon (see
Fig. 7 in Appendix A).

Each readout cavity is driven in reflection, and its output
signal is amplified also in reflection with use of a Joseph-
son parametric amplifier (JPA). We use the latest iteration
of strongly pumped and weakly nonlinear JPAs [53], boast-
ing a superior dynamic range. Such JPAs operate well
below saturation even at signal powers that correspond to
more than 100 photons, enabling us to probe qubit readout
at high measurement powers. By choosing a signal fre-
quency of exactly half the pump frequency, we can operate
the JPA in phase-sensitive mode. We can also operate the
amplifier in phase-preserving mode if we detune the signal
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FIG. 3. Classification performance of the TPP versus FGDA for readout of real qubits. (a) Parameters of various dispersive qubit-
cavity systems used for gathering readout data. Coherence measurements are subject to 10% variation over time. (b) Representative
qubit readout histograms under boxcar filtering as a function of measurement signal amplitude. (c) Readout data for three dispersive
qubit-cavity systems are analyzed and the resulting classification infidelities for binary (C = 2) state classification are plotted against
each other. The dashed line marks 1 − FFGDA = 1 − FTPP. For datasets with variable shading of markers (red and black), more-opaque
markers indicate higher measurement tone amplitudes, with the corresponding resonator photon number n̄ indicated via color bars. The
inset shows percentage fewer errors E computed for the indicated datasets with increasing input signal amplitude.
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from half the pump frequency by more than the spectral
width of the pulse. Several filters are used to reject the
strong JPA pump tone required to enable this operation.
Circulators are used to route the output signals away from
the input signals and to isolate the qubit from amplified
noise.

In ideal circumstances, the use of stronger measure-
ment tones should increase the classification fidelity for
qubit readout, as shown via simplified theoretical simula-
tions in Fig. 2. In practice, however, higher measurement
powers are known to be associated with a variety of com-
plex dynamical effects that can limit fidelity. Perhaps the
most common observation is enhanced qubit e → g decay
under strong driving (referred to as the T1 versus n̄ prob-
lem). The relative accessibility of higher excited states in
transmon qubits means that at strong enough driving, gen-
eral multilevel transitions to these higher levels can also
be observed. There have also been predictions of chaotic
dynamics and ionization [14,56] at certain readout res-
onator occupation levels, as well as complex dynamics due
to qubit-induced resonator nonlinearities [57]. The theoret-
ical understanding of these effects and their modeling via
an SME analogous to Eq. (6) is an ongoing challenge.

In our experiments, we perform readout across this
domain using two different qubits. For qubit A, we simul-
taneously vary both the pulse amplitude and the pulse
duration (Toff − Ton), the latter from 300 to 1150 ns, to
together obtain roughly 9 ± 3 to 18 ± 5 photons in the
cavity in the steady state. For qubit B’s phase-preserving
dataset, the measurement pulse durations vary indepen-
dently from 500 to 900 ns and the measurement amplitudes
are adjusted to drive roughly 44 ± 5 to 363 ± 40 photons
in the cavity in the steady state; the significantly larger
photon number is tolerated due to the low qubit B χ/κ .
For the shortest pulse duration and lowest pulse amplitude,
this corresponds to just enough discriminating power to
separate the measured distributions for the two states by
approximately their width in a boxcar-filtered I -Q plane
(namely, without the use of an empirical MF). An example
of the individual readout histograms for qubits initialized
in states p ∈ {e, g} at this lowest measurement tone power
is shown in Fig. 3(b). Qubit B’s phase-sensitive dataset
was recorded with a pulse time of 800 ns with a shaped
pulse to shorten the effect of the cavity ring-up time,
similarly to what was done in the work reported in Ref.
[58].

At the highest measurement powers, we are able to
populate the readout cavity with hundreds of photons, cal-
ibrated by our observing the frequency shift of the qubit
drive frequency versus the occupation of the readout res-
onator. At these powers, extreme higher-state transitions
become visible during the readout pulse [9]; an example is
shown in Fig. 3(b) (see also Fig. 7 in Appendix A). There
is also a notable elliptical distortion in the high-amplitude
data, particularly for qubit A. We suspect that this is due

to the short duration of the pulses and the inclusion of
the cavity ring-up and ring-down in the integration, since
the simple boxcar filter used to integrate the histograms in
Fig. 3(b) does not rotate with the signal mean.

For such complex regimes where no simple model of
the dynamics exists, the construction of an optimal filter is
not known; this hence serves as an ideal testing ground for
the TPP approach to qubit state classification. We compute
the infidelities of binary classification using both the TPP
scheme and an FGDA using the standard MF [Eq. (11)]
under a variety of readout conditions, plotting the results
against each other in Fig. 3(c).

The highest fidelity achieved with both schemes is
obtained for qubit B under conditions where its T1 time
is longest. This dataset was collected at a fixed, moder-
ate measurement power; the different points correspond
to a rolling of the relative JPA pump and measurement
tone phase that determines the amplified quadrature under
phase-sensitive operation. The dashed line marks equal
classification infidelities, so any datasets above this line
yield a higher classification infidelity with the FGDA than
with the TPP. Here we see that both schemes exhibit very
similar performance levels.

The other two datasets are obtained for readout under
varying measurement powers. The depth of shading of
the markers indicates the strength of measurement drives:
the more opaque the marker, the greater the measurement
power. We first note that the classification fidelity does not
uniformly increase with signal amplitude in experiments;
this is in contrast to the simplified theoretical simulations
in Sec. III A, and is expected due to the aforementioned
dynamical effects exhibited in real qubit readout at higher
readout powers (ignored in Fig. 2).

For lower measurement powers, we see that the perfor-
mances of the TPP and the FGDA are once again compara-
ble. However, a very clear trend emerges: for greater mea-
surement powers—where measurement dynamics become
much more complex as demonstrated in Fig. 3(b)—the
TPP generally outperforms the FGDA. To more precisely
quantify the difference in performance between the TPP
and the FGDA, we introduce the metric E ,

E =
(FTPP − FFGDA

1 − FFGDA

)
× 100, (17)

which essentially asks: “what percentage fewer errors does
the TPP make when compared with the FGDA?” We plot
E in the inset in Fig. 3(c) for the two qubit readout exper-
iments where the input power is varied. We see clearly
that with increasing power, the TPP can significantly out-
perform the FGDA scheme, committing as many as 30%
fewer errors in the experiments considered. In certain
cases where the FGDA predicts a reduction in classifi-
cation fidelity with increasing readout power, the TPP’s
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learning advantage can even enable a qualitatively differ-
ent trend, instead boosting classification performance with
increasing readout power (for details, see Appendix E 1).

Our results demonstrate that the TPP approach can be
successfully applied to real qubit readout across a broad
spectrum of measurement conditions. Furthermore, the
TPP can even outperform the standard FGDA in certain
relevant regimes, such as for high-power readout. While
the TPP can thus be applied as a model-free learning tool,
we are also interested in understanding the principles that
enable the TPP to outperform standard approaches using
an MF. Uncovering these principles can help identify the
types of classification tasks where TPP learning is essen-
tial. Our interpretation of TPP learning as optimal filtering
proves to be a useful tool in this vein.

B. Adaptation of TPP-learned filters under strong
measurement tones

For visualization, we analyze only filters �fk ∈ R
NT for I -

quadrature data; the complete vector �f k includes filters for
all NO observables. Recall that for a C state classification
task, the TPP learns C filters; however, the sum of filters
is constrained by Eq. (16), so C − 1 filters are sufficient to
describe the TPP’s learning capabilities. In Fig. 4(a), we
first consider filters learned by the TPP for a C = 2 clas-
sification task for select experimental datasets from Fig. 3
obtained under a low measurement power and a high mea-
surement power. It therefore suffices to analyze just �f1,
the first filter for the I quadrature, as a function of mea-
surement power. The black curves represent filters learned
under the assumption of Gaussian white noise; recall that
for this binary case, these filters are exactly the standard
MF. The gray curves, in contrast, represent filters learned
by the TPP for arbitrary noise conditions, obtained by our
solving Eq. (2). At a low measurement tone amplitude (less
opaque marker), the general TPP filter appears very simi-
lar to the TPP filter under white noise. As the measurement
tone amplitude is increased, however, the TPP-learned fil-
ter under arbitrary noise can deviate substantially from the
TPP filter under white noise. This is accompanied by a
marked difference in performance, as observed in Fig. 3(c).

Crucially, the generalization of matched filters provided
by TPP learning as discussed in Sec. III A enables a sim-
ilar comparison for classification tasks for an arbitrary
number of states. We show learned filters for C = 3 state
classification of p ∈ {e, g, f } in Fig. 4(b), again for a low
measurement power and a high measurement power. It
is now sufficient to consider any two of three distinct I -
quadrature filters; here we choose �f1 and �f3. Once more, the
general TPP filters begin to deviate significantly from TPP
filters under the white noise assumption at high powers.
Most importantly, these filters provide an increase in three-
state classification fidelity relative to the FGDA scheme
(for brevity, full results are provided in Appendix E 2).
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FIG. 4. Adaptation of TPP-learned filters with increasing mea-
surement tone amplitude and evolving noise conditions. Black
curves represent normalized TPP filters under the white noise
assumption; for binary state classification, these are identical to
standard matched filters. Gray curves represent general TPP fil-
ters with no assumptions on noise statistics. (a) Filter �f1 for binary
(C = 2) classification and (b) filters �f1 and �f3 for C = 3 state clas-
sification. In both cases, at lower amplitudes, the general TPP
filter temporal profile closely matches that of the TPP filter under
the assumption of white noise. However, for lower measurement
amplitudes, a marked difference between the white noise TPP
filter and the general TPP filter is observed.

Clearly, the precise form of filters learned by the TPP to
outperform white noise filters must be influenced by some
physical phenomena that arise at high measurement pow-
ers. However, the TPP is not provided with any physical
description for such phenomena, which is part of its model-
free appeal. What then is the mechanism through which
the TPP can learn about such phenomena to compute
optimal filters? The answer lies explicitly in Eq. (14): TPP-
learned filters are sensitive to noise correlations in data
via V. Using simulations of measurement chains where
the noise structure of quantum measurement data can be
precisely controlled, we show that the noise structure can
strongly deviate from white noise conditions under practi-
cal settings. Crucially, the TPP can adapt to these changes,
whereas the MF cannot.

V. TPP LEARNING: SIMULATION RESULTS

As discussed in Sec. III, the TPP weights and hence opti-
mal filters depend on mean traces, but are also cognizant
of—and can learn from—the noise structure of measured
data via the temporal correlation matrix V. This is in stark
contrast to the use of a matched filter.

Crucially, data obtained from quantum systems can
exhibit temporal correlations that have a quantum-
mechanical origin. In what follows, we demonstrate the
ability of the TPP to learn these quantum correlations,
using simulations of two experimental setups where such
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quantum noise sources arise naturally: (1) readout using
phase-preserving quantum amplifiers with a finite band-
width, so that the amplifier-added noise (demanded by
quantum mechanics) has a nonzero correlation time, and
(2) readout of finite-lifetime qubits with multilevel transi-
tions (quantum jumps).

A. Correlated quantum noise added by
finite-bandwidth phase-preserving quantum amplifiers

Quantum-limited amplifiers are a mainstay of mea-
surement chains in cQED, are are needed to overcome
the added classical noise of following HEMTs. Phase-
preserving quantum amplifiers are necessitated by quan-
tum mechanics to add a minimum amount of noise to
the incoming cavity signal being processed. The correla-
tion time of this added quantum noise is determined by
the dynamics of the amplifier itself, namely, its active
linewidth reduced by antidamping necessary for gain.
For finite-bandwidth amplifiers operating at large-enough
gains, this can lead to the addition of quantum noise with
nonzero correlation time in measured heterodyne data.

To simulate qubit readout in these circumstances, we
consider a quantum measurement chain described by
Eq. (6) now consisting of a qubit-cavity-amplifier setup.
Lmeas then describes the readout of a nondegenerate (i.e.,
two-mode) parametric amplifier and its nonreciprocal cou-
pling to the cavity used to monitor the qubit. We ignore
qubit state transitions, so Lenvt describes only losses via
unmonitored ports of the cavity and amplifier. Full details
of the simulated SME are included in Appendix B 2.

We must consider added classical noise in the measure-
ment chain, as this is what demands the use of a quantum
amplifier in the first place. We take the added classical
noise to be purely white noise, ξ cl(ti) = √

n̄cl
dW
dt (ti), with

noise power n̄cl = 30, parameterized as usual in “photon
number” units; these assumptions on the noise structure
and power are taken from standard cQED experiments,
including our own. The obtained heterodyne measurement
records, Eqs. (8a) and (8b), then contain two dominant
noise sources: (1) excess classical white noise and (2)
quantum noise added by the amplifier, contained once
again in quantum trajectories 〈X̂ (σ )(t)〉c and 〈P̂(σ )(t)〉c.

We restrict ourselves to binary classification of states
|e〉 and |g〉; here the matched filtering scheme is unam-
biguously defined and serves as a concrete benchmark for
comparison with the TPP approach. In Fig. 5, we com-
pare infidelities calculated with use of the FGDA and TPP
approaches for three different values of amplifier transmis-
sion gain Gtr and as a function of the coherent input tone
power: darker markers correspond to readout with stronger
input tones.

To understand how correlations in the measured data
depend on the varying amplifier gain, we introduce the
noise power spectral density (PSD) of the data (here, the
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FIG. 5. Classification performance of the TPP versus FGDA
on a simulated dataset for readout via a phase-preserving quan-
tum amplifier. (a) Classification infidelities for various amplifier
transmission gains Gtr as a function of measurement signal ampli-
tude (more-opaque markers represent higher amplitudes). The
ratio of the bare amplifier linewidth to the cavity mode linewidth
is γ /κ = 5. Noise PSD is shown in the inset for the different
operating gains (for a linear amplifier, this is independent of
the measurement signal amplitude). (b) Learned filters under-
the white noise assumption (black) and general noise conditions
(gray) for representative datasets of each value of Gtr. (c) Classi-
fication infidelities as a function of total time t. The measurement
tone is ON only between the two dashed vertical lines.

I quadrature) for state |p〉,

S(p)[f ] ≈
NT∑
j >k

e−i2π f τjk�
(p)

jk , (18)

where τjk = �t(j − k). The PSD is simply the Fourier
transform of the noise autocorrelation function (by the
Wiener-Khinchin theorem). Through V, the TPP learns
from these correlations when optimizing filters. The noise
PSD is plotted in the inset in Fig. 5; for the current readout
task, it is independent of p . With increasing gain, the PSD
deviates from the flat spectrum representative of white
noise to a spectrum that peaks at low frequencies, indica-
tive of an extended correlation time. The observations also
emphasize that noise added by the quantum amplifier dom-
inates over heterodyne measurement noise ξ , as well as
excess classical noise ξ cl.
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For the lowest amplifier gain considered, we see that the
FGDA classification performance and the TPP classifica-
tion performance are quite close to each other. However,
with increasing gain, the FGDA infidelity is substantially
higher, up to an order of magnitude worse for the largest
gain considered here. This TPP performance advantage is
enabled by optimized filters, as shown in Fig. 5(b). The
measurement tone is ON only between the two dashed ver-
tical lines. The curves in black represent white noise filters,
exactly equal to the MF in this binary case. Note that these
filters also change with gain: the amplifier response time
increases at higher gains, so the mean traces and hence the
MF derived from these traces exhibit much slower rise and
fall times. The general TPP filter is similar to the MF at
low gains, but becomes markedly distinct at higher gains.

Interestingly, one such change is that at high gains the
general TPP filter becomes nonzero even before the turn-
ing on of the measurement signal (the first vertical dashed
line). This appears odd at first sight, since there must not
be any information that could enable state classification
before a measurement tone probes the cavity used for dis-
persive qubit measurement. To validate this, in Fig. 5(d)
we plot 1 − F calculated for an increasing length of mea-
sured data, t ∈ [0,Tmeas]. We clearly see that for t < Ton,
both the TPP and the FGDA cannot distinguish the states,
as must be the case. The nonzero segment of the general
TPP filter before Ton instead accounts for noise correla-
tions. In particular, because of the long correlation time of
noise added by the quantum amplifier, noise in data beyond
Ton is correlated with noise from t < Ton. The general TPP
filter is aware of these correlations that the standard MF
is completely oblivious to, and by accounting for them, it
improves classification performance.

B. Correlated quantum noise due to multilevel
transitions

A transmon is a multilevel artificial atom, as described
by Eq. (7); as a result, it is possible to excite levels beyond
the typical two-level computational subspace of e and g
states. Such transitions manifest themselves as stochastic
quantum jumps in quantum measurement data and are an
important source of error in readout.

To model measurement under such conditions, we now
consider the dispersive heterodyne readout of a finite-
lifetime transmon with possible occupied levels {e, g, f }.
We further allow only a subset of all possible allowed
transitions between these levels, and with static rates:
|e〉 → |g〉 at rate γeg , the reverse |g〉 → |e〉 at rate γge, and
|e〉 → |f 〉 at rate γef (see the inset in Fig. 6). The transi-
tions are described by the superoperator Lenvt, while Lmeas
describes the measurement tone incident on the cavity and
the heterodyne measurement superoperator for the same;
for full details, see Appendix B 3.
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FIG. 6. Classification performance of the TPP versus FGDA
on a simulated dataset for readout of a qubit experiencing mul-
tilevel transitions. (a) E as a function of increasing transition
rate (more-opaque markers). The schematic in the inset shows
the transmon levels and nonzero transition rates considered. (b)
Noise PSD S(p)[f ] for three representative datasets in the inset
in (a), indicating deviation from flat (white noise) as measure-
ment data include more transitions. (c) TPP-learned filters (gray)
compared with matched filters (black) for representative datasets,
showing adaptation with increasing transition rates.

For simplicity, we now further ignore excess clas-
sical noise added by the measurement chain, dropping
terms ξ cl

I (ti), ξ cl
Q (ti). As a result, the measurement records

obtained, Eqs. (8a) and (8b), contain only two noise
sources: white heterodyne measurement noise and quan-
tum noise due to qubit state transitions imprinted on the
emanated cavity field, contained in quantum trajectories
of cavity quadratures 〈X̂ (σ )(t)〉c and 〈P̂(σ )(t)〉c. We then
generate simulated datasets by integrating the resulting
full SME, Eq. (6), for different values of transition rates,
and consider the task of binary classification of states
p ∈ {e, g}.

We compare the performance of a trained TPP against
that of an FGDA with an empirical MF using the met-
ric E in Fig. 6(a) with varying transition rates. The noise
PSD is plotted in Fig. 6(b) for representative datasets. In
the absence of any transitions (lightest orange), S(p)[f ] is
flat at all frequencies, regardless of the initially prepared
state p . This is because the measured data have only het-
erodyne white noise. With an increase in γeg , we note that
S(e)[f ] deviates from the white noise spectrum, attaining
a peak at low frequencies. In contrast, S(g)[f ] remains
unchanged as trajectories for initial states |g〉 undergo no
transitions. In the most complex case, where we allow for

020364-12



PRACTICAL TRAINABLE TEMPORAL POSTPROCESSOR... PRX QUANTUM 5, 020364 (2024)

all considered transitions, S(g)[f ] also starts to demonstrate
deviation from the white noise spectrum.

From readout datasets with no transitions to readout
data with increasing transition rates, we note a small but
clear improvement in classification performance with the
trained TPP in comparison with the FGDA. That the TPP
is able to learn information in the presence of transitions
that evades the MF is clear when we compare the two
sets of filters in Fig. 6(c). As the transition rates increase,
the MF undergoes modifications due to the changes to
the means of heterodyne records. However, the TPP is
sensitive to changes beyond means—in the correlations
of measured data—and increasingly learns a distinct fil-
ter with sharply decaying features. The utility of similar
exponential linear filters for finite-lifetime qubits was the
subject of earlier analytic work [21]. The TPP approach
generalizes the ability to learn such filters in the presence
of arbitrary transition rates and measurement tones, and for
multistate classification.

One may note that in the absence of any multilevel tran-
sitions [Fig. 6(a), first data point] the FGDA appears to
outperform the TPP (E < 0); given the results presented in
Sec. III A, this may seem odd, as here the measurement
noise is exactly Gaussian white noise, so the TPP filter
reduces exactly to the MF used in the standard FGDA. The
important distinction is that, unlike in Sec. III A, here we
are deploying the general TPP, which makes no a priori
assumptions about noise characteristics. In the special case
where the noise is Gaussian white noise, the MF is already
cognizant of the correct noise statistics, while the TPP
must learn them via training, leading to a slight underper-
formance that is alleviated as the size of the training dataset
is increased (see also Appendix C). Of course, this freedom
is precisely what enables the TPP to learn more efficiently
when the noise characteristics are not simply Gaussian
and white, for example, under increasing multilevel transi-
tions. There, the TPP shows an improvement relative to the
standard FGDA in spite of having to learn the new noise
statistics from training data. For these more complex noise
conditions, the standard MF is now suboptimal, and the
FGDA performance suffers as a result.

Finally, we emphasize that the simplified transition
model considered here is chosen to highlight the ability of
the TPP to learn quantum noise associated with quantum
jumps under controlled noise conditions, where no other
nontrivial noise sources (classical or quantum) exist. The
TPP approach to learning is model-free, and its ability to
learn in more general noise settings is demonstrated by its
adaptation to real qubit readout in Sec. IV.

VI. DISCUSSION AND OUTLOOK

In this paper we have demonstrated a machine-learning
approach to classification of an arbitrary number of states
using temporal data obtained from quantum measurement

chains. While we have focused on the task of dispersive
readout of multilevel transmons, the TPP approach applies
broadly to quantum systems, and more generally physical
systems, monitored over time. Our results show that the
TPP framework for processing quantum measurement data
reduces to standard approaches based on matched filtering
in the precise regimes of validity of the latter. However,
the TPP can adapt to more general readout scenarios to sig-
nificantly outperform matched filtering schemes. We show
this improvement for the TPP trained on real qubit readout
data to confirm the practical utility of our scheme.

Rather than treating the TPP as a black box, in our work
we clarify the learning mechanism that enables the TPP to
outperform matched filtering schemes. First, we develop
a heuristic interpretation of the TPP mapping as one of
applying temporal filters to measured data. TPP learning
then amounts to learning optimal filters. Deconstructing
the learning scheme, we find the TPP performance advan-
tage is enabled by its ability to learn optimal filters by
accounting for noise correlations in temporal data. When
this noise is purely white noise, the TPP approach provides
a generalization of matched filtering to an arbitrary number
of states.

Crucially, we find that the TPP can efficiently learn from
correlations not just due to classical signals, or in princi-
ple due to quantum noise in theory, but also from practical
systems where most of the noise is quantum in origin.
In addition to real qubit readout, using theoretical simu-
lations where the strength of quantum noise sources can
be tuned precisely, such as noise due to multilevel tran-
sitions or the added noise of phase-preserving quantum
amplifiers, we clearly demonstrate that the TPP can learn
from quantum noise correlations to outperform standard
matched filtering. Furthermore, our precise identification
of quantum correlations as a harnessable resource can
help guide future machine-learning approaches to quantum
signal processing.

The TPP approach, anchored by its connection to stan-
dard matched filtering, with demonstrated advantages for
real qubit readout under complex readout conditions, and
feasibility for FPGA implementations (to be demonstrated
in future work), is ideal for integration with cQED mea-
surement chains for the next step in readout optimization.
Furthermore, the TPP’s generality and ability to efficiently
learn from data could pave the way for an even broader
class of applications. An important potential use is as
a postprocessor of quantum measurement data for quan-
tum machine learning. With the use of general quantum
machines for information processing, the optimal means to
extract data from their measurements may not always be
known. We believe the TPP is ideally suited to uncover
the optimal linear postprocessing step, through training
that could be incorporated as part of the optimization of
the quantum machine. This is because the existence of an
exact analytic form for the optimal trained TPP weights
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eliminates the need for multiple training epochs, batchwise
evaluations, or gradient computations, so training the TPP
adds minimal complexity to the optimization of an already
complex quantum measurement chain, in stark contrast
to the substantial overhead of training a neural network
used as a postprocessor. Finally, optimal state estimation
is essential for control applications. The trainable TPP can
form part of a framework for control applications, such as
Kalman filtering for quantum systems.
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APPENDIX A: EXPERIMENTAL SETUP

In this appendix, we show a few more examples of
readout I -Q histograms as well as a more detailed circuit
diagram for the measurement chain. Shown in Fig. 7, we
see two examples of the extremes of the measurement data
for readout of qubit B used to generate Fig. 3. Figure 7(a)

shows results for a lower-power readout pulse applied
for a short time of 300 ns, where the cavity barely has
time to reach a steady state before the drive is turned off.
Consequently, information from both the ring-up and the
ring-down must be integrated to achieve the SNR shown
in this figure. Despite this measure, there is still significant
infidelity from the lack of separation of the Gaussian sig-
nals. In the second case, the displacement voltage is larger,
and the pulse is 3 times as long, resulting in significantly
increased separation of the Gaussian signals and enabling
discrimination of the |g〉, |e〉, |f 〉, and |h〉 states. However,
the high powers required induce transitions between these
states, resulting in the trails between them as the mea-
surement integrates a mixture of different cavity states at
different times.

In Fig. 8, a schematic of the hardware used for the mea-
surements reported in Sec. IV is shown. The measurement
setup is fairly standard, with use of single sideband up-
conversion to send signals into the dilution refrigerator,
moving through three stages of attenuation, with 20-dB
attenuation at 4 K, 20-dB attenuation at the 100-mK stage,
and approximately 45-dB attenuation at the base stage of
the refrigerator, with 10 dB of the base-stage attenuation
coming from a particularly-well-thermalized copper-body
attenuator. The signal interacts with the qubit and cavity
system, is routed by two circulation stages to the amplifier,
is amplified in reflection, and then is routed once again
back through the circulators to the remaining stages of
amplification at 4 K and room temperature accordingly.
From there it is down-converted by the same local oscil-
lator to 50 MHz, filtered, amplified once more at low
frequency, digitized at 1 × 109 samples per second, and

(a) (b)

FIG. 7. Comparison between boxcar-integrated I -Q results for (a) a lower-power pulse applied for a short time, corresponding to
n̄ = 116 readout photons, and (b) a higher-power pulse applied for a longer time, corresponding to n̄ = 176 readout photons. State
transitions are visible as “trails” leading between the primary symbols in (b). Counts are shown in logarithmic units to emphasize
low-count trails.
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FIG. 8. Up-conversion and down-conversion schematic for drive pulses sent first to the qubit readout resonator, driven in reflection,
and then routed to the amplifier and to the HEMT via two circulators. AWG, arbitrary-waveform generator; HF, high frequency; LF,
low frequency; MC, mixing chamber; OVC, outer vacuum chamber.

finally demodulated and integrated to produce a readout
histogram such as the histograms shown in Fig. 7.

APPENDIX B: SIMULATING HETERODYNE
MEASUREMENT RECORDS OBTAINED FROM

QUANTUM MEASUREMENT CHAINS FOR
DISPERSIVE QUBIT READOUT

In this appendix, we describe the SMEs used to
model various quantum measurement chains and gener-
ated datasets analyzed in the main text. For convenience
we reproduce the general SME of Eq. (6):

dρ̂c = Lsysρ̂c dt + Lenvtρ̂c + Lmeas[dW]ρ̂c. (B1)

For all the considered models of quantum measurement
chains for the fixed task of dispersive qubit readout, Lsys
remains the same, as identified in the main text:

Lsysρ̂c = −i[Ĥdisp, ρ̂c], (B2)

where Ĥdisp is the dispersive cQED Hamiltonian for a
multilevel artificial atom,

Ĥdisp �
∑

p

ωp |p〉〈p| − �daâ†â +
∑

p

χp â†â|p〉〈p|. (B3)

The superoperators Lenvt and Lmeas[dW] will depend on the
specific model considered.

1. Dispersive readout with no qubit transitions and
using a cavity

For qubit readout in the absence of any state transitions,
Lenvt → 0. As a result, the SME of Eq. (B1) takes a simpler

form:

dρ̂c = Lsysρ̂c dt + Lmeas[dW]ρ̂c. (B4)

Here Lsys is given by Eq. (B2). The superoperator Lmeas
describes quantum modes in the measurement chain that
are used to measure the quantum system of interest. This
superoperator can be expressed in the general form

Lmeas[dW]ρ̂c = Lqρ̂c + S[dW]ρ̂c. (B5)

Here Lq defines the unconditional dynamics of quantum
modes used for measurement; here it takes the explicit
form

Lqρ̂ = −i[η(â + â†), ρ̂] + κD[â]ρ̂, (B6)

which describes the measurement tone used for cavity
readout and the cavity losses due to its monitored port.
Importantly, Lq is independent of the qubit sector.
S[dW] is the stochastic measurement superoperator that

describes conditional evolution under continuous hetero-
dyne monitoring:

S[dW]ρ̂c =
√

κ

2
(
âρ̂c + ρ̂câ† − 〈â + â†〉ρ̂c

)
dWI

+
√

κ

2
(−iâρ̂c + iρ̂câ† − 〈−iâ + iâ†〉ρ̂c

)
dWQ.

(B7)

These explicit forms of superoperators fully define
Eq. (B1) in this regime without qubit transitions. However,
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this simplifying assumption can be used to further simplify
the form of the SME. In particular, in the absence of transi-
tions, the quantum state of the measurement chain is given
by the ansatz

ρ̂(t) = |p〉〈p| ⊗ �̂c(t), (B8)

where �̂c(t) is the conditional density matrix defining the
quantum state of all quantum modes in the measurement
chain other than the qubit (namely, the cavity mode). The
above implies that the qubit state is completely unchanged
during the readout time. The only evolution is in the state
of the modes used to read out the qubit, namely, the cavity
modes.

By now tracing out the qubit subspace in Eq. (B1), we
can obtain an SME for �̂c(t) alone, under the ansatz of
Eq. (B8). The Hamiltonian contribution from the disper-
sive qubit Hamiltonian yields

trQ{Ĥdisp|p〉〈p| ⊗ �̂c}
= trQ

{∑
j

ωj |j 〉 〈j |p〉 〈p| ⊗ �̂c

}

− trQ

{
|p〉〈p| ⊗ (�daâ†â�̂c)

}

+ trQ

{∑
j

χj â†â |j 〉 〈j |p〉︸︷︷︸
δjp

〈p| ⊗ �̂c

}

= ωp �̂c − �daâ†â�̂c + χp â†â�̂c, (B9)

and by conjugation

trQ{|p〉〈p| ⊗ �̂cĤdisp} = �̂cωp − �̂c�daâ†â + �̂cχp â†â,
(B10)

following which we arrive at

trQ{−i[Ĥdisp, ρ̂c]} = −i
(
[−�daâ†â, �̂c] + [χp â†â, �̂c]

)

= −i[
(−�da + χp

)
â†â, �̂c]

≡ −i[Ĥcav, �̂c], (B11)

where we have defined Ĥcav as the cavity Hamiltonian
alone,

Ĥcav = (−�da + χp
)

â†â = (ωa + χp − ωd)â†â. (B12)

We can perform a similar simplification of terms due to
Lmeas. For the ansatz in Eq. (B8), we find for Lq,

trQ{Lq(|p〉〈p| ⊗ �̂c)} = trQ{|p〉〈p| ⊗ Lq�̂c}
= trQ{|p〉〈p|} ⊗ Lq�̂c = Lq�̂c.

(B13)

As Lq was independent of the qubit subsector, it remains
unchanged following the partial trace over this subsector.

The stochastic measurement operator S[dW] is again inde-
pendent of the qubit subspace. Hence, our tracing out the
qubit sector yields
√

κ trQ{S[dW]|p〉〈p| ⊗ �̂c} = √
κ trQ{|p〉〈p|} ⊗ S[dW]�̂c

= √
κS[dW]�̂c. (B14)

The final cavity-only SME in the absence of any qubit
transitions takes the form

d�̂c = −i[Ĥcav, �̂c]dt + Lmeas[dW]�̂c. (B15)

The resulting SME preserves Gaussian states and can thus
be solved exactly by a truncated equations of motion
approach.

2. Dispersive readout with no qubit transitions and
using a quantum-limited amplifier with added noise

As in the previous subsection, in the absence of any state
transitions, Lenvt → 0, and the SME of Eq. (B1) takes the
simpler form

dρ̂c = Lsysρ̂c dt + Lmeas[dW]ρ̂c. (B16)

Again Lsys is given by Eq. (B2), and Lmeas takes the form

Lmeas[dW]ρ̂c = Lqρ̂c + S[dW]ρ̂c. (B17)

Lq for the unconditional dynamics of quantum modes used
for measurement takes the explicit form

Lqρ̂ = −i[η(â + â†), ρ̂] + κ ′D[â]ρ̂ + Lcρ̂c + Lampρ̂.
(B18)

The first term again describes the measurement tone used
for cavity readout, and the second term describes cavity
losses. However, the cavity’s open port is now directed to
a phase-preserving amplifier downstream. The superopera-
tor Lamp is the Liouvillian defining this quantum amplifier,
which we take to be a two-mode nondegenerate parametric
amplifier providing phase-preserving gain:

Lampρ̂c = −i
[−igamp

2
d̂ĉ + H.c., ρ̂c

]

+ γdD[d̂]ρ̂c + γD[ĉ]ρ̂c. (B19)

The superoperator Lc then defines the nonreciprocal cou-
pling between the cavity mode and the amplifier’s signal
mode d̂:

Lcρ̂c = −i
[

ig
2

d̂â† + H.c., ρ̂c

]
+ �D[â + d̂]ρ̂c. (B20)

To ensure nonreciprocal coupling so that fields from the
cavity that carry qubit state information are transmitted to
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the amplifier for readout, but transmission in the reverse
direction is forbidden, we require g = � [59].

Finally, S[dW] describes conditional evolution under
continuous heterodyne monitoring, now of the amplifier’s
signal mode:

S[dW]ρ̂c =
√

γd

2

(
d̂ρ̂c + ρ̂cd̂† − 〈d̂ + d̂†〉ρ̂c

)
dWI

+
√

γd

2

(
−id̂ρ̂c + iρ̂cd̂† −〈−id̂ + id̂†〉ρ̂c

)
dWQ.

(B21)

We now summarize the actual parameter choices used
to generate quantum amplifier simulated datasets in the
main text. We define the total cavity loss rate κ = κ ′ + �.
Then we choose cavity parameters so that κ ′ = � = 0.5κ

and the dispersive shift χ/κ = 0.5. Recall that perfect
nonreciprocal coupling in the desired direction requires
g = � = 0.5κ . Lastly, amplifier parameters are chosen so
that γ = γd + � = 5κ , yielding the ratio of cold amplifier
linewidth to cavity linewidth γ /κ = 5 used in the main
text, and also implying that γd = 4.5κ .

In the absence of qubit transitions, Eq. (B8) holds once
again, as Lmeas is completely independent of the qubit sec-
tor. Hence, this sector may be traced out exactly as in the
previous subsection. We thus arrive at a cavity-amplifier-
only SME in the absence of any qubit transitions:

d�̂c = −i[Ĥcav, �̂c]dt + Lmeas[dW]�̂c (B22)

for Lmeas now given by Eq. (B17). The resulting SME
again preserves Gaussian states and can be solved exactly
by a truncated equations of motion approach.

3. Dispersive readout including multilevel transitions
using a cavity

For qubit readout allowing for state transitions, we must
now include Lenvt in the SME:

dρ̂c = Lsysρ̂c dt + Lenvtρ̂c + Lmeas[dW]ρ̂c. (B23)

Again Lsys is given by Eq. (B2). The nontrivial superoper-
ator Lenvt takes the form

Lenvtρ̂ =
∑
j =k

γjkD[|k〉〈j |]ρ̂, (B24)

where γjk is the rate of transition from qubit state |j 〉 to
qubit state |k〉.

As we still consider readout using a cavity, the remain-
ing terms in Eq. (B23) are as in Eq. (B25); in particular,

Lmeas takes the form

Lmeas[dW]ρ̂c = Lqρ̂c + S[dW]ρ̂c, (B25)

where Lq is given by

Lqρ̂ = −i[η(â + â†), ρ̂] + κD[â]ρ̂, (B26)

while S[dW] is given by

S[dW]ρ̂c =
√

κ

2
(
âρ̂c + ρ̂câ† − 〈â + â†〉ρ̂c

)
dWI

+
√

κ

2
(−iâρ̂c + iρ̂câ† − 〈−iâ + iâ†〉ρ̂c

)
dWQ.

(B27)

We emphasize that now the quantum state of the measure-
ment chain cannot generally be expressed in the form of
Eq. (B8). Hence, Eq. (B23) is integrated in the joint qubit-
cavity Hilbert space to generate simulated measurement
datasets.

APPENDIX C: TRAINING AND TESTING
DETAILS

In this appendix, we analyze how optimal weights Wopt

are learned from a training dataset in the TPP approach.

1. Cost function and learned weights

We begin with the TPP map defined in the main text,
Eq. (1),

σ est = F
[
y(n)

] = F
[
W�x(n) + b

]
, (C1)

now written to describe the mapping of a single instance n
of measured data, compiled in the vector �x(n), to a vector
y(n) ∈ R

C. The mapping is via a set of weights W applied
linearly to the data �x and a set of weights that are additive,
compiled in a column vector of biases b ∈ R

C.
The vector �x lives in the joint space of measurement

records: �x(n) ∈ R
NONT is also a column vector and can be

written in the form

�x(n) =

⎛
⎜⎜⎝

�x1(n)

�x2(n)

...
�xNO(n)

⎞
⎟⎟⎠ , (C2)

where each vector �xm(n) ∈ R
NT is a column vector describ-

ing the discretized records of m ∈ [NO] measurement
observables, each with NT samples. Recall that for stan-
dard heterodyne readout, NO = 2, where �x1 = �I and �x2 =
�Q. From here on, we can work with this concatenated
vector �x.
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In Eq. (C1), F[·] is a function that maps the vec-
tor of measured heterodyne records to a discrete, scalar
state label σ ∈ [1, . . . , C]. This mapping is done via
two operations. First, the measurement records �x(σ )

(n) are
mapped to an intermediate target vector y(σ )

(n) by means
of a “one-hot” encoding (conventional for classifica-
tion tasks). The k th element of this target vector y(σ )

(n)

is given by

[y(σ )

(n) ]k =
{

1 if k = σ ,
0 otherwise.

(C3)

Finally, a discriminator is used to map the target vector to
a scalar state label.

With the key notation in place, we can discuss how the TPP training dataset is constructed. A training dataset of size
Ntrain consists of n ∈ [Ntrain] heterodyne records for each of the C states required to be distinguished in the classification
task. We define a matrix X ∈ R

NONT×CNtrain :

X =
(
�x(1)

(1) �x(1)

(2) · · · �x(1)

(Ntrain) · · · �x(C)

(1) �x(C)

(2) · · · �x(C)

(Ntrain)

)
. (C4)

We also define a matrix Y ∈ R
C×CNtrain compiling the corresponding targets:

Y =
(

y(1)

(1) y(1)

(2) · · · y(1)

(Ntrain) · · · y(C)

(1) y(C)

(2) · · · y(C)

(Ntrain)

)
. (C5)

By further introducing �1 ∈ R
1×CNtrain as a row vector

containing all 1’s, Eq. (C1) for all CNtrain records per mea-
sured observable can be written in the compact matrix
form

Y = WX + b�1. (C6)

Before proceeding, we note that we have the freedom
to introduce any invertible matrix L ∈ R

NONT×NONT as
follows, without modifying the TPP map:

Y = W(L−1L)X + b�1 = (
WL−1 b

) (LX
�1

)
≡ WX .

(C7)

The auxiliary matrix L will prove convenient for our
analysis later.

Equation (C7) helps us define X ∈ R
(NONT+1)×CNtrain as

a matrix that contains all measured records as well as a
row of 1’s to account for the contribution of biases. Then
W ∈ R

C×(NONT+1) is the composite matrix of all learned
weights. Equation (C7) defines a regression problem that
can be solved to obtain the optimal weights [60],

Wopt = YX T(XX T)−1. (C8)

For convenience of the analysis to follow, we introduce
two new matrices: the mean matrix M ∈ R

C×(NONT+1),

NtrainM ≡ YX T, (C9)

and the second-order moments matrix C ∈
R

(NONT+1)×(NONT+1),

NtrainC ≡ XX T, (C10)

so that Eq. (C8) can equivalently be written as

Wopt = MC−1, (C11)

where the factors of Ntrain cancel out.
Note that the matrix C = XX T can at times be

ill-conditioned, making its inverse difficult to compute
numerically. In such cases, we instead compute the quan-
tity C+, which is related to the pseudoinverse of X
and is given by the following limit relation defining the
pseudoinverse:

C+= lim
λ→0

(C − λI)−1, (C12)

where I is the identity matrix on R
(NONT+1)×(NONT+1) and

λ is typically referred to as a regularization parameter. If
C is invertible, we have C+ → C−1. We emphasize that
for the datasets analyzed in this paper, the intrinsic dataset
noise serves as an effective regularizer, such that we can
typically set λ = 0.

2. Testing via cross-validation

For all classification infidelities calculated in the main
text, we perform cross-validation. For a full dataset of Ntraj
records per state, a training set is constructed with Ntrain <

Ntraj records as described above. The remaining Ntest =
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FIG. 9. Comparison of general TPP versus FGDA as a function of training set size and qubit initialization error. Results are shown
for training set sizes Ntrain of (a) 4000 measurement records per class and (b) 8000 measurement records per class. More-opaque
markers indicate lower qubit initialization error.

Ntraj − Ntrain records are used to construct a testing set. We
use 80% of the dataset for training and the remaining 20%
for testing. This is consistent with training set and test-
ing set sizes for standard machine-learning applications;
for example, the MNIST handwritten digits classification
task [61] uses 85.7% of the total dataset for training and
the remaining 14.3% for testing. Predicted state labels are
obtained with this testing set via both the FGDA scheme,
Eq. (10), and the TPP, Eq. (1). The process is repeated until
a total of L = 10 iterations are completed: each time, a new
set of weights Wopt is obtained from a distinct randomly
chosen training set of the total Ntraj records, and classi-
fication infidelities are computed with the new random
testing datasets. All classification fidelities are averaged
to obtain the final values plotted in the main text. This
cross-validation approach is standard in machine learning
and ensures that the observed performance is not unduly
affected by variations due to the specific training dataset or
testing dataset used.

3. Dependence on size and fidelity of training sets

As the TPP deploys a supervised learning approach to
training [not unlike a standard matched filter, as shown by
Eq. (11)], an important question is how its performance
depends on the size of the available training dataset, as well
as any possible errors in the labeling of data such as may
arise due to qubit initialization errors for the case of qubit
state readout.

To answer these questions, we consider again the case
of measurement data experiencing only Gaussian white
noise, and compare the general TPP performance and the
FGDA performance for binary classification of p ∈ {e, g}.
Note that use of only the general TPP makes sense here,
as the white noise TPP is exactly equal to the standard
matched filter learned from a given training dataset in the
special case of white noise. In Fig. 9(a), we thus plot the

performance of the general TPP against the performance of
the FGDA as in the main text, with a training set size Ntrain
of 4000 measurement records per class. We also consider
the impact of qubit ground state |g〉 initialization error
from 5% up to 35%: more-opaque markers correspond to a
lower qubit initialization error and hence better classifica-
tion performance. Figure 9(b) shows the same plot but now
for a larger training set with Ntrain = 8000 measurement
records per class.

For the smaller training dataset, the TPP very marginally
underperforms in comparison with the FGDA for some of
the data points. This is because the TPP has not yet con-
verged to the optimal filter for this size of training dataset.
With increasing training set size, this difference becomes
smaller and smaller. We also note that qubit initialization
error appears to impact both schemes similarly, so the TPP
appears to not be unduly impacted by data mislabeling.

Finally, we emphasize that the task considered here is
one that most heavily favors the standard FGDA in con-
trast to the general TPP, as the measurement data actually
satisfy the noise conditions assumed a priori by the stan-
dard matched filter. Furthermore, the signal amplitudes
used are weak (as indicated by the relatively low classi-
fication fidelity), so the measured data have a low SNR
and more data are needed to probe the statistics faithfully.
If the true measured data exhibit noise statistics that devi-
ate from this white noise case, even TPP filters learned
with use of small training set sizes can already outper-
form the then suboptimal standard MF trained on the same
dataset.

APPENDIX D: TPP LEARNED WEIGHTS AS
OPTIMAL FILTERS: ANALYTIC RESULTS

In this appendix, we attempt to find an explicit form for
the matrix Wopt from Appendix C, under some assump-
tions on the form of the data contained in X.
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1. Measured data as stochastic random variables

To make further progress, we must make some
assumptions regarding the general form of measured data
�x(c). In particular, we assume that

�x(c) = �s(c) + �ζ (c)
, (D1)

where �ζ (c)
is a random noise process that contains the

stochasticity of the data �x. In particular, this includes con-
tributions from heterodyne measurement noise �ξ , added
classical noise �ξcl, and quantum noise in conditional quan-
tum trajectories. Without loss of generality, �ζ can always
be taken to have zero mean,

E[�ζ j ] = 0 for all j . (D2)

The random noise process can be defined by its covariance
matrix,

�
(c)
jk = E[�ζ (c)

j
�ζ (c)

k ]. (D3)

The noise process will, in general, also possess nonzero
higher-order cumulants, but these quantities will not make
an appearance in our analysis here.

Then, �s(c) is simply equal to the expectation value of the
random variable �x(c) over an in principle infinite number
of shots,

�s(c) = E[�x(c)]. (D4)

In practice, we will have access to only a finite number
of shots Ntrain. Then, the above mean can be approximated
with use of the estimator

�s(c) ≈ 1
Ntrain

Ntrain∑
n=1

�x(c)
(n). (D5)

Similarly, the covariance matrix of the noise process can
be estimated via

�(c) ≈ 1
Ntrain

Ntrain∑
n=1

�ζ (c)
(n)

�ζ (c)T
(n) . (D6)

Assuming we have the very general form of Eq. (D1), we
can proceed to greatly simplify the matrices M and C.

a. Simplification of mean matrix M

The mean matrix M, Eq. (C9), can be written explicitly
as

NtrainM = Y
(
XTLT �1T

) = (
YXTLT Y�1T

)
. (D7)

We now proceed to simplify the general matrices Y�1T

and YXTLT. Starting with the former, which simply yields

a column vector that is an element of R
C×1, we find

explicitly

(Y�1T)l =
C·Ntrain∑

k=1

Ylk�1T
k =

∑
n

∑
c

y(c)
l

=
∑

n

∑
c

δcl = Ntrain. (D8)

Here we have used the fact that the sum over the columns
of Y (and of X), indexed by k, can be decomposed into two
sums: over Ntrain training records indexed by n and over C
states indexed by c. From here on, we suppress the limits
of these summations for clarity.

Next we consider YXT, which can be expanded out
explicitly,

YXT =
∑

k

YlkXT
km =

∑
k

YlkXmk

=
Ntrain∑
n=1

C∑
c=1

δlc(�x(c)
(n))m � Ntrain

C∑
c=1

δlc(�s(c)
)m

= Ntrain(�s(l)
)m, (D9)

where we have used Eq. (D5) in obtaining the final expres-
sion. Hence, with use of Eq. (D7), the matrix M takes the
simple form (after the factors of Ntrain cancel out)

M =

⎛
⎜⎝

(L�s(1)
)T 1

...
...

(L�s(C)
)T 1

⎞
⎟⎠ ≡

⎛
⎜⎝

(�S(1))T

...
(�S(C))T

⎞
⎟⎠ , (D10)

which contains the mean traces for all measured observ-
ables over all states, explaining the nomenclature of the
mean matrix. We have further introduced the vectors �S(c),
which also include the contribution from the bias.

b. Simplification of second-order moments matrix C

Simplifying the second-order correlation matrix C is
more involved. We begin by expanding it to the form

NtrainC ≡ XX T =
(

LX
�1

) (
XTLT �1T

)

=
(

LXXTLT LX�1T

�1XTLT �1�1T

)
. (D11)

Note that XXT is simply the two-time correlation matrix of
the measured data.
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We can further simplify C, which has four components.
Starting with the simplest, we note that

�1�1T =
∑

k

�1k�1T
k =

∑
n

∑
c

1 = CNtrain. (D12)

Next we consider the off-diagonal block term,

(X�1T)i =
∑

k

(X)ik(�1T)k =
∑

c

∑
n

(�x(c)
(n))i

� Ntrain

∑
c

[�sm(c)]i. (D13)

The other off-diagonal term is simply the transpose of the
above.

Finally, we consider the block matrix,

[XXT]ij =
∑

k

[X]ik[XT]kj =
∑

k

[X]ik[X]jk

=
∑

c

∑
n

[�x(c)
(n)]i[�x(c)

(n)]j . (D14)

To proceed further, we substitute Eq. (D1) into the final
expression and expand it:

[XXT]ij =
∑

c

∑
n

[�x(c)
(n)]i[�x(c)

(n)]j

=
∑

c

{
[�s(c)]i[�s(c)]j +

∑
n

[�ζ (c)
(n)]i[�s(c)]j

+ [�s(c)]i

∑
n

[�ζ l(c)
(n) ]j +

∑
n

[�ζ (c)
(n)]i[�ζ (c)

(n)]j .

}

(D15)

Note that the sums indexed by n over the training data are
estimators of the statistics of the noise process. We can
therefore write

[XXT]ij = Ntrain

∑
c

{
[�s(c)]i[�s(c)]j + �

(c)
ij

}
. (D16)

It now proves useful to introduce two further matrices, the
Gram matrix G,

G =
∑

c

�s(c)
(�s(c)

)T, (D17)

and the empirical correlation matrix V,

V =
∑

c

�(c). (D18)

We can therefore write C in the simplified form

C =
(

L(G + V)LT ∑
c L�s(c)

∑
c(�s(c)

)TLT C

)
(D19)

and hence construct the full C via Eq. (D11).
Having constructed explicit forms of M and C, we are,

in principle, positioned to evaluate the optimal weights
and biases Wopt explicitly as well. To do so, it first again
proves useful to interpret the learned weights in terms of
optimal filters.

2. Constraints on TPP filters

The learned matrix of weights can be written in vector
form as

Wopt ≡

⎛
⎜⎝

(�f 1)
TL−1 b1
...

...
(�f C)TL−1 bC

⎞
⎟⎠ ≡

⎛
⎜⎝

(�F1)
T

...
(�FC)T

⎞
⎟⎠ . (D20)

Next, using Eq. (C8) together with the explicit form of the
mean matrix M in Eq. (D10), we arrive at the important
relation

⎛
⎜⎝

(�F1)
T

...
(�FC)T

⎞
⎟⎠ =

⎛
⎜⎝

(�S(1))T

...
(�S(C))T

⎞
⎟⎠ C−1 =⇒

C−1 (�S(1) · · · �S(C)
) = (�F1 · · · �FC

)
, (D21)

where we have used the fact that C, and hence its inverse,
is a symmetric matrix, and thereby computed the transpose
of both sides. The above equation then implies

C−1�S(c) = �Fc, (D22)

We note that the matrix C is very general as it is con-
structed for completely arbitrary measured signals; it is
therefore generally dense and its inverse C−1 cannot be
analytically determined. However, Eq. (D22) suggests that
if we can find a way to work with quantities C−1�S(c)

directly, we can avoid having to evaluate this regularized
inverse of C. This is our strategy to evaluate optimal filters
analytically.

We demonstrate this approach by considering the action
of C on the constant inhomogeneous vector,

�n =
(�0

1

)
, (D23)

where �0 ∈ R
NONT is a vector of 0’s. In particular, we wish

to evaluate C�n. Using the block representation of C, we
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have

C�n =
(

L(G + V)LT ∑
c L�s(c)

∑
c(�s(c)

)TLT C

)(�0
1

)
=

(∑
c L�s(c)

C

)

=
∑

c

(
L�s(c)

1

)
=

∑
c

�S(c). (D24)

Most importantly, note that the right-hand side is entirely
independent of the covariance matrix V, instead depending
only on mean traces.

Multiplying Eq. (D24) by C−1 and then making use
of Eq. (D22) will allow us to work directly with the
(unknown) optimal filters �Fc. We immediately find

∑
c

�Fc = �n. (D25)

For completeness, we also consider the case where we
instead require the calculation of C+. To this end, we add
and subtract the regularization parameter λ,

(C − λI)�n + λ�n =
∑

c

�S(c) =⇒
∑

c

(C − λ)−1�S(c)

= �n + λ(C − λI)−1�n, (D26)

or, finally,
∑

c

�Fc = �n + λ(C − λI)−1�n. (D27)

The above defines a constraint on learned optimal filters,
implying that they are not all linearly independent. Cru-
cially, this constraint holds regardless of the correlation
properties of the noise characterized by V and is hence very
general.

3. Analytically calculable TPP filters: “Matched
filters” for arbitrary C

Having obtained a useful constraint on TPP-learned fil-
ters, we now take a step further and calculate semianalytic
expressions for these learned filters [eventually arriving at
Eq. (14)].

The first step is to simplify the form of the matrix C in
Eq. (D19), which we reproduce and expand below:

C =
(

LGLT + LVLT ∑
c L�s(c)

∑
c(�s(c)

)TLT C

)
. (D28)

We have thus far allowed the auxiliary matrix L to be com-
pletely general; we can now use it to simplify the form
of C. Note that V as defined in Eq. (D18) is the positive
sum of individual positive-definite correlation matrices; as
a result, it must also be positive-definite and real. Among
the useful properties of such positive-definite matrices is

that they admit a Cholesky decomposition. We choose the
auxiliary matrix L such that it precisely determines the
Cholesky decomposition of V:

V = L−1(LT)−1 =⇒ V−1 = LTL, (D29)

where we have also used the fact that a positive-definite
matrix is always invertible.

With this choice, we immediately find that C reduces to

C =
(

LGLT + Ī
∑

c L�s(c)

∑
c(�s(c)

)TLT C

)
, (D30)

where Ī is the identity matrix on R
NONT×NONT .

a. Obtaining the linear system for filters

To obtain a system of equations for the learned filters,
we now consider the action of C on the vector �S(c). To
do so, we once again make use of the simplified block
representation of C, which allows us to write

C�S(c) =
(∑

c′ L�s(c′)
(�s(c′)

)TLT + Ī
∑

c′ L�s(c′)

∑
c′(�s(c′)

)TLT C

)(
L�s(c)

1

)

=
(∑

c′ L�s(c′)[(�s(c′)
)TLTL�s(c)] + L�s(c) + ∑

c′ L�s(c′)

∑
c′[(�s(c′)

)TLTL�s(c)] + C

)
.

(D31)

It proves useful to define the overlap of mean traces,

Occ′ = (�s(c′)
)TLTL�s(c) = (�s(c′)

)TV−1�s(c), (D32)

where we have used Eq. (D29). We can thus write

C�S(c) =
(∑

c′ Occ′L�s(c′) + ∑
c′ L�s(c′) + L�s(c)

∑
c′ Occ′ + C

)

=
(∑

c′ [Occ′ + 1 + δcc′] L�s(c′)
∑

c′ [Occ′ + 1]

)

=
(∑

c′ [Occ′ + 1 + δcc′] L�s(c′)
∑

c′ [Occ′ + 1 + δcc′]

)
−

( �0∑
c′ δcc′

)

=
∑

c′
[Occ′ + 1 + δcc′]

(
L�s(c′)

1

)
−

(�0
1

)
. (D33)

Finally, defining

Mcc′ = [Occ′ + 1 + δcc′] (D34)

and once again introducing �n from Eq. (D23), we arrive at
the form

C�S(c) =
∑

c′
Mcc′ �S(c′) − �n. (D35)
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Therefore, we find that the action of C on �S(c) can be expressed as a linear combination of the set of vectors {�S(c)} and
a vector �n that is independent of c.

We now wish to introduce the unknown filters �Fc to the above system using Eq. (D22). To do so, we add and subtract
the regularization parameter λ, followed by multiplication by the regularized inverse of C. This yields

�S(c) =
∑

c′
(C − λI)−1(Mcc′ − λIδcc′)�S(c′) − (C − λI)−1�n

=
∑

c′
(Mcc′ − λIδcc′)�Fc′ − (C − λI)−1�n. (D36)

However, Eq. (D36) is not entirely free of the (C − λI)−1 matrix, due to the inhomogeneous term. Fortunately, as the
inhomogeneous term is constant, it can be removed by our considering the difference of Eq. (D36) for any two distinct c
values. For example, for c = c′′ ∈ [1, . . . , C],

�S(c) − �S(c′′) =
∑

c′
Mcc′ �Fc′ −

∑
c′

Mc′′c′ �Fc′

=
∑

c′
[Mcc′ − Mc′′c′] �Fc′ . (D37)

This naturally introduces the difference of mean traces to the calculation of learned filters.
Finally, we recall that the unknown filters �Fc are not all linearly independent. We therefore use the constraint expressed

in Eq. (D25) in the formal limit λ → 0 to eliminate one of the unknown vectors, here taken to be �FC:

�FC = �n −
C−1∑
c′=1

�Fc′ . (D38)

Then Eq. (D37) can be rewritten as

�S(c) − �S(c′′) =
C−1∑
c′=1

[Mcc′ − Mc′′c′] �Fc′ + [McC − Mc′′C] �FC

=
C−1∑
c′=1

[Mcc′ − Mc′′c′] �Fc′ −
C−1∑
c′=1

[McC − Mc′′C] �Fc′ + [McC − Mc′′C] �n

=
C−1∑
c′=1

[(Mcc′ − Mc′′c′) − (McC − Mc′′C)] �Fc′ + [McC − Mc′′C] �n. (D39)

Note that there are C − 1 unknowns �Fc, and hence we require C − 1 equations. These equations are simply provided
by Eq. (D39) by our considering C − 1 distinct pairs [c, c′′]. For concreteness, we consider pairs Pp = [c, c′′], where
[c, c′′] ∈ {[1, 2], [2, 3], . . . , [C − 1, C]} indexed by p ∈ [1, . . . , C − 1]. We also introduce notation to individually identify
the states constituting the p th pair, for convenience: if Pp = [c, c′′], Pp(1) = c, Pp(2) = c′′. We then define the difference
of mean traces constituting a pair,

�SPp ≡ �S(Pp (1)) − �S(Pp (2)). (D40)

Each pair yields an equation of the form of Eq. (D39); it is easily seen that the full set of C − 1 equations can be compiled
into the matrix system

⎛
⎜⎝

�SP1

...
�SPC−1

⎞
⎟⎠ = (Q ⊗ I)

⎛
⎜⎝

�F1
...

�FC−1

⎞
⎟⎠ + (T ⊗ I)

⎛
⎜⎝

�n
...
�n

⎞
⎟⎠ (D41)
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with use of the properties of the Kronecker product. Here I is the identity matrix on R
NO(NT+1)×NO(NT+1) as before, while

Q and T are both elements of the much smaller space R
(C−1)×(C−1). In particular, their matrix elements are given by

Qpc = [
(MPp (1)c − MPp (2)c) − (MPp (1)C − MPp (2)C)

]
, Tpc = δpc

[
MPp (1)C − MPp (2)C

]
. (D42)

Note further that T is a diagonal matrix.

b. Solving the linear system for filters

Being a simple linear system, Eq. (D41) has the formal solution

⎛
⎜⎝

�F1
...

�FC−1

⎞
⎟⎠ = (

Q−1 ⊗ I
)
⎛
⎜⎝

�SP1

...
�SPC−1

⎞
⎟⎠ − (

Q−1 ⊗ I
)
(T ⊗ I)

⎛
⎜⎝

�n
...
�n

⎞
⎟⎠ . (D43)

We can now simply read off the solution for the unknown vector �Fc:

�Fc =
C−1∑
p=1

Q−1
cp

�SPp −
C−1∑
p=1

Q−1
cp Tpp �n. (D44)

The first term on the right-hand side completely defines the filter components in �Fc, as they have a zero at the position
corresponding to the bias component. The second term then entirely defines the bias. Using the form of �Fc from Eq. (D20),
we can immediately read off the individual filters for each measured observable:

(L−1)T �f c =
∑

p

Q−1
cp L�s(Pp ), (D45)

which simplifies to

�f c =
∑

p

Q−1
cp LTL�s(Pp ) =⇒ �f c =

∑
p

Q−1
cp V−1�s(Pp ), (D46)

where we have again used Eq. (D29). The bias terms are finally given by

bc = −
∑

p

Q−1
cp Tpp . (D47)

The remaining learned filter and bias are then given by the constraint, Eq. (D25).
An alternative, more practical form of the learned filters can be extracted by transitioning from the representation in

terms of difference vectors �SPp to the individual traces �S(c) with use of Eq. (D40). We find

�f c = Q−1
c1 V−1�s(1) +

C−1∑
p=2

[
Q−1

cp − Q−1
c(p−1)

]
V−1�s(p) − Q−1

c(C−1)V
−1�s(C), (D48)

which provides the learned filters as a linear combination of mean signals corresponding to each state to be classified.
From comparison with Eq. (14), we finally have

�f c =
C∑

p=1

CcpV−1�s(p), Ccp =

⎧⎪⎪⎨
⎪⎪⎩

+Q−1
c1 if p = 1,

−Q−1
c(C−1) if p = C,

Q−1
cp − Q−1

c(p−1) otherwise.

(D49)
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4. Reduction to standard matched filter for binary classification (C = 2)

For C = 2, the matrix system in Eq. (D41) reduces to a single equation:

�S(1) − �S(2) = [M11 − M21 − (M12 − M22)] �F1 + [M21 − M22] �n. (D50)

From here we can directly read off the filter and bias term:

(�f 1
b1

)
= V−1

M11 − M21 − (M12 − M22)

(�s(1) − �s(2)

0

)
− M21 − M22

M11 − M21 − (M12 − M22)

(�0
1

)
. (D51)

5. Example: Analytic construction of TPP-learned filters for three-state classification (C = 3)

We now provide an example of the construction of TPP-learned optimal filters for C = 3 state classification. To compute
these filters using Eq. (D49), we simply require knowledge of the matrix Q, whose matrix elements are given by Eq. (D42).
For C = 3, Q ∈ R

2×2, and the distinct state pairs Pp for p = 1, 2 are given by P1 = [1, 2] and P2 = [2, 3]. Then Q takes
the form

Q =
(

M11 − M21 − (M13 − M23) M12 − M22 − (M13 − M23)

M21 − M31 − (M23 − M33) M22 − M32 − (M23 − M33)

)
(D52)

and its inverse can hence be easily computed:

Q−1 = 1
det Q

(
M22 − M32 − (M23 − M33) (M13 − M23) − (M12 − M22)

(M23 − M33) − (M21 − M31) M11 − M21 − (M13 − M23)

)
(D53)

Using Eq. (D49), we can therefore write for the nontrivial TPP-learned filters

�f 1 = V−1

det Q

{
[M22 − M32 − (M23 − M33)] �s(1) + [M13 − M12 − (M33 − M32)] �s(2)

+ [M12 − M22 − (M13 − M23)] �s(3)
}

, (D54a)

�f 2 = V−1

det Q

{
[M23 − M33 − (M21 − M31)] �s(1) + [M11 − M13 − (M31 − M33)] �s(2)

+ [M13 − M23 − (M11 − M21)] �s(3)
}

. (D54b)

Note that the final filter �f 3 must be defined by
the constraint expressed by Eq. (16) [or equivalently
Eq. (D25)].

6. TPP-learned optimal filters for multistate
classification under Gaussian white noise

We now present an example of TPP-learned optimal fil-
ters for dispersive qubit readout where the dominant noise
source is additive Gaussian white noise. This is ensured
via a theoretical simulation of Eq. (6) as discussed in
Sec. III A. These simulations yield single-shot measure-
ment records for any number of transmon states. Examples
of these records are shown in Fig. 10 for four distinct
transmon states p ∈ {e, g, f , h}; for ease of visualization,
we consider only the I quadrature. We use this simulated
dataset as a training set to determine the TPP-learned filters
under the white noise assumption, as defined by Eq. (14)

with V ∝ Ī. While the individual measurement records are
obscured by white noise, the empirically calculated mean
traces at the top right in Fig. 10 illustrate the physics at
play. The mean traces grow once the measurement tone is
turned on past Ton and settle to a steady state depending
on the induced dispersive shift χp and the measurement
amplitude. The traces begin to fall beyond Toff and even-
tually settle to background levels. These means, together
with an estimate of the variances, determine the coeffi-
cients Ckp that define the contribution of the mean trace
�s(p) to the k th filter, and are hence sufficient to calculate
optimal filters for the classification of any subset of states.

For the standard binary classification task (C = 2) of
distinguishing {e, g} states, the learned filters are repre-
sented in black in the top row in Fig. 10, together with bar
plots showing the coefficients Ckp . Again for visualization,
we show filters �fk ∈ R

NT only for I -quadrature data; the
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FIG. 10. TPP-learned optimal filters for simulated multistate classification under Gaussian white noise conditions. Top right: Single-
shot measurement records obtained under the indicated measurement tone, and empirical mean traces of several heterodyne records of
the cavity I quadrature corresponding to multilevel atom states |p〉, where p ∈ {e, g, f , h}. For a transmon χp/κ ∈ {−χ , χ , −3χ , −5χ},
χ/κ = 0.195, and κ/2π = 1.54 MHz. Rows: TPP-learned optimal filters for classifying states p ∈ {e, g} (C = 2), {e, g, f } (C = 3),
and {e, g, f , h} (C = 4). Black curves represent filters learned under the white noise assumption, calculated analytically with Eq. (14).
Bar plots show the coefficients Ckp applied to respective mean traces in calculating these filters. Gray curves represent general filters
calculated by our numerically solving Eq. (2). Analytically computed white noise filters and general filters can both be extended to
arbitrary C.

complete vector �f k includes filters for all NO observ-
ables. For the binary case, the k = 1 TPP-learned filter
always satisfies C1e = −C1g . Hence, it is simply propor-
tional to the difference of mean traces for the two states,
�f1 ∝ �s(e) − �s(g), making it exactly equivalent to the stan-
dard matched filter for binary classification. We note that
the second filter (k = 2) is simply the negative of the first,
as demanded by Eq. (16).

Crucially, the TPP approach now provides the general-
ization of such matched filters to the classification of an
arbitrary number of states. For three-state (C = 3) classi-
fication of {e, g, f } states, the three TPP-learned filters are
plotted in the middle row, while the last row shows the
four filters for the classification of C = 4 states {e, g, f , h}.
Filters for the classification of an arbitrary number of
states C can be constructed similarly. The bar plots of Ckp
show how these filters typically have nonzero contribu-
tions from the mean traces for all states. This emphasizes

that the TPP-learned filters are not simply a collection
of binary matched filters but are a more nontrivial con-
struction. Most importantly, our analytic approach enables
this construction by inverting a matrix in R

(C−1)×(C−1) to
determine Ckp . This has a substantially lower complex-
ity relative to the pseudoinverse calculation demanded by
Eq. (2), which requires inversion of a much larger matrix
C ∈ R

NONT×NONT .
Of course, the latter approach of obtaining Wopt and

hence TPP filters using Eq. (2) can also be applied for
learning using the same training data. Here it yields the
underlying filters represented in gray. The resulting filters
appear to simply be noisier versions of the analytically
calculated filters. The reason for this straightforward: the
fact that the noise in the measurement data is additive
Gaussian white noise is a key piece of information used
in calculating the white noise TPP filters, but is not a
priori known to the general TPP. The latter makes no
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assumptions regarding the underlying noise statistics of
the dataset. Instead, the training procedure itself enables
the TPP to learn the statistics of the noise and adjust Wopt

accordingly. The fact that the temporal profile of general
TPP filters gradually approaches that of the white noise fil-
ters shows this learning in practice. This ability to extract
noise statistics from data is a key feature that makes TPP
learning useful under more general noise conditions, as
demonstrated in Secs. IV and V.

7. Comparison of the TPP against C − 1 instances
of FGDA

In Sec. III A, the performance of TPP-learned opti-
mal filters was compared against standard FGDA
implementations where a single matched filter is used.
However, as the TPP uses C − 1 independent filters, it is
natural to ask for C > 2 state classification tasks whether
use of multiple instances of FGDA with distinct fil-
ters could provide an improvement in performance. In
other words, does the improvement in TPP performance
observed in Fig. 2 arise simply because the TPP is using
more filters or is due to the learned optimal filters being
able to extract more useful information from the noisy
temporal measurement data?

To investigate this, we consider the C = 3 state classi-
fication task from Sec. III A, but now compare the TPP
against C − 1 instances of the FGDA. A standard approach
to do so is to consider one-versus-all classification. Here,
for a single instance, an FGDA is trained to process tempo-
ral data and to output a state label as being p , or not p (or !p
for short), instead of predicting a precise state label in the
!p case. The “filter” portion of this FGDA can be labeled
a one-versus-all matched filter, and can be constructed, for
example, as

�hI ,p = 1
Ntrain

Ntrain∑
n=1

⎛
⎝�I (p)

(n) − 1
C − 1

∑
p ′ =p

�I (p ′)
(n)

⎞
⎠ . (D55)

Next, a second instance of the FGDA processes the same
temporal data but using a one-versus-all matched filter
constructed for a different state label q, and hence now pre-
dicts the state label as being q or !q. FGDA instances are
used to process temporal data until C − 1 instances have
been used and hence one of 2(C−1) possible outcomes has
been obtained. A concrete example of the possible out-
comes for C = 3 state classification is shown in Fig. 11(a)
for one-versus-all filters constructed for p = g and q = e.
Depending on the possible joint outcome, a state label can
finally be assigned: for example, the result g and !e is con-
sistent with the state label g, !g and e implies e, and !g
and !e implies f . Note that the final outcome g and e is
ambiguous; here we use a random choice to assign a state
label.

Note that use of C − 1 instances of the FGDA introduces
more ambiguities than use of just a single filter: differ-
ent choices of p and q can be made, as indicated by the
other tables in Fig. 11(a), where we choose either p = e,
q = f or p = g, q = f . There is even greater ambiguity
about the choice of the C − 1 one-versus-all matched fil-
ters, Eq. (D55), where the prefactors of each mean trace
can be chosen arbitrarily. Even before exploring the per-
formance of C − 1 FGDA instances, we note that the TPP
already provides a unique set of filters, determined by
coefficients Ckp as given by Eq. (D49).

We now compare the performance of the TPP against
the three distinct C − 1 FGDA instance implementations
shown in Fig. 11(a), first for the readout conditions from
Fig. 2; the results are shown in Fig. 11(b). Also shown is
the use of a single g-f matched filter, which was found
to match the performance of the TPP in this case. We
clearly see that the performance of the three distinct C − 1
FGDA instances matches the TPP performance much more
closely than the single matched filters used in Fig. 2. How-
ever, if the readout conditions are modified, for example,
if the cavity readout drive is now resonant with the cavity
frequency when the qubit is in the ground state |g〉, the
performance can vary significantly, as shown in Fig. 11(c).
All C − 1 FGDA instances have a higher classification
infidelity than the TPP, with certain instances faring much
worse than others.

It is therefore clear that the improvement in classifica-
tion fidelity provided by the TPP is not due only to its use
of more than a single filter: C − 1 FGDA instances using
the same number of independent filters as the TPP do not
always match its performance. This emphasizes the need
to optimize the individual filters used; the TPP provides
an autonomous, model-free approach to achieve precisely
this objective for the classification of an arbitrary number
of states.

8. Semianalytic TPP-learned optimal filters beyond
Gaussian white noise conditions

As shown in the main text, a key feature of the TPP is
that it applies to postprocessing of temporal data experi-
encing more general noise conditions than simply uniform,
observable-independent Gaussian white noise. In the main
text, we compared numerically calculated general TPP fil-
ters with semianalytic filters computed under the white
noise approximation. In this subsection we also show the
semianalytic but general TPP filters, as defined by Eq. (14)
for a general correlation matrix V.

We start with a simple case where the required V−1 can
be computed analytically. Consider the case of heterodyne
measurement NO = 2 but where the two measured observ-
ables (quadrature time series �I and �Q) have stationary but
distinct variances σ 2

I and σ 2
Q respectively; for concreteness,
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FIG. 11. Multistate (C = 3) classification performance of the TPP versus C − 1 instances of FGDA under Gaussian white noise
conditions. (a) Three distinct schemes (each corresponding to a different table) to implement C = 3 state classification using C − 1
instances of FGDA. Each instance predicts outcomes given by headers of rows and columns, respectively, while bold labels indicate
final predicted labels based on joint outcomes; see discussion in Appendix D 7 for details. Performance comparison for (b) the same
readout conditions as for Fig. 2 and (c) for readout conditions where the measurement drive is resonant with the dispersively shifted
cavity when the transmon qubit is in state |g〉. The TPP still outperforms C − 1 FGDA instances, with the latter’s performance also
varying depending on the readout conditions.

we assume σ 2
Q > σ 2

I . In this case, V takes the simple form

V =
(

σ 2
I Ĩ 0
0 σ 2

QĨ

)
, (D56)

where Ĩ is the identity matrix in R
NT×NT . Of course, this

form of V can be straightforwardly inverted:

V−1 =
⎛
⎝

1
σ 2

I
Ĩ 0

0 1
σ 2

Q
Ĩ

⎞
⎠ . (D57)

For convenience, we define filters and mean traces for each

quadrature as �f k =
( �f I

k
�f Q
k

)
and �s(p)

k =
(

�sI(p)
k

�sQ(p)
k

)
, respec-

tively. To calculate the semianalytic general filters, we then

simply use Eq. (14) to immediately find

�f I
k =

∑
k

Ckp(V)
1
σ 2

I
�sI(p)

k ,

�f Q
k =

∑
k

Ckp(V)
1
σ 2

Q
�sQ(p)

k .
(D58)

We see that there is now a relative weighting of the filters
in accordance with their variance: noisier observables are
suppressed relative to less noisy observables. Additionally,
the coefficients Ckp also depend on V−1. In Fig. 12(a) we
plot the resulting filters for the readout conditions consid-
ered in Fig. 11(b) (this ensures the I and Q quadratures
both have nonzero mean signal values) for both the semi-
analytic general TPP filters given by Eq. (D58) and the
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FIG. 12. Comparison of semianalytic and exact TPP filters under general noise correlation conditions. Filters are shown for
(a) simulated data where different quadrature time series �I , �Q have different variances σ 2

I , σ 2
Q, respectively, and (b) simulated data

from a phase-preserving quantum-limited amplifier, as in Sec. V A. Excellent agreement is observed between the exact general TPP
filter and the semianalytic general TPP filter, while both are markedly different from TPP filters under the assumption of uniform
(namely, observable-independent) Gaussian white noise, as represented by the black curves.
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exact general TPP filters; the latter are shown with thicker
lines deliberately to highlight differences between the two
(to be expanded upon in due course). Finally, also shown
are the filters with the assumption of uniform white noise
across the measured quadratures, which are clearly distinct
from the general filters and do not penalize the noisier Q
quadrature.

Secondly, in Fig. 12(b), we consider the case of corre-
lated quantum noise added by a finite-bandwidth phase-
preserving quantum amplifier from Sec. V A, now also
showing calculated semianalytic general filters. We see
that for all cases the semianalytic general TPP filters show
only very small differences when compared with the exact
general TPP filter. As both schemes use empirically cal-
culated mean traces to construct the Gram matrix G and
empirically estimate the correlation matrix V, the residual
differences can be attributed to the fact that the semi-
analytic TPP filter assumes the noise terms have zero
mean, while the exact general filter does not make such
an assumption.

We also emphasize that computing the exact gen-
eral TPP filter requires the inversion of the matrix
C ∈ R

(NONT+1)×(NONT+1), while the semianalytic general
TPP requires the inversion of V ∈ R

(NONT)×(NONT). In
the general case, the numerical advantage in inverting
the slightly smaller matrix V is not as significant as it
is in the special case where V is proportional to the
identity matrix. However, in cases where an analytic
form for V and more importantly its inverse is simi-
larly known, the semianalytic general TPP filter can be
more numerically efficient than calculating these filters
exactly.

APPENDIX E: SUPPLEMENTARY
CLASSIFICATION RESULTS

1. Classification performance versus increasing signal
amplitude for real qubit readout

In theory, namely, ignoring measurement chain nonide-
alities and qubit transitions discussed in Sec. III, increase
in measurement tone amplitude leads to an increase in
qubit classification fidelity. However, for real qubits,
additional effects can create complex readout conditions
such that increasing the measurement tone amplitude
may not uniformly increase readout fidelity. To analyze
whether increased readout power facilitates increased read-
out fidelity for the real qubit readout data collected in this
work, we analyze the data in Fig. 3 in a slightly different
form. We first introduce the quantity

Nj (s) = 1 − Fj (s)
1 − Fj (s0)

, (E1)

where j ∈ {FGDA, TPP} depending on the classification
scheme used, while s denotes signal amplitude and s0 is
the smallest signal amplitude for a given dataset. As a
result, Nj is simply the infidelity as a function of mea-
surement tone amplitude, normalized by the infidelity at
the smallest amplitude; we therefore require Nj < 1 for a
reduction in readout infidelity (and hence an increase in
readout fidelity) for increasing readout power.

In Fig. 13, we plot NFGDA against NTPP for the two
dispersive qubit-cavity systems that were analyzed as a
function of measurement tone amplitude in the main text.
The data point at NFGDA = NTPP = 1 for each dataset
corresponds to the lowest amplitude, by construction of
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Qubit B, T1 = 60 µs
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Increased fidelity at larger signal 
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using FGDA

FIG. 13. Classification performance of the TPP versus FGDA as a function of increasing measurement tone (signal) amplitude for
readout of real qubits. Same data as for Fig. 3, but now with our plotting N , the classification infidelity normalized by infidelity
at the lowest signal amplitude for each dispersive qubit-cavity system shown; see Eq. (E1). More-opaque markers indicate higher
measurement tone amplitudes.
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Eq. (E1). We next note that a few data points fall into the
category where both NTPP > 1 and NFGDA > 1, indicat-
ing increased infidelity with increasing signal amplitude
with either classification scheme. Here nonidealities such
as enhanced qubit transitions degrade the measured data,
which neither classification scheme is able to overcome.
We note that here we still have NFGDA > NTPP, so the
FGDA performance is worse than the TPP performance.

Of all the other data points corresponding to higher read-
out amplitudes, most lie in the blue shaded regions of
the plot, where NTPP < 1. These are qubit readout condi-
tions for which increasing the measurement tone amplitude
leads to improved classification performance when the
TPP is used. Of these points, just over half also have
NFGDA < 1, implying that use of either the FGDA or the
TPP provides an improvement. Again, NFGDA > NTPP, so
the improvement is larger with the TPP.

Crucially, the other half of the data points are such
that NTPP < 1 while NFGDA > 1. For these regimes, the
use of the TPP is necessary to extract an advantage in
readout fidelity with increasing signal amplitude. Equally
as importantly, none of the data points fall in the cate-
gory where NTPP > 1 while NFGDA < 1; this indicates that
there is, in general, no disadvantage in deploying the TPP
instead of the FGDA at higher signal amplitudes, as the
TPP will not be outperformed by the FGDA. Together,
these results supplement findings in the main text that the
TPP can provide a robust classification scheme to extract
maximum performance in complex readout regimes at high
powers.

2. Three-state classification results for real qubit
readout

In this section we include some results supplementary
to Fig. 3, now comparing classification performance for
multistate (C = 3) classification for real qubit readout of
p ∈ {e, g, f }. The results are shown in Fig. 14 for the
readout of qubit B.

The standard FGDA is deployed here with use of the
g-f matched filter, introduced in Sec. III; as discussed in
Appendix D 7, this provides the best performance among
other single matched filters, while C − 1 matched filters
do not provide a marked improvement in this readout con-
figuration. We note again that the TPP outperforms the
FGDA for almost all data points, and the performance dif-
ference increases at higher measurement tone amplitudes.
The underperformance at the lowest measurement tone
amplitude can again be attributed to the fact that under
these simpler readout conditions, the temporal profile of
the optimal filter is close to that of the white noise filter
(see Fig. 4); the general TPP does not make any assump-
tions about the noise statistics a priori, and must learn
these from a finite training dataset, whose size limits con-
strains the fidelity of the learned filter. At higher signal

10–1

2 ��10–1

5 � 10–2

10–1 2 � 10–15 � 10–2

Qubit B, T1 = 60 µs

FIG. 14. Multistate (C = 3) classification performance of the
TPP versus FGDA for readout of real qubits. Classification infi-
delities obtained with both schemes are plotted against each
other for one of the three dispersive qubit-cavity systems ana-
lyzed in the main text. The dashed line marks 1 − FFGDA =
1 − FTPP. More-opaque markers indicate higher measurement
tone amplitudes.

amplitudes, the TPP outperforms the FGDA in spite of this
training cost. Overall, we see that the TPP provides a better
classification scheme for multistate readout of real qubits,
supplementing the improvement in performance demon-
strated for binary classification of real qubits in the main
text.

3. TPP learning of correlated classical noise

In this section, we use a further example to demonstrate
the ability of TPP-based learning to extract correlations
from measured data to supplement simulations in Sec. V.
As in Sec. V A, we again consider simulated datasets of
measured heterodyne records from a measurement chain of
a qubit-cavity-amplifier setup, as in Appendix D 6. Now,
however, we consider the excess classical noise added
by the measurement process to also possess a component
with a colored spectrum (suppressing quadrature labels for
clarity):

ξ cl(ti) = σ WξW(ti) + σ PξP(ti), (E2)

where ξW(ti) describes white noise as before, while ξP(ti)
describes 1/f (or pink) noise. The power spectral density
of the noise processes is given by the Fourier transform of
their steady-state autocorrelation function (by the Wiener-
Khinchin theorem), SN[f ] = ∫

dτ e−i2π f τ
E[ξN(0)ξN(τ )]

for N ∈ {W, P}. The noise processes are normalized so that
the total noise power

∫
df |SN[f ]| is the same for any of

the noise processes considered; hence, the relative magni-
tude (σ P/σ W)2 determines the relative strength of the noise
processes with different correlation statistics.
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FIG. 15. Comparative classification performance of FGDA
versus the TPP in the presence of classical correlated noise.
We consider a C = 2 (binary) dispersive qubit readout task
using simulated data and for different colored noise conditions.
Darker markers indicate higher measurement tone amplitudes.
The dashed line indicates 1 − FFGDA = 1 − FTPP. The inset
shows the corresponding noise spectral density S[f ], which
remains unchanged with coherent input power.

We restrict ourselves again to binary classification of
states |e〉 and |g〉. In Fig. 15, we plot the calculated infi-
delities obtained with the MF and TPP approaches against
each other on a logarithmic scale for different noise condi-
tions parameterized by (σ P/σ W)2 and as a function of the
coherent input tone power: darker markers correspond to
readout with stronger input tones.

We immediately see that if the excess classical noise is
purely white noise, the FGDA and the TPP exhibit very
similar performance: both lie along the dashed line of equal
infidelities. However, the situation is very different if the
added noise is colored noise, namely, (σ P/σ W)2 = 0, and
hence has a nonzero correlation timescale. We immedi-
ately note that even when the colored noise power is only
a fraction of the white noise power, the TPP-learned filters
provide a non-negligible improvement over the standard
FGDA scheme using matched filters.

APPENDIX F: TIME-SHUFFLED DATA

As discussed in Appendix C, the trained weights W take
the form of Eq. (C8),

Wopt = YX T(XX T − λI)−1. (F1)

We now consider the operation of a matrix J on X that
serves to reorder the time indices of measurement records;
this amounts to an exchange of specific rows of X and is
therefore referred to as an exchange matrix, a special case
of the more general permutation matrix in standard lin-
ear algebra. As X ∈ R

(NONT+1)×CNtrain and the exchange

matrix is intended to switch rows of the data, we must
have J ∈ R

(NONT+1)×(NONT+1). Furthermore, the exchange
matrix satisfies the properties J−1 = J = JT, so JJ = I.

We therefore define a new data matrix X J with
exchanged rows under the action of the exchange matrix:

X J = JX =⇒ X = JX J , (F2)

where we have used the property that J−1 = J. Note that
the target matrix Y is unchanged, since the particular class
a measurement record belongs to should not be related to
time ordering of the measurement records.

The trained weights can equivalently be written as

Wopt = Y(JX J )
T(JX J X T

J JT − λI)−1, (F3)

which, after some simplification and the use of JT = J,
reduces to

Wopt = YX T
J JJ(X J X T

J )
−1J

= [
YX T

J (X J X T
J − λI)−1] J. (F4)

The term in square brackets is simply the new trained
weights when the exchanged data matrix X J is used; we
label this as (Wopt)J . We therefore find

(Wopt)J = WoptJ, (F5)

which simply indicates that the new trained weights are
simply exchanged versions of the previous trained weights.
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