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Abstract
Many recent advancements in quantum computing leverage strong drives on nonlinear systems for state

preparation, signal amplification, or gate operation. However, the interplay within such strongly driven

system introduces multi-scale dynamics that affects the long-time behavior of the system in non-trivial ways

that are very difficult to model. Therefore, the analysis of these systems often relies on effective Hamiltonian

models that introduce additional nonlinear processes which approximate the long-time dynamics so that

highly oscillatory terms may be ignored. However, the removal of such high frequency transitions can only

be performed rigorously within a systematic framework of time-coarse graining, which is a fundamentally

irreversible operation. This implies that standard approaches with unitary effective models cannot accurately

capture the long-time behavior of strongly driven nonlinear quantum systems in general. We introduce a

systematic perturbation theory for obtaining the complete non-unitary effective model of the time-coarse

grained (TCG) dynamics of a driven quantum system to any order in the coupling strengths. We derive a

closed-form analytical formula for both unitary and non-unitary contributions, in the form of an effective

Hamiltonian and non-unitary (pseudo-)dissipators. Remarkably, even though the effective theory presumes

unitary time evolution at the microscopic level, the time-coarse grained dynamics is found to follow a non-

unitary time evolution in general. This occurs even when there is no open heat reservoir for the system to

become entangled with or dissipate into. We demonstrate the effectiveness of the new method using several

typical models of driven nonlinear systems in superconducting circuits, and show that it generalizes and

improves on existing methods by providing more accurate results and explaining phenomena that have not

been accounted for.

I. INTRODUCTION

When a measurement apparatus interacts with the electromagnetic fields emanating from a quan-

tum system, its output is always a coarse-grained function of exact physical variables at precise

moments in time and/or precise locations in space. Therefore, the observable dynamics in any
∗ Correspondence email address: wentaof@princeton.edu
† These authors contributed equally.
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quantum system depend on the time and/or spatial resolution of the measuring apparatus. For typ-

ical quantum optical systems, the most important coarse-graining scale is the time resolution of the

measuring device, which is limited by its bandwidth (e.g. Ref. [1], Appendix D). Although not always

explicitly acknowledged, the measurement time resolution is a particularly crucial free parameter for

driven nonlinear quantum systems, since the exchange of information and energy with an external

drive can leave long-lasting effects on the system which propagate through different time scales and

manifest in different forms due to nonlinearities. In many situations, the finite time resolution of

the measurement apparatus can be captured by working with the time-coarse grained density matrix

ρ(t) of the measured system, as illustrated in Fig. 1.

ρ(t) =

∫ ∞

−∞
f̃τ (t− t′)ρ(t′)dt′ (1)

where f̃τ (t) is a moving-average function with width τ which we call the coarse-graining time scale.

In the time-coarse graining (TCG) framework [2], the finite time resolution is actively taken into

account during the formulation of effective theories. This approach has both fundamental and practi-

cal value. Fundamentally, it reflects the fact that all physical apparatus have finite response time and

inevitably perform some type of time-coarse graining of information during their interactions with

the measured systems. Practically, it can also offer significant simplification of the effective model

by separating the experimentally relevant observables from the unresolvable ones, while at the same

time keeping track of the latter’s impact on former. This feature is becoming increasingly important

as recent advancements in quantum devices focus on precise engineering of effective interactions via

parametric driving, which often involves regimes where counter-rotating processes, typically regarded

as negligible, assume significance, rendering the commonly used rotating-wave approximation (RWA)

or even more sophisticated effective Hamiltonian methods unsatisfactory [3–5]. Correctly modelling

the dynamics of these strongly driven systems has been a long standing problem, to which our work

here offers a solution.
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Figure 1. An illustration of the inherent time-coarse graining happening during a measurement. A quantum

system produces high bandwidth signal. This signal drives a measurement apparatus which is band-limited,

producing a time-coarse grained version of the real dynamics. The TCG method aims to produce a direct

description of the time-coarse grained observables, which can be captured by an effective Quantum Master

Equation for the coarse-grained density matrix ρ in the appropriate rotating frame determined by the central

frequency of the measuring device.

In this work, we present a general solution to the time-coarse graining approach, that aims to

directly capture the evolution of observables that are measurable and resolvable by a measurement

device with a given temporal resolution (i.e. bandwidth). We employ this tool to analyze in detail the

measurement problem in another paper [6]. Our approach, systematic time-coarse graining method

(STCG), explicitly derives a Liouvillian for ρ(t), without having to solve for the exact dynamics

or assume any knowledge about the initial density matrix ρ with infinite time resolution. Unlike

previous attempts at deriving the TCG Liouvillian, our method is completely general, with closed-

form formulas for the contributions to any order in the expansion.

STCG generalizes the effective static Hamiltonian method: we show that to any order, the long

time dynamics of the system are described by an effective generalized Quantum Master Equation

(QME), despite the fact that the microscopic dynamics are fully unitary. In many situations, espe-

cially when the drive amplitudes have their own time evolution, the emergent effective incoherent

dynamics assume significance and have to be treated on the same footing as the coherent ones in the

4



resulting QME. In addition to its conceptual novelty, our approach also has important numerical ad-

vantages. In fact, numerically solving the time evolution of a driven nonlinear quantum system with

much higher time resolution than the measured variable dynamics can be very inefficient and often

unfeasible, as their dynamics encompass vastly different time scales, making the equations highly stiff

and numerically unstable; to make the situation worse, the solutions obtained in such brute-force

approaches are usually difficult to interpret. Our method, Systematic time-coarse graining (STCG),

gives an effective low-frequency quantum model leveraging the separation of time-scales as small

parameters in a systematic expansion, giving an effective low-frequency description of the dynamics,

which is long-time stable and efficient to study numerically.

The paper is organized as follows: We begin with a canonical example, the Rabi Model, illustrating

the conceptual and mechanistic elements behind the TCG methodology in Section II. We then delve

into the theoretical background in section III, where we introduce the TCG method in the context

of other methods, while presenting essential concepts of the theory while reserving the detailed

derivation to the Appendix. In section IV, we introduce a diagrammatic approach for deriving

the TCG master equation. In section V we introduce QuantumGraining.jl, a Julia package that

automates the TCG procedure, together with a short code example for the Rabi-model. Examples

are available as Jupyter Notebooks on our GitHub repository. In section VI, we then showcase

the method using two additional examples - (1) the Kerr-parametron and (2) the driven Duffing

oscillator. In particular, we show that the TCG method predicts measurable modifications to the

dynamics of these model, some of which are supported by analytical or numerical results in the

literature obtained by other methods. Finally, we conclude and discuss future prospects in section

VII.

II. AN ILLUSTRATIVE EXAMPLE – THE TIME-COARSE GRAINED RABI MODEL

To demonstrate our method, we start with a simple but illustrative example – the Rabi model. The

Rabi model describes the interaction between a single linear cavity mode and an atom described by

a two-level system (TLS), and can be simplified to the Jaynes-Cummings Model when the rotating-

wave approximation (RWA) is justified. In the so called ultrastrong coupling regime, the Rabi model
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is of special interest since the RWA breaks down when the spin-cavity coupling strength becomes

comparable or greater than the mode frequencies [7–9], and special approaches that go beyond the

RWA are required [10–12].

More concretely, the model we consider here is described by the following Hamiltonian terms in

the interaction picture,

Ĥ =
g

2

(
â†σ̂+e

+i(ωc+ωa)t + âσ̂−e
−i(ωc+ωa)t

)
+
g

2

(
â†σ̂−e

+i(ωc−ωa)t + âσ̂+e
−i(ωc−ωa)t

) (2)

where we ωc (ωa) is the cavity (atom) resonance.

In order to showcase the time-coarse graining method, we focus on this ultrastrong-coupling

regime where the coupling strength g is comparable to the TLS and cavity frequencies ωa and ωc.

i.e. g ≈ ωc (ωa). In that regime, the counter-rotating terms assume significance, and the induced

dynamics depend on the time resolution of the measurement apparatus. The numerical simulations

in this subsection assume the following set of parameters:

ωc

2π
=
ωa

2π
= 2GHz;

g

2π
= 0.4GHz. (3)

Under this set of parameters, the TLS-state population displays rapid oscillations whose envelope

undergoes intricate evolution over a much longer time scale, as shown in Fig. 2. When observing

the dynamics of a coherent-state cavity mode interacting with a single atom, the Jaynes-Cummings

model is known to show collapse-revival dynamics, due to the photon-number dispersion of a coherent

state. Interestingly, we show that these collapse-revival cycles are completely absent in the full Rabi-

model dynamics (if all time-scales can be resolved), and only appear under finite-time resolution.

The latter is directly captured by the STCG approach, as discussed below.

Using the STCG method, we obtain an effective description that gives us directly the time-

averaged observables that would be obtained from a bandwidth-limited measurement apparatus,

and we do not need to assume any knowledge about the density matrix ρ(t) at an infinitely precise

moment in time. The STCG prescription produces a set of Hamiltonian corrections, comprised of

products of the original Hamiltonian operators ŝµ⃗ =
∏

µi∈µ⃗ ĥµi
(i.e. multi-body transitions or multi-

mode resonances), and their corresponding coupling strengths qµ⃗. The time-coarse grained evolution
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is not unitary in general, and the TCG effective Hamiltonian has to be complemented with a set of

pairs of operators (L̂µ⃗, Ĵν⃗) with (generally) complex coefficients γ(k)µ⃗,ν⃗ such that the time evolution of

ρ(t) is given by the following TCG master equation:

∂tρ(t) =−
[
ĤTCG(t), ρ(t)

]
+ D̂TCG(t)ρ(t)

=−
[ ∞∑
k=1

Ĥ
(k)
TCG(t), ρ(t)

]
+

∞∑
k=1

D̂
(k)
TCG(t)ρ(t)

(4)

ĤTCG(k) = q
(k)
µ⃗ e−i(

∑
j µj)t

∏
µi

h(k)µi
(5a)

D̂
(k)
TCG(t)ρ = γ

(k)
µ⃗,ν⃗D

[
L̂µ⃗, Ĵν⃗

]
e−i(

∑
j1

µj1
+
∑

j2
νj2 )t (5b)

In the expressions above, k = l+ r is the order of the perturbative expansion in the original coupling

strengths, and the (pseudo-)dissipator notation D
[
·, ·
]

is defined such that

D
[
L̂µ⃗, Ĵν⃗

]
ρ ≡ L̂µ⃗ρĴν⃗ −

1

2

{
Ĵν⃗L̂µ⃗, ρ

}
. (6)

We explain details of the calculation in the following sections, but for now we simply assume that

the TCG effective Hamiltonian and effective (pseudo-)dissipators can be perturbatively calculated

as functions of the coarse-graining time scale τ and the original Hamiltonian, for example by the

symbolic software package QuantumGraining.jl we developed. The full explicit calculation up to

second-order is shown in the appendix, App.D 1.

In order to effectively capture the coarse-grained dynamics of the Rabi model, we apply the

STCG perturbation theory up to the third order and derive the corresponding master equation. In

particular, we will see that the TCG procedure reproduces the RWA Hamiltonian at the first-order

(under simplifying assumptions for the filter function), and goes beyond it starting at the second-

order. For example, in the weak coupling limit, realistic values of the coarse-graining time scale

τ usually falls in the range 1
ωa
≪ τ ≪ 1

|ωc−ωa| ,
2
g
, and the most significant terms in the effective

Hamiltonian are found to be,

Ĥ
(2)
TCG ≈ĤRWA +

g2

8

[ 1

2ωa

−
(
τ 2 +

1

4ω2
a

)
(ωa − ωc)

]
· (1 + 2â†â) · σ̂z.

(7)
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where at the first order, we get exactly the RWA Hamiltonian

ĤRWA =
g

2
e−

(ωa−ωc)
2τ2

2

(
ei(ωa−ωc)tâσ̂+ + e−i(ωa−ωc)tâ†σ̂−

)
≈g
2

(
e+i(ωa−ωc)tâσ̂+ + e−i(ωa−ωc)tâ†σ̂−

)
.

(8)

Here the filter-dependent factor e−
(ωa−ωc)

2τ2

2 in the first line is a major difference from the standard

RWA. Unlike the RWA, we consider the coarse-graining time-scale τ as an experimentally tunable

parameter, and the standard RWA is subject to significant modification once τ is large enough to

be comparable to 1
|ωa−ωc| . In general, as the coupling strength g approaches the ultrastrong-coupling

regime or when the time resolution τ−1 becomes comparable with the detuning
∣∣ωa − ωc

∣∣, one needs

to go beyond the simple expression in Eq.(8) and consider contributions from higher-order terms.

Considering such a situation, we present the exact form of the Hamiltonian and (pseudo-) dissipator

corrections calculated using the QuantumGraining.jl package in App. A.

Apart from the Hamiltonian corrections, a unique property of the STCG method is that it also

captures the effective non-unitary dynamics of the system, which would be missed by effective-static

Hamiltonian methods [13]. For example, at the second order, we get the following set of pseudo-

dissipators in addition to the dispersive correction in the Hamiltonian,

L̂1 = Ĵ1 = âσ̂+ γ1 = −i
g2τ 2

2
(ωc − ωa)e

−2i(ωc−ωa)t (9a)

L̂2 = Ĵ2 = â†σ̂− γ2 = i
g2τ 2

2
(ωc − ωa)e

2i(ωc−ωa)t. (9b)

Notice that the coefficients γ1 and γ2 are purely imaginary, so the corresponding pseudo-dissipators

do not break the time reversal symmetry (hence the prefix “pseudo-”). In addition, we do not

expect significant secular effects from the second-order pseudo-dissipators since their coefficients are

oscillatory at frequency ±2(ωc − ωa) and vanish in the resonant limit when ωc → ωa. In particular,

they do not induce any secular gain or loss of the system energy, but rather only add small fluctuating

corrections to the entropy and energy of the system.

However, this is not the case for higher-order corrections in general. For example, we have the

following third-order contributions in the resonant limit where ωc → ωa

Ĥ
(3)
TCG ≈ lim

ωc→ωa

Ĥ
(2)
TCG −

g3

32ω2
a

â†ââ†σ̂− + h.c. (10)
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D̂
(3)
TCG ≈

ig3

32ω2
a

(
D[â2σ̂z, â†σ̂+]−D[â†2σ̂z, âσ̂−]

)
+ h.c. (11)

from which we see that both the unitary and non-unitary contributions give rise to time-independent

corrections to the Jaynes-Cummings model in the resonant limit. From the numerical simulation in

Fig.2 (obtained with a coarse-graining time scale of τ = 0.2ns), we see that they both have secular

effects on the collapse and revival of TLS-state population. In particular, although D̂
(3)
TCG does not

cause any dissipation of energy over long periods of time due to its purely imaginary pre-factor, it

does have observable secular effects on the coherence of the TLS, which affects the collapse-revival

pattern of the TLS-state population. For example, both the RWA (first-order TCG) and the third-

order TCG Hamiltonians make the false prediction of a double-revival pattern between t = 15ns and

t = 35ns, which is removed by including the third-order pseudo-dissipators in D̂
(3)
TCG. As expected,

inclusion of the pseudo-dissipators brings the TCG dynamics closer to the exact dynamics, as can be

observed in Fig.2. The TCG master equations can be numerically simulated with much larger time

steps without encountering any stiffness problems compared to the exact von-Neumann equation

which contains fast-oscillating counter-rotating terms. Therefore, the TCG master equation not only

offers analytical insights into the physics of an interacting system, but also allows much more efficient

numerical simulation of the dynamics.

III. EFFECTIVE STATIC METHODS AND TIME-COARSE GRAINING

In this work, we focus on time-coarse graining Hamiltonian dynamics, i.e., closed-system dynamics.

In an accompanying paper [6], we delve into the more general problem of time-coarse graining an open

quantum system, how the time-coarse graining affects the bath interaction, and the implications of

this on the measurement and back-action dynamics. In general terms, we consider interaction-picture

Hamiltonians Ĥ of the form

Ĥ =
∑
ω∈Ω

gωĥωe
−iωt (12)

where Ω is the set of all the frequencies appearing in the Hamiltonian. . The frequencies involved can

be of vastly different scales, and we would like to obtain an effective, low-bandwidth description of the

resulting dynamics. For example, the well-known rotating-wave approximation (RWA) corresponds
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Figure 2. (Bottom) Numerical simulation of the excited TLS-state population nz
1(t), obtained by numer-

ically solving the Schrödinger equations for the interaction-picture Rabi Hamiltonian in Eq.(2). The initial

state at ti = −0.8ns is |1⟩s|α = 4.5⟩c with |1⟩ and |α = 4.5⟩c representing the exited TLS state and the

coherent cavity state with amplitude α = 4.5, respectively. All TCG simulations are performed without

making any further approximation to the perturbative TCG master equation. (Top) Numerical simulation

of the time-coarse grained excited TLS-state population nz
1(t) with a coarse-graining time scale of τ = 0.2ns.

The coarse-grained exact dynamics is obtained by directly applying the Gaussian averaging function f̃τ (t)

to the exact nz
1(t) in the bottom figure, whereas the TCG results are obtained by numerically solving the

corresponding TCG master equations; In all calculations the cavity Hilbert space is truncated to include the

lowest 100 levels during the simulation. The initial state of all equations is taken to be the same.
10



to simply removing all Hamiltonian terms ĥω with “fast” frequencies from the sum, and retaining

those with “slow” frequencies.

In the literature, the problem of fast-varying time-dependent Hamiltonians is treated by a variety

of tools, as illustrated by the Venn diagram on Fig. 3. Some of these methods rely directly on

performing the averaging or ansatz at the equations of motion level [14–17], but importantly, many

methods rely on producing an effective, low-frequency description of the Hamiltonian [18]. The most

relevant ones to this work include the “Kamiltonian" method [13, 19, 20] inspired by similar methods

in classical analytical mechanics and plasma physics, and methods based around a systematic per-

turbation theory leveraging the Schrieffer-Wolff transformation [21] and the Floquet theory [22–24],

as well as high-frequency expansions [25]. These methods produce an effective static Hamiltonian

description that encodes some of the effects of the fast dynamics in a low-frequency description.

Other methods describe the time-coarse grained evolution in terms of a Liouville equation; Notable

examples are the Keldysh-Lindblad expansion [26] and the TCG method [2, 6, 27] which can be

thought of as a generalization of the effective Hamiltonian methods. The TCG method also captures

non-unitary effects that accounts for the information lost during coarse-graining. This is achieved by

a general approach to take a moving average over the expanded generator, rather than the Hamil-

tonian. Among other things, this allows us to consider off-resonant virtual transitions as well as

resonant multi-body transitions, such as two-photon processes, which are omitted in the (first-order)

RWA [28]. In addition, the resulting terms are weighted in a way that is fine-tuned to the chosen

measurement resolution and the form of the filter function. STCG differs from effective Hamiltonian

approaches in several ways: (1) Even starting with a Hamiltonian of a system with finite degrees

of freedom it produces a Liouvillian that captures the non-unitary effects due to time-averaging, as

illustrated in Fig. IV, giving a more complete description of the low-frequency dynamics. As we

will show with examples, the non-unitary effects can be important in the presence of strong and/or

time-varying drives, or certain initial conditions (2) TCG is generalizable to systems with infinitely

many degrees of freedom [29–31] producing an effective non-Markovian dynamics of a subsystem con-

sistent with the coarse-graining time scale desired, (3) The coarse-graining time scale can be used to

justify rigorously the Markov approximation when integrating out part of the system, as we discuss

thoroughly in the accompanying paper [6], (4) TCG is generalizable to arbitrary filter function fτ (ω)
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Figure 3. A Venn diagram of different methods dealing with time-dependent driven systems. The bold black

titles indicate the level of operation of the method, and the grey squares indicate different methods. TCG

generalizes many current methods to include non-unitary contributions. Systematic TCG (this work, in red)

permits the TCG calculation to any order, and for more general regimes.

applied by the measurement device. Our work, the systematic time-coarse graining (STCG), provides

the first systematic framework for generalizing the RWA and other effective Hamiltonian methods

into a Lindblad-like generator, and allows time-coarse graining (TCG) to be performed to arbitrary

degree of accuracy when suitable conditions are satisfied. Time-coarse graining has been introduced

in Refs. [2, 27, 32, 33] and the time-coarse grained generator has been explicitly derived up to the

second order in the coupling constants, under the assumption that the transition frequencies are

either much greater or much smaller than τ−1. Our method, as presented in this work, is novel in the

fact that it is fully systematic, supported by a diagrammatic expansion, and is capable of explicitly

calculating the effective TCG Liouvillian at any order in the coupling constants, while allowing for

the most general coarse-graining time scale τ .
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IV. SYSTEMATIC TIME-COARSE GRAINING BY DIAGRAMMATIC EXPANSION

Since the time-coarse graining procedure inherently erases information, the time evolution of ρ(t)

cannot be generated by a Hamiltonian in general. In fact, we can only assume that the equation of

motion for ρ(t) is linear and trace-preserving, since these two properties are respected by both the

time-coarse graining process and the underlying von-Neumann equation. Consequently, the correct

ansatz is a Liouville-like equation which we will refer to as the “TCG master equation”. In order to

obtain a perturbative formula for L, we assume that this Liouvillian can be expanded as a Dyson

series in powers of the Hamiltonian Ĥ,

i
∂

∂t
ρ(t) = Lρ(t) =

∞∑
k=1

Lk(t)ρ(t). (13)

this expansion requires the assumption of small Ĥ, which often implies that we need to work in a

certain interaction picture, and the TCG effective master equation thus obtained depends implicitly

on our choice of the interaction picture. We note that the choice of the interaction picture is par-

tially determined by the measurement channel through which the quantum system is observed, we

explain that in more detail in the appendix of the accompanying paper [6]. The resulting dynamics

of observables can be shown to be equivalent to the dynamics observed through a band-limited mea-

surement apparatus with a filter function f̃τ (t), with τ parameterizing the coarse-graining time-scale.

The choice of the interaction picture is thus rendered consequential for the observed physics as it

represents the measured dynamics by a given measurement apparatus. The way in which this is

captured through STCG is through the choice determining the frequencies ω ∈ Ω and the associated

forms of the different operators ĥω in Eq.(12). These operators appear in conjugate pairs ĥω = ĥ†−ω

due to the hermicity of the Hamiltonian.

Our goal here is to find a closed-form formula for the partial Liouvillian Lk at each order k, which

gives us an effective master equation describing the TCG dynamics as long as the Hamiltonian can

be assumed to be small for the part of Hilbert space we are interested in, where “small” means that

the coupling rates gω are small either in comparison to all energy differences or in comparison to the

13



ρ(t)
−i
[
Ĥ, 

]
ρ̇(t)

TCG

ρ(t)

TCG

ρ̇(t)
−iL = −i

[
ĤRWA, 

]
+ · · ·

time-coarse graining scale τ .

gω ≪ |ω − ω′| ∀ ω, ω′ (14a)

gω ≪ 1/τ ∀ ω (14b)

This is similar to how the RWA Hamiltonian gives an approximate description of the time-coarse

grained evolution. Indeed, we will later show that for an appropriate choice of the moving-average

function, the von-Neumann equation with the RWA Hamiltonian is exactly the TCG master equation

truncated at the first order.

Low-order formulas for Lk have been obtained by iteratively and perturbatively solving the coupled

equations of the maps ρ(0)→ ρ(t) and ρ(t)→ ρ(0) [2, 31]. The increasing complexity of the coupled

equations prevents efficient calculation of Lk for k > 3, and the resulting expressions of Lk are

seemingly structure-less nested averages of the form

L3ρ = ĤÛ2ρ− ĤÛ2ρ− ĤÛ1ρÛ
†
1 + 2ĤÛ1ρÛ

†
1 + · · · (15)

where we use the overline to denote the time average of any function of t defined in the same fashion

as in Eq.(1), and Ûn(t) is defined as the n-th order term in the Dyson series

Ûn(t) = −i
∫ t

0

dt′Ĥ(t′)Ûn−1(t
′)

=
n∑

j=0

(−i)j
∫ t

0

· · ·
∫ tj−1

0

dt1 · · · dtj · Ĥ(t1) · · · Ĥ(tj).
(16)
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However, if one explicitly calculates the nested averages in Eq.(15), one would immediately find

massive cancellation among the terms, as shown in the appendix App. B 2. In fact, this massive

cancellation becomes much more significant at higher orders, which indicates hidden structures in

the nested averages that can be utilized to significantly simplify the algebra.

In this work, we develop the TCG method into a systematic perturbation theory where the

structure of Lk is explored in detail, leading to an explicit closed-form formula for Lk which can

be calculated by the QuantumGraining.jl package at arbitrary order. The first crucial step towards

achieving this objective is the following recursive formula for Lk the derivation of which can be found

in App. A:

Lk(t)ρ =
k∑

l=1

(
ĤÛl−1ρÛ

†
k−l(t)− Ûl−1ρÛ

†
k−lĤ(t)

)
−

k−1∑
k′=0

Lk′(t)
k−k′∑
l=0

ÛlρÛ
†
k−k′−l

(17)

where we define L0ρ ≡ 0 for any density matrix ρ. Starting from Eq. (17), one can show (see the

derivation in App. B) that the terms in Lk can be rearranged into “contraction superoperators”

which allow both diagrammatic representation and closed-form formulas. The following subsection

is dedicated to the discussion of these contraction superoperators.

A. Diagrammatic expansion and the contraction coefficients

In Lee et al. [27], the corrections ĤÛ1ρ and −Ĥ · Û1ρ in L2ρ are grouped together and denoted

by the contraction ĤÛ1ρ for convenience. The same is true for two-point contractions of the type

ĤρÛ †
1 ≡ ĤρÛ †

1 − ĤρÛ †
1 . Assuming a Hamiltonian of the form in Eq.(12), we first observe that the

cancellation pointed out in the previous section takes place within each such contraction in L2.

Furthermore, each of the surviving superoperators will have a frequency equal to the sum of the

frequencies of the operators involved, which is not true for the individual nested averages constituting

the contraction. We show in App. B that contractions must be generalized to exhibit this mass-

cancellation and homogeneous time-dependence at all orders. An unexpected byproduct of this

finding is that a closed-form expression can be found that is amenable to symbolic computation in
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a generic manner. A detailed derivation is presented in Appendices App. B and App. B 2. Here we

summarize the key steps in the derivation.

According to Eq. (17), the nested averages in Lkρ always have Ĥ(t) on either the left or the right

end of the product. Therefore, we make the ansatz that the partial Liouvillian Lk at order k ≥ 1 can

be expressed as a sum over all such generalized contractions with weights (l, r) such that l+ r = k:

Lkρ(t) =
k∑

r=0

Wk−r,r(t)[ρ]− h.c. (18a)

where each contraction Wl,r(t)[ρ], whose form is to be found, is the sum of all nested averages that

have l (r) operators to the left (right) of ρ with the left-most operator being Ĥ. As shown in App. B,

these contractions can always be written as a sum of operator products with a simple homogeneous

harmonic time-dependence.

We next write each contraction in the following form:

Wl,r(t)[ρ] =
∑

(µ⃗,ν⃗)∈Pl,r[Ω]

Cl,r(µ⃗, ν⃗) · ĥµl
· · · ĥµ1ρĥν1 · · · ĥνr

· e−i(
∑l

i=1 µi+
∑r

i=1 νi)t.

(19)

where we split the frequencies into two vectors µ⃗ (ν⃗) for the frequencies of the modes to the left

(right) of the density matrix, while the notation Pl,r[Ω] denotes the set of all possible pairs of vectors

µ⃗ and ν⃗ whose elements are chosen from the Hamiltonian frequencies. Apart from the combinatorics

involved in the summation, calculation of the contraction coefficients Cl,r(µ⃗, ν⃗) is the central

element of STCG as each of the resulting coefficients encodes contributions from the many different

nested time-averages in Lk to a particular superoperator in the sum, as detailed in the appendix.

The harmonic expansion in Eq.(19) allows us to derive the main result of the STCG method. In

fact, using the harmonic ansatz, we can interpret every diagram as contributing a simple term to

the contraction coefficients for each combination of mode frequencies involved. And we are able to

obtain the following closed-form expression for the contraction coefficient Cl,r(µ⃗, ν⃗):

Cl,r(µ⃗, ν⃗) =
∑

d∈diagrams(l,r)

(−1)r+∥d∥−1

(∑
i

µ
(b∥d∥)

i

)

×
∏
b∈d

fτ

(∑
i µ

(b)
i +

∑
i ν

(b)
i

)
µ⃗(b)!ν⃗(b)!

.

(20)
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Figure 4. (top) The TCG Liouvillian can be written as a sum of contraction superoperators Wk−r,r, each

representing a superoperator with l operators to the left and r operators to the right of ρ, such that l+r = k.

(middle) The contribution of each superoperator term is weighted by the contraction coefficients Cl,r, which

encode the contributions from all the different ways one can partition the operators into groups. We represent

these partitions with "bubble" diagrams (note that the order is inverted). (bottom) The contribution of

each diagram is computed in STCG through a closed-form formula, where each bubble contributes a factor

to a product.

where d =
(
b1, b2, · · · , b∥d∥

)
represents a particular diagram d by the ordered set of bubbles in d with
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∥d∥ being the total bubble number, and the vector factorials µ⃗(b)! and ν⃗(b)! are defined in Eq.(B12).

In other words, we enumerate over diagrams which partition the frequencies into bubbles {b} with

frequencies µ⃗(b) and ν⃗(b); for each diagram, we then calculate the product of all the bubble factors,

and multiply the result by an extra factor of
∑

i µ
(b∥d∥)

i and an overall sign. For a detailed proof of

Eq.(20), see App. B 2. Note that the contraction coefficients are always real if the frequencies of all

the original Hamiltonian terms are real. This property ensures that the corresponding TCG effective

Hamiltonian and effective (pseudo-)dissipator in subsection IVB are Hermitian at any order k.

Plugging the expansion of the contraction superoperators (Eq.(19) into the TCG master equation

18, we can write the Liouvillian in terms of the contraction coefficients:

Lk(t)ρ =
k∑

l=1

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

[
Cl,k−l(µ⃗, ν⃗)e

−i(
∑

i µi+
∑

i νi)t

× ĥµl
· · · ĥµ1ρĥν1 · · · ĥνr − h.c.

]
.

(21)

Note that in general, if we have a number of |Ω| unique frequency-operator pairs in the original

Hamiltonian, then for each l ∈ {1, 2, · · · , k}, the contraction would be a sum of |Pl,r[Ω]| = |Ω|l+r =

|Ω|k unique terms. To a large extent, this is where the complexity of STCG stems from, and why we

complement the analytical formula with a symbolic computational tool.

B. The effective TCG Hamiltonian and pseudo-dissipators

The structure of the contraction superoperators allows us to separate the different terms in the

Liouvillian into Hamiltonian terms and pseudo-dissipator terms, akin to a Lindblad-type equation. In

fact, with the help of the symmetry relation in Eq.(B21b), we can write the TCG partial Liouvillian

at order k as Lk = LH
k + Lγ

k with

LH
k ρ = [Ĥk, ρ] (22a)

Lγ
kρ ≡ iD̂

(k)
TCGρ

=
k−1∑
l=1

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

iγ
(k)
µ⃗,ν⃗e

−i
∑

j(µj+νj)tD[L̂µ⃗, Ĵν⃗ ]ρ
(22b)

18



where Ĥk and D̂(k)
TCG can both be explicitly written in terms of the contraction coefficients Cl,r(µ⃗, ν⃗) in

Eq.(20). As usual, this decomposition of Lk into Hermitian Hamiltonian terms and trace-preserving

(pseudo-)dissipators is not the only option, and alternative representations also exist. One option is

to absorb the anti-commutator terms into the Hamiltonian, portraying the dynamics as a (generally

non-Hermitian) Hamiltonian with virtual jumps. While this perspective may prove convenient for

specific problems, it doesn’t alter the underlying physics.

The Hamiltonian terms in Eq.(22) are one-sided, having only operators multiplied to the left or

right of the density matrix. In the rest of this work, we represent Ĥk as three vectors of equal length,

where the n-th element of the vectors represent the coefficient, the operator, and the frequency of

the n-th contraction term in Ĥk respectively:

q
(k)
µ⃗ =

{1
2

(
Ck,0(µ⃗) + Ck,0(−µ⃗ rev)

)∏
ω∈µ⃗

gω | µ⃗ ∈ Pk,0[Ω]
}

(23a)

ŝ
(k)
µ⃗ =

{
ĥµk

ĥµk−1
· · · ĥµ1 | µ⃗ ∈ Pk,0[Ω]

}
(23b)

Ω
(k)
µ⃗ =

{∑
µi∈µ⃗

µi | µ⃗ ∈ Pk,0[Ω]
}
. (23c)

Here µ⃗ rev := (µk, µk−1, · · · , µ1) denotes the reverse of µ⃗ = (µ1, µ2, · · · , µk), and Pl,r[Ω] is defined as

the set of two-vector pairs of lengths l and r where each component is drawn from Ω with repetition.

The total effective Hamiltonian to order k can then be written as

Ĥ
(k)
TCG(t) =

k∑
k′=1

Ĥk′(t) =
k∑

k′=1

∑
µ⃗∈Pk′,0[Ω]

g
(k′)
µ⃗ e−i

∑k′
j=1 µjt

· ĥµk′
ĥµk′−1 · · · ĥµ1 .

(24)

The (pseudo-)dissipator terms, on the other hand, are generalizations of Lindblad dissipators which

assume a more general form and can be written as D[L̂, Ĵ ] for some operators L̂ and Ĵ so that it

acts on any density matrix ρ as

D[L̂, Ĵ ]ρ = L̂ρĴ − 1

2
{Ĵ L̂, ρ}. (25)

Notice that these (pseudo-)dissipators become the usual Lindblad dissipators if Ĵ = L̂†. While

the Hamiltonian terms only appear on one side of the density matrix, the generalized Lindblad
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dissipators D
[
L̂µ⃗, Ĵν⃗

]
act on both sides of ρ(t). Therefore, for each dissipator term, we need to

specify a pair of operators
(
L̂µ⃗, Ĵν⃗

)
. Using similar notations as before, we can represent the k-th

order effective dissipator terms by three vectors of the coefficients, the operator pairs
{(
L̂µ⃗, Ĵν⃗

)}
,

and the corresponding frequencies respectively:

iγ
(k)
µ⃗,ν⃗ =

{
(Cl,r(µ⃗, ν⃗)− Cr,l(−ν⃗ rev,−µ⃗ rev))

×
∏
µi∈µ⃗

gµi
·
∏
νi∈ν⃗

gνi | (µ⃗, ν⃗) ∈ Pl,r[Ω]
} (26a)

(
L̂µ⃗, Ĵν⃗

)
=
{(
ĥµl

ĥµl−1
· · · ĥµ1 , ĥν1ĥν2 · · · ĥνr

)
| (µ⃗, ν⃗) ∈ Pl,r[Ω]

} (26b)

Ωµ⃗,ν⃗ =
{∑

µi∈µ⃗

µi +
∑
νi∈ν⃗

νi | (µ⃗, ν⃗) ∈ Pl,r[Ω]
}

(26c)

where we range over all positive integers (l, r) such that l + r = k.

According to the GKLS theorem [34, 35], a necessary condition for the evolution of ρ(t) to be

a completely positive map, is that the matrix
[
γij
]

is positive-definite. It is important to note

that this condition is not satisfied by the TCG effective dissipators in general. This is not a prob-

lem as not all Hermitian positive semi-definite density matrices are possible in the coarse-grained

world. For example, when the interaction-picture Hamiltonian Ĥ is time-dependent, there is no

time-independent pure state ρ that commutes with Ĥ, and consequently the resulting coarse-grained

ρ(t) cannot be a pure state in general. Indeed, one must keep in mind that ρ(t) does not represent

the quantum state of the system at any particular moment in time, rather, it is a phenomenological

object that allows one to calculate the time-coarse grained observables. Therefore, even when
[
γij
]

is not positive-definite, the corresponding TCG master equation can still describe well-behaved time

evolution without generating negative probabilities if the initial state is allowed in the time-coarse

grained picture [36–38].

Summing over all these terms up to order k, we obtain the following total effective (pseudo-
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)dissipator:

D̂
(k)
TCG[ρ](t) ≡

k−1∑
l=1

∑
(µ⃗,ν⃗)∈Pl,r[Ω]

γ
(k)
µ⃗,ν⃗ · D[L̂µ⃗, Ĵν⃗ ]ρ

· e−i(
∑l

j=1 µj+
∑r

j=1 νj)t.

(27)

Note that for k = 1, we get no effective dissipators since there are no double-sided terms, and the

corresponding effective Hamiltonian is simply the time-coarse grained original Hamiltonian:

Ĥ
(1)
TCG(t) =

∑
ω

fτ (ω)e
−iωtĥω =

∫ ∞

−∞
dt′f̃τ (t− t′)Ĥ(t′). (28)

For a physical coarse-graining window function f̃τ (t), the Fourier transform fτ (ω) ≡
∫∞
−∞ dt · f̃τ (t)eiωt

can be considered as a low-pass filter in the interaction picture, which manifestly suppresses the

coefficients of the high-frequency terms in Ĥ(t). In the lab frame, however, the function fτ (ω)

effectively applies a band-pass filter to all the terms in the Hamiltonian, as stated earlier in the

introduction. Therefore, ignoring the small terms in Ĥ
(1)
TCG(t) (rather than the “high-frequency”

terms by some ambiguous standard) would give us the RWA Hamiltonian. In this sense, the RWA

can be considered as the lowest-order TCG with suitable choices of the coarse-graining time scale to

suppress the high-frequency terms.

At higher-orders, one typically begins to see the appearance of effective (pseudo-)dissipators.

Depending on the quantum system, these (pseudo-)dissipators may either account for micro fluctu-

ations in the entropy and energy due to time-coarse-graining, or represent secular energetic loss or

gain through high-frequency channels or non-adiabatic effects, depending also on whether the rates

are real or imaginary. According to our experience, the latter situation usually occurs in systems

with resonant drive, parametric time-dependence, or external heat reservoirs. In fact, these (pseudo-

)dissipators are an important novelty of the STCG method, since they cannot be properly accounted

for by any effective Hamiltonian approaches commonly employed in such situations, such a Floquet

or Kamiltonian methods. Rather, they represent corrections of a different type, which are usually

ignored in effective theories but can prove to be important for modeling the long-time dynamics of

certain quantum systems.
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V. SOFTWARE FRAMEWORK

STCG is general and analytic, but it requires extensive symbolic manipulation since the number

of terms grows rapidly with the order of approximation, making manual calculation of the TCG

Lindladian inconvenient at best and infeasible at worst. To this end, we developed ‘Quantum-

Graining.jl’, a Julia package that automates the TCG process efficiently for any order, calculating

a symbolic expression for the effective Liouvillian in the form of a Hamiltonian and generalized

Lindblad operators. We opt for Julia [39] due to its high performance, robust symbolic packages,

and thriving scientific community. Our package can be used directly to aid analytic methods and

pen-and-paper calculations, and can also be seamlessly integrated with other software packages such

as QuantumCumulants.jl [40] or QuantumOptics.jl [41] for efficient numerical computation.

At the core of the STCG method is the calculation of the contraction coefficients Cl,r defined

in the previous section. Remarkably, this can be done independently from the operator algebra

of the system, and is therefore fully encoded in a separate TCG process. The operator algebra is

used for expressing the original Hamiltonian in a simple way, and more importantly, for writing the

final Hamiltonian and pseudo-dissipators. In the current version of the code, the operator algebra is

handled using the QuantumCumulants.jl package, while other symbolic functions are handled using

the Symbolics.jl package. The details of calculating the STCG contributions, such as calculating

singular contributions and enumerating the contributing diagrams, are detailed in App. C 1 and C2.

Taking the Rabi model as an example, we first define the Hilbert space and the original model

Hamiltonian as,

1 @variables g ωc ωa

2 Ω = [-ωc - ωa, ωc + ωa, -ωc + ωa, ωc - ωa]

3 gvec = (g/2).*[1, 1, 1, 1]

4

5 # Hilbert space definitions (QuantumCumulants.jl)

6 h_cav = FockSpace (: cavity)

7 h_atom = NLevelSpace (:atom , (:g,:e))

8 h = tensor(h_cav , h_atom)
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9

10 # Operator definitions

11 @qnumbers a:: Destroy(h) σ:: Transition(h)

12 σm = σ(:e, :g); σp = σ(:g, :e)

13 hvec = [a*σm, a’*σp, a*σp, a’*σm]

With the Hamiltonian defined, we proceed to calculate the TCG Hamiltonian and dissipators,

1 g_eff , Ω_eff = effective_hamiltonian(hvec , gvec , Ω, order =2;

as_dict=true)

2 γ_eff , Ω_eff = effective_dissipator(hvec , gvec , Ω, order =2)

Behind the scenes, these two lines of code calculate all relevant contractions and automatically

sum up their contributions. The objects returned are dictionaries, with the new operators as keys,

and coupling strengths and frequencies as values. The results can either be printed out, for aiding

analytical calculations, or converted to other packages for direct numerical calculation.

For example, for integrating with QuantumOptics.jl, first define a new set of compatible operators,

1 # Units

2 µs = 1; MHz = 1/µs

3

4 ### QuantumOptics.jl definitions

5 ha_qo = SpinBasis (1//2); hc_qo = FockBasis (100);

6 h_qo = hc_qo ⊗ ha_qo

7

8 # Operator definitions

9 σp_qo = sigmap(ha_qo); σm_qo = sigmam(ha_qo)

10 a_qo = destroy(hc_qo)

11 I_a = identityoperator(ha_qo); I_c = identityoperator(hc_qo)

12

13 p_sym = [g, ωc, ωa]
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With the operators defined, we can generate a ‘QuantumOptics.jl’ object Hamiltonian and solve

directly.

1 tspan = [0:0.01:120µs;]

2 ψ0 = coherentstate(hc_qo , 4.5) ⊗ spinup(ha_qo)

3

4 base_qc = [a, a’, σm, σp, σ(:e, :e)]

5 Id = [I_c , I_a]

6 base_qo = [a_qo , a_qo ’, σm_qo , σp_qo , σp_qo*σm_qo , Id...]

7

8 H = hamiltonian_function(g_eff , Ω_eff , base_qc , base_qo , p_sym)

9

10 args = [2π*0.2MHz , 2π*2MHz , 2π*2.1MHz , 0.2µs]

11 tout , ψt = timeevolution.schroedinger_dynamic(tspan , ψ0, (t, ψ)

-> H(t, ψ; args=args));

12

13 plot(tout , real(expect(1, a_qo ’*a_qo , ψt)), lw=2.5, label="a’*a -

1");

14

15 xlabel !("Time [µs]")

16 ylabel !(L"⟨n⟩")

A full example notebook, including integration with ‘QuantumCumulants.jl’ and ‘QuantumOp-

tics.jl’ is available on the Github repository [42].

VI. EXAMPLES

To showcase the capabilities and use cases of STCG, we demonstrate it on two select examples.

The driven Kerr-parametron, where we show how it can be used to analyze adiabatic and non-

adiabatic effects, and the driven Duffing oscillator, where we show STCG produces all the terms
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produced by the Kamiltonian methods, while complementing them with additional non-unitary cor-

rections.

A. Driven Kerr-parametron

The Kerr parametron is a phase-locked parametric oscillator, which bifurcates between two pos-

sible opposite phases when driven by an oscillating pump field at approximately twice their natural

frequency. In the quantum regime, the parametron can exist in a superposition of these two phase-

states, known as a cat-state, acting as an effective biased-error qubit [43]. The cat-state generated is

fragile, and the parametron decay causes it to quickly decohere, necessitating rapid controls. These

rapid controls must adhere to two conflicting requirements. On the one hand, they require a large

pump field to prevent unwanted non-adiabatic transitions. On the other hand, large pump fields

degrade qubit coherence by introducing unwanted non-resonant rapidly oscillating terms (NROTs).

This is a prime use-case for the time-coarse graining method, which allows us to generally consider

the contribution of these NROTs. Previously, this trade-off and optimization has been studied in Ma-

suda et al. [4], and we show here that our method reproduces their numerical results and generalizes

their effective model to capture unitary and non-unitary corrections.

The parametron is composed of a SQUID-array resonator with N SQUIDs, which can be repre-

sented in the interaction picture in the rotating-frame at ωp/2 by an effective Hamiltonian,

Ĥ =
(
∆+ χ

)
â†â− χ

12

(
âe−i

ωp
2
t + â†e+i

ωp
2
t
)4

+ 2β(âe−i
ωp
2
t + â†ei

ωp
2
t)2 cos(ωpt)

(29)

where ∆ ≡ ω
(0)
c − χ− ωp/2 is the detuning from the“bare” resonance frequency ω(0)

c =
√

8ECEJ/N .

In addition, χ = EC/N
2 is the nonlinear coefficient strength and β = ω

(0)
c

δEJ

8EJ
is the pump strength.

This form of the Hamiltonian is correct in the regime χβ ≪
(
ω
(0)
c

)2. As explained in [4], both the

pump strength β and the detuning ∆ can be made time-dependent by simultaneously tuning ω0
c and

δEJ . In particular, Masuda et al. considers a particular driving schedule for β and ∆ for 0 ≤ t ≤ T :

β(t) = β0
t

T
; ∆(t) = ∆0

(
1− t

T

)
. (30)
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Although it is shown that the fidelity of the process depends significantly on the non-RWA terms in

the Hamiltonian (also referred to as the “NROTs”), there is no analytical formula which quantifies

their long-term effects over a time scale much greater than ω−1
p . Moreover, in addition to the non-

RWA terms, non-adiabatic effects also play a significant role in the performance of the device, and

are considered in the literature to be completely independent from the non-RWA effects. Here we

perform the analysis using the STCG, and show how both effects be captured by STCG, and that

the two are not entirely separate phenomena. Following Masuda et al. [4], we assume the following

numerical values of the parameters,

ωp/2π = 16GHz; ∆0/2π = −67MHz;

β0/2π = 200MHz; χ/2π = 68MHz
(31)

with T = 50ns. Although it may seem that the linear time dependence in the coefficients ∆ and β

is not immediately compatible with STCG, which assumes that the Hamiltonian can be written in

the form of Eq.(12). However, time-dependent coefficients of the form gteiωt can be obtained from

the limit,

gteiωt = lim
δ→0

gei(ω+δ)t − geiωt

iδ
. (32)

Using that expansion, Ĥ can be represented by the following three lists of coefficients, rotating-frame

frequencies, and Hamiltonian operators:

gΩ =
{ β0
iδT

,− β0
iδT

,
β0
iδT

,− β0
iδT

,− β0
iδT

,
β0
iδT

,− β0
iδT

,

β0
iδT

,−2β0
iδT

,
2β0
iδT

,
2β0
iδT

,−2β0
iδT

,∆0,−
∆0

2iδT
,
∆0

2iδT
,

− χ

2
,−χ

2
,−χ

3
,−χ

2
,−χ

3
,− χ

12
,− χ

12

} (33a)

Ω =
{
δ, 0, 2ωp + δ, 2ωp,−δ, 0,−2ωp − δ,

− 2ωp,−ωp − δ,−ωp, ωp + δ, ωp, 0, δ,

− δ, 0,−ωp,−ωp, ωp, ωp,−2ωp, 2ωp

} (33b)

hΩ =
{
â†2, â†2, â†2, â†2, â2, â2, â2, â2, â†â, â†â, â†â, â†â,

â†â, â†â, â†â, â†2â2, â2, â†â3, â†2, â†3â, â4, â†4
}
.

(33c)
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The number of TCG contributions is huge, however, the highly oscillatory terms at frequencies of

order ωp are exponentially suppressed, and can therefore be ignored in the TCG master equation. The

long-term effects of the high-frequency transitions are captured by slow-varying corrections to the

RWA Hamiltonian as well as emergent high-order pseudo-dissipators. Therefore, we set a threshold

and keep only the TCG contribution with coefficients greater than 0.08MHz for a coarse-graining

time scale of τ = 0.125ns. The TCG effective Hamiltonian and dissipators can be written as,

ĤTCG(t) =g11â
†â+ g22â

†2â2 + g33â
†3â3

+
(
g20â

†2 + g31â
†3â+ h.c.

) (34)

D̂TCG(t) =Γ2,0;0,2D[â†2, â2] + Γ0,2;2,0D[â2, â†2]

+
(
Γ2,0;2,0D[â†2, â†2] + Γ2,0;2,2D[â†2, â†2â2]

+ Γ0,2;2,2D[â2, â†2â2] + Γ1,1;2,0D[â†â, â†2]

+ Γ1,1;0,2D[â†â, â2] + h.c.
)

(35)

respectively, with the notation D[·, ·] used as defined in Eq.(25). The analytical expressions for the

(super)operator coefficients are given in appendix D2. As a baseline, we note that after truncating

terms exponentially suppressed by factors of e−
ω2
pτ

2

2 , the first-order TCG master equation is identical

to the von-Neumann equation under RWA. The corresponding RWA Hamiltonian can then be written

as,

ĤRWA(t) =g
RWA
11 â†â+ gRWA

22 â†2â2 +
(
gRWA
20 â†2 + h.c.

)
(36)

with

gRWA
11 = ∆(t); gRWA

22 = −χ
2
; gRWA

20 = β(t). (37)

The additional corrections in Eq.(34) and Eq.(35) come from the higher-order TCG perturbative

expansion. Let us focus our discussion on three representative Hamiltonian coefficients for the re-

normalized detuning. We focus on these three because they represent three important cases; g11 -

a Hamiltonian term with non-adiabatic and non-RWA contributions; Γ2,0;0,2 - a fully non-adiabatic

dissipator; and Γ1,1;2,0 - a pseudo-dissipator with both non-RWA and non-adiabatic contributions.
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Looking at the analytical expressions for the corrections elucidates the fact that the non-RWA effects

and the non-adiabatic effects are not completely separable. By considering the dependencies on T

and ωp, we can identify which contributions come from non-adiabatic effects and which come from

non-RWA effect, respectively.

g11 =∆(t)−
2
(
β(t)2 + β(τ)2

)
ωp

− 4χ2

ωp

+∆0β(τ)
2
(
20τ 2 +

11

2ω2
p

)
−∆(t)β(τ)2

(
26τ 2 +

13

ω2
p

)
−
(τ 2∆0

T

)2
∆(t) +

3

2

β0∆0

T 2ω4
p

β(t)

+ 2
(β(t)
ωp

)2
∆(t)− 51

2

( β0
Tω2

p

)2
χ

−
(
6
(β(t)
ωp

)2 − 4
(β(τ)
ωp

)2)
χ+ 8

( χ
ωp

)2
∆(t)− 151χ3

6ω2
p

(38)

Let us consider g11 as an example: the correction −2β(t)2

ωp
in g11 is purely a non-RWA effect as it

comes from the high-frequency Hamiltonian terms β(t)â†2e2iωpt and β(t)â2e−2iωpt, and does not vanish

in the adiabatic limit T →∞; However, the correction 20∆0β(τ)
2τ 2 is purely a non-adiabatic effect

as it involves no high-frequency Hamiltonian terms and vanishes as β2(τ) ∝ T−2 in the adiabatic

limit; the correction −2β(τ)2

ωp
, however, is a joint effect of the non-RWA and non-adiabatic terms in

the Hamiltonian since it is produced by the contraction of the high-frequency terms β(t)â†2e2iωpt

and β(t)â2e−2iωpt but vanishes as T−2 in the adiabatic limit. The dissipator terms are particularly

interesting, since they are unique to the TCG approach.

Γ2,0;0,2 =
β0
T

(
2τ 2 +

1

2ω2
p

)
β(t) (39)

Interestingly, Γ2,0;0,2D[â†2, â2] is a fully non-adiabatic effect which receives corrections from the

counter-rotating terms in the Hamiltonian. Importantly, it has the standard Lindblad form to-

gether with a positive transition rate. Therefore, it represents effective dissipative phenomena in the

form of two-photon absorption which cannot be analyzed efficiently using only effective Hamiltonian
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approaches.

Γ1,1;2,0 =−
45β0
2Tω3

p

(
β(t)2 + β(τ)2

)
− 2τ 2β0

Tωp

(
3β(t)2 + 2β(τ)2

)
− 5

2

(
2β(t)− β0

)τ 2∆0χ

Tωp

− 2∆0χ

Tω3
p

β(t)− 19β0χ
2

3Tω3
p

− 4τχ2

ωp

β(τ)

+ i
[
3τ 2
((τ∆0

T

)2
− 4β(τ)2

)
β(t)− 4

(τ 2∆0

T

)2
β0

+ 2τβ(τ)
(τ 2∆0

T

)
χ+

183

4

( β0
Tω2

p

)2
β(t)

− 17
β(t)3

ω2
p

− 39
(β(τ)
ωp

)2
β(t)− 2β(t)∆(t)

ω2
p

χ

+
13τ 2β0∆0χ

4T 2ω2
p

−
( χ
ωp

)2
β(t)

]
.

(40)

The effective dissipator Γ1,1;2,0D[â†â, â†2], on the other hand, does not assume the standard Lindblad

form, and has both non-vanishing real and imaginary parts in general. In fact, the real part of Γ1,1;2,0

originates from non-adiabatic effects and vanishes in the T →∞ limit, whereas the imaginary part of

Γ1,1;2,0 contains purely non-RWA contributions as well – the third-order terms −17iβ(t)
3

ω2
p

, −i
(

χ
ωp

)2
β(t),

and −i2β(t)∆(t)
ω2
p

χ survive the T → ∞ limit. These generalized (pseudo-)dissipators are important in

the strongly driven regime, but most of them vanish when β0 → 0, leaving only some remnants from

the time-dependence of ∆(t).

We emphasize that the symbolic calculation of these coefficients is highly non-trivial, even with

the closed-form formula in Eq.(20). It is therefore important that the computation is done fully

automatically by ‘QuantumGraining.jl’, in a process that is completely generic and applicable to a

very wide range of problems.

An important benefit of the TCG effective master equation is that it allows efficient numerical

simulation of the system dynamics, since the effects of virtual transitions to and from the high-

energy states are captured by the effective Hamiltonian corrections and emergent dissipators, without

requiring detailed knowledge about the dynamics of the those high-energy states and their coherences.
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Figure 5. The instantaneous ground state population p0 as a function of time, using ρ at different orders

in TCG. p0(50ns) is defined as the fidelity of the cat-state generation process. The exact ρ is assumed to

be in the pure ground state at time t = −1ns, and the initial condition for ρ(t) at t = 0 is obtained by

time-averaging the numerical solution to the non-TCG von-Neumann equation from t = −1ns to t = 1ns.

As a result, accurate numerical simulation can be done at much lower time resolutions (on the order

of τ rather than ω−1
p ), and truncation of the Hilbert space in the TCG framework is in general more

forgiving.

Assuming the parameter values in Eq.(31) and taking the coarse-graining time scale to be τ =

0.125ns, we can truncate the the Hilbert space at the 20-th level and numerically solve the TCG

master equation at different orders. Note that truncating at much higher levels will not increase the

accuracy since the quartic expansion of the cosine potential starts to break down above the 20-th

level for the given parameters. The coarse-grained exact dynamics, on the other hand, is obtained

by applying the Gaussian window function on the numerical solution to the von-Neumann equation

with the original Hamiltonian Ĥ(t). We emphasize that, compared with the TCG master equations,

much smaller time steps have to be taken in order to overcome the stiffness of the exact equation of

motion due to the fast oscillating nonlinear terms in Ĥ(t). In addition, solutions to the TCG master

equations are more accurate than the RWA solution when benchmarked against the coarse-grained
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exact dynamics, with the accuracy increasing with the order of the TCG perturbation theory.

We plot the coarse-grained instantaneous ground state population p0 as a function of time in Fig. 5.

In particular, we notice that contrary to the RWA result, higher-order TCG predicts approximately

linear decay in p0(t) during the later half of the time evolution. In fact, for the relatively short

ramping time T and large initial detuning |∆0|, this linear decay is the dominant source of the loss of

cat-state fidelity. This has been observed in existing high time-resolution simulations of the cat-state

fidelity (e.g. in Fig. 2 of [4]), although to our knowledge, no explanation for the different behaviors of

p0 during the earlier half and the later half of the time evolution has been provided in the literature.

Figure 6. Time dependence of the inertial and dynamical rates of change for the instantaneous ground state

population p0(t).

Using our analytical TCG results, using leading-order perturbation theory for the estimation of

∂t|0(t)⟩, we obtain the following approximate expression for ṗ0(t):

ṗ0(t) ≡γinert(t) + γdynam(t)

= Tr
[
∂t
(
|0(t)⟩⟨0(t)|

)
ρ(t)

]
+ Tr

[
|0(t)⟩⟨0(t)|∂tρ(t)

]
≈
∑
n≥1

(⟨n(t)|ḢTCG(t)|0(t)⟩
E0(t)− En(t)

⟨0(t)|ρ(t)|n(t)⟩+ c.c.
)

+ ⟨0(t)|D̂TCG(t)ρ(t)|0(t)⟩

(41)

where En(t) is the energy of the n-th instantaneous Hamiltonian eigenstate |n(t)⟩ for ĤTCG(t), and

we have used the immediate corollary that ⟨0(t)|
[
− iĤTCG(t), ρ(t)

]
|0(t)⟩ = 0. We observe that
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the change in p0 during the earlier half of the time evolution is dominated by the time evolution

of the instantaneous ground state |0(t)⟩ (with its contribution to ṗ0(t) defined as the inertial rate

of change γinert(t)). During the later half of the time evolution, change in p0 is dominated by the

emergent TCG dissipators (with the corresponding contribution to ṗ0(t) defined as the dynamical

rate of change γdynam(t)), as shown in Fig. 6.

γinert(t) ≈
∑
n≥1

(⟨n(t)|ḢTCG(t)|0(t)⟩
E0(t)− En(t)

⟨0(t)|ρ(t)|n(t)⟩+ c.c.
)

γdynam(t) = ⟨0(t)|D̂TCG(t)ρ(t)|0(t)⟩,

(42)

In particular, we see in Fig. 6 that the inertial rate γinert is approximately symmetrical around

the zero axis, and is responsible for the initial slow oscillations in p0(t). It dominates over γdynam

during the early time, but decays towards zero as the pumping power increases into the strong-drive

regime. The dynamical rate γdyanm on the other hand, is induced by the emergent TCG dissipator.

We notice that γdyanm is almost always negative with its magnitude increasing during the early time

and oscillating with increasing frequency around a certain negative mean value during the late time.

Since the mean value of γdyanm is negative and comparable with the magnitude of the oscillating γinert,

its secular effects dominate over that of γinert in the late time. In fact, from either the analytical

formula for D̂TCG(t) or numerical simulations, one can predict that increasing the non-linearity χ

will significantly enhance the secular effects of γdyanm while suppressing the transient oscillations due

to γinert; having more rapid state preparation by decreasing T , on the other hand, will enhance both

γdyanm and γinert.

B. The driven Duffing oscillator

The Duffing oscillator is a damped oscillator driven by a non-linear force, cubic in the displace-

ment of the particle. Despite its simple description, it shows rich phenomena, such as bi-stability,

chaos, and hysteresis. The quantum Duffing oscillator, similarly can show a variety of rich quantum

phenomena, such as tunneling, squeezing, and entanglement. It has been studied extensively in re-

cent years as a model for a variety of physical systems, including superconducting circuits, trapped

ions, and optical cavities, and it is also a popular model system for studying the effects of quantum
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mechanics on nonlinear systems. Importantly, it has been studied in the supplementary of a paper

by Venkatraman et al [13], showcasing the capabilities of an effective static Hamiltonian method,

based on Lie-algebraic approach known as the “Kamiltonian” approach. We use that same exam-

ple to demonstrate here that the STCG algorithm is not only able to reproduce the effective static

Hamiltonian in Venkatraman et al. as the effective TCG Hamiltonian, but also capable of calculating

the non-Hamiltonian corrections resulting from time-coarse graining.

The quantum Duffing oscillator is described by the following Hamiltonian,

Ĥ = δâ†â+ g4
(
e−i 5

6
ωdtâ+ ei

5
6
ωdtâ† + e−iωdtΠ+ eiωdtΠ∗)4. (43)

In order to compare with the results in [13], we define ωd ≡ 6ω and round numerical coefficients to

the nearest integers. Assuming that 1
g4
, 1
δ
≫ τ ≫ 1

ω
and ignoring terms exponentially suppressed by

factors of e−
ω2τ2

2 , we can write the fourth-order effective TCG Hamiltonian as,

Ĥ
(4)
TCG(t) ≡ K

(4)
1 â†â+K

(4)
2 â†2â2 +K

(4)
3 â†3â3

+K
(4)
4 â†4â4 +K

(4)
5 â†5â5

(44)

with,

K
(4)
1 ≈

g24
ω

(
− 58 + 625|Π|2 + 531|Π|4

)
+
g24
ω2
δ
(
12 + 907|Π|2 + 665|Π|4

)
+
g34
ω2

(
573 + 13815|Π|2 + 43258|Π|4 + 21832|Π|6

)
+
g44
ω3

(
− 7834 + 246852|Π|2 + 2101485|Π|4

+ 3034553|Π|6 + 1079394|Π|8
)

+
g34δ

ω3

(
− 229 + 35144|Π|2 + 106765|Π|4 + 51312|Π|6

)
+
g24δ

2

ω3

(
− 2 + 855|Π|2 + 645|Π|4

)

(45)
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K
(4)
2 ≈

g24
ω

(
− 61 + 312|Π|2

)
+
g24
ω2
δ
(
12 + 453|Π|2

)
+
g34
ω2

(
1007 + 17919|Π|2 + 21629|Π|4

)
+
g44
ω3

(
− 20529 + 655974|Π|2

+ 2723568|Π|4 + 1517277|Π|6
)

+
g34δ

ω3

(
− 403 + 46418|Π|2 + 53383|Π|4

)
+
g24δ

2

ω3

(
− 2 + 427|Π|2

)

(46)

K
(4)
3 ≈−

g24
ω
· 14 + g24

ω2
δ · 3 + g34

ω2

(
480 + 3982|Π|2

)
+
g44
ω3

(
− 15964 + 355032|Π|2 + 605237|Π|4

)
+
g34δ

ω3

(
− 192 + 10315|Π|2

)
− g24δ

2

ω3

(47)

K
(4)
4 ≈

g34
ω2
· 60 + g44

ω3

(
− 4276 + 44379|Π|2

)
− g34δ

ω3
· 24 (48)

K
(4)
5 ≈−

g44
ω3
· 342 (49)

if we round the numerical coefficients to the nearest integers. Similar to the models discussed

previously, the TCG effective Hamiltonian (as well as the pseudo-dissipators) is dependent on the

coarse-graining time scale τ in general, and what we present here should be understood as the “IR”-

limit results where τ is much greater than 1
ω
. The exact analytical formulas can be found in appendix

D3. In particular, we are able to reproduce all the classical and quantum corrections in the effective

Hamiltonian derived in the supplementary material of Venkatraman et al. [13], demonstrating that

the STCG method generalizes the Kamiltonian method, yielding the same time-averaged Hamiltonian

for a simple filter function with sufficiently large τ . In fact, the agreement between the high-order

Hamiltonian corrections obtained by the two distinct methods lead us to make the conjecture that

the effective Kamiltonian can in general be obtained by taking the IR limit of the TCG effective

Hamiltonian.

Unlike the parametron control model discussed in the previous subsection, here the coefficients are

purely imaginary and in general do not have significant impact on the system dynamics since the drive
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Figure 7. Time evolution of the quadrature variable ⟨ϕ⟩ and the correlation ⟨ϕn⟩ − ⟨ϕ⟩⟨n⟩ simulated with

the lowest 25 levels and an initial microscopic (as opposed to coarse-grained) pure coherent state with

displacement α = −0.48i at time t = −3ns. The inset in each panel shows the late-time dynamics in order

to show the subtle differences between the different approximations.

on the Duffing oscillator is not resonant with any internal transitions, and there is no parametric

time-dependence of any sort. In this case, the TCG pseudo-dissipators only provide quantitative

corrections in their range of validity (i.e. when the condition 1
g4
, 1
δ
≫ τ ≫ 1

ω
is satisfied). For
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example, if we assume the following values of the parameters

g4/2π = 0.5MHz; δ/2π = −58.4MHz; ωd/2π = 12GHz

with driving amplitude Π = 2i and time-coarse graining scale τ = 0.5ns. then numerical simulation of

the microscopic von-Neumann equation and the TCG master equation gives us the following dynamics

of the quadrature variable ⟨ϕ⟩ and the second-order correlation ⟨ϕn⟩ − ⟨ϕ⟩⟨n⟩ where ϕ ≡ a+a†√
2

and

n ≡ a−a†√
2i

. When compared directly to the coarse-grained dynamics with infinite time resolution,

the fourth-order TCG QME gives much better predictions in comparison with the RWA method.

However, differently from the parametron example where the TCG effective dissipators significantly

modify the late-time fidelity, here the dynamics is mostly generated by the effective Hamiltonian, with

the (pseudo-)dissipators only giving minor improvements during later periods of the time evolution.

This kind of situation where the effective dynamics is dominated by its coherent part generated by

some effective Hamiltonian usually occurs when the external drives have amplitudes that are time-

independent and frequencies which do not resonate with any internal (virtual) transition processes

until very high order in the nonlinearities.

VII. CONCLUSIONS AND OUTLOOK

In the lab, observable dynamics are always time-coarse grained, due to the finite time resolution of

the measurement apparatus. In order to effectively model these observable dynamics, we introduced

the systematic time-coarse graining (STCG) framework, a perturbative series expansion that directly

describes the time-coarse grained observable dynamics of a quantum system. STCG generalizes

existing TCG methods to any order, and extends beyond the description given by static effective

Hamiltonian approaches [5, 13, 44] by including non-unitary contributions to the dynamics, which

we have shown to be crucial for a correct effective model of the system.

STCG allows for more accurate description of quantum systems in non-RWA regimes and when

effective Hamiltonian methods become inadequate, e.g., under strong and fast parametric drives.

It gives a description of the time coarse-grained dynamics in the form of multi-body Hamiltonian

corrections and (pseudo-)dissipators, providing us with an analytical method to identify and study the
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important emergent processes in regimes where the counter-rotating and parametric time-dependent

terms become significant. In addition, the diagrammatic representation developed in this work can

also help with the design and engineering of the nonlinearities and parametric drives in order to

achieve certain effective long-time dynamics. Importantly, the time-coarse grained description is not

only important for analytical studies, but also crucial for numerical analyses, since deep non-RWA

regimes are not numerically stable. If the counter-rotating terms are included, the equations of motion

can require very high-time resolutions, with strict constraints on the truncation of the Hilbert space,

that can make solving them computationally prohibitive. In addition, these equations can become

highly-stiff and unstable due to the involvement of vastly different time-scales and numerous modes.

The STCG description, on the other hand, effectively filters the dynamics around a certain frequency

band, and accounts for the effects of high-frequency (virtual) transitions in the Hilbert space without

needing to keep track of their intricate time evolution. This allows for very efficient numerical study

of driven nonlinear quantum systems deep into the non-RWA regime or even when more sophisticated

effective Hamiltonian methods fail.

In order to showcase the STCG method, we used it to study a couple of problems - the Rabi model,

the quantum parametron and the quantum Duffing oscillator. We have shown that STCG generalizes

the existing treatments of these problems, reproducing well-known corrections while revealing new,

non-unitary contributions that are not captured by other methods. Moreover, we have shown that our

results match the exact time-coarse graining of the non-RWA solutions, with the agreement improving

for higher orders of approximation. Specifically, we have used the examples to showcase important

properties of the STCG method. Using the quantum parametron example, we demonstrated the

importance of the non-unitary contributions captured by STCG, which prove to be crucial for correct

modelling of the system fidelity and for capturing non-adiabatic effects; using the quantum Duffing

oscillator, we showed that the effective Hamiltonian produced by STCG completely reproduces the

effective static Hamiltonian generated by perturbative Lie series approaches, which suggests that

effective Hamiltonian approaches may be considered as certain limits of the STCG approach.

The STCG calculation is complex and involved, since it requires the calculation and bookkeeping

of many different superoperators which can easily be in the hundreds for a third-order expansion. To

aid this situation, we envision the STCG framework as part of a computational framework, where
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the repetitive, intricate procedure is done automatically by a symbolic computation package, aid-

ing the numeric and analytical study of the system. We accompany STCG with the Julia software

package ‘QuantumGraining.jl’ [42], which automatically calculates the emergent terms, their cou-

pling strengths or pseudo-dissipation rates to help automate analytical and numerical calculations.

We hope that the utility and generality of STCG, in addition to the low bar-of-entry by use of

‘QuantumGraining.jl’, can make it a valuable tool for theorists and experimentalists alike.
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Appendix A: TCG master equation derivation

As we discuss in the main text, we want to derive a closed formula for the TCG master equation.

We start by expanding the unitary evolution in the following Dyson series:

Û(t) ≡
∞∑
k=0

Ûk(t) = Î +
∞∑
k=1

(−i)k
∫ t

0

· · ·
∫ tk−1

0

dt1 · · · dtkĤ(t1) · · · Ĥ(tk) (A1)

The TCG procedure represents a low-pass filter of the system dynamics in the interaction picture

can then be implemented by working exclusively with the time-averaged density matrix,

ρ(t) = U(t)ρ0U †(t) =
∞∑
k=0

k∑
l=0

Ûlρ0Û
†
k−l(t) (A2)

where the time average of a time-dependent operator Ô(t) is defined as

Ô(t) :=

∫ ∞

−∞
dt′f̃τ (t− t′)Ô(t′) (A3)

for some window function f̃τ (t) normalized so that
∫∞
−∞ f̃τ (t)dt = 1; the coarse-graining time scale τ ,

on the other hand, defines the shape of the filter. In what follows, we will denote its frequency-domain

representation by fτ (ω).

Starting from Eq.(A2), we would like to obtain the generator of the time evolution of ρ(t). This

requires finding at least an approximate inverse of the TCG operation, and we show in the following

paragraphs that it can be done by perturbatively reversing Eq.(A2). Along this line of thought, the

first thing to notice from the form of Eq.(A2) is that the time evolution of ρ(t) cannot be generated

by a Hamiltonian in general, as discussed in the main text. Consequently, the correct ansatz is a

general master equation generated by a quantum Liouvillian [29, 35, 45, 46],

iρ̇ = Lρ (A4)

Let us define the time-averaged state,

ρ(t) =
∞∑
k=0

k∑
l=0

ÛlρÛ
†
k−l(t) ≡

∑
k

Ek(t)ρ (A5)
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where we denote the time-averaging operation E(t) =
∑

k Ek(t). By collecting powers of k we find,

Ek(t)ρ =
k∑

l=0

ÛlρU
†
k−l(t) (A6)

Using the definition of the time-average in Eq.(A3) and taking the derivative of ρ(t), the LHS of

Eq.(13) becomes

i∂tρ(t) =
∞∑
k=1

k∑
l=1

(
ĤÛl−1ρU

†
k−l(t)− Ûl−1ρU

†
k−lĤ(t)

)
=

∞∑
j=1

Lj(t)ρ(t)

=
∞∑
j=1

Lj(t)
∞∑
k=0

Ek(t)ρ =
∞∑
j=1

Lj(t)
∞∑

k−j=0

Ek−j(t)ρ

=
∞∑
k=1

k∑
j=1

Lj(t)Ek−j(t)ρ

(A7)

Matching terms at order k and expanding Ek−j(t), we find the following recurrence relation for the

Liouvillian expansion

Lk(t)ρ =
k∑

l=1

(
ĤÛl−1ρÛk−l(t)− Ûl−1ρÛk−lĤ(t)

)
−

∞∑
k=1

k∑
j=1

Lj(t)Ek−j(t)ρ. (A8)

where we define L0ρ ≡ 0 for any density matrix ρ. This formula relates Lk to all the partial

Liouvillians of order r < k.

Appendix B: Derivation of the contraction coefficients

1. The contraction superoperators

Due to their complicated time dependence, directly calculating the averages in Eq.(17) is difficult.

For example, even with only two operators we would have,

ĤÛ1(t) =
∑
l1,l2

fτ (ωl1 + ωl2)e
−i(ωl1

+ωl2
)t − fτ (ωl2)e

−iωl2
t

ωl1

ĥl2ĥl1

42



which contains two terms at different frequencies. However, Eq.(17) can be used to show that such

a time average is always accompanied by the following product of time averages,

Ĥ(t)Û1(t) =
∑
l1,l2

fτ (ωl1)fτ (ωl2)e
−i(ωl1

+ωl2
)t − fτ (ωl2)e

−iωl2
t

ωl1

ĥl2ĥl1 .

In previous work by Lee et al.[27], it has been shown that the time-coarse grained dynamics to the

second-order are generated by two-point “contractions” which happen to be equivalent to covariances

PQ = PQ− P ·Q (B1a)

PρQ = PρQ− P · ρ ·Q. (B1b)

Note that by plugging in the time-averaged terms into the contraction, the terms at frequency ωl2

always cancel each other out, and we have the following expression where the time dependence is

homogeneous for each combination of ĥl1 and ĥl2 :

HU1 =
∑
l1,l2

fτ (ωl1 + ωl2)− fτ (ωl1)fτ (ωl2)

ωl1

e−i(ωl1
+ωl2

)tĥl2ĥl1 . (B2)

In fact, at high orders in the perturbative expansion, cancellations of this kind take place on a very

large scale (see App. B 2), which makes Eq.(17) inefficient for computation. In fact, we show in App.

B 2 that after the mass cancellation takes place, all operator products of the form ĥµl
· · · ĥµ1ρĥν1 · · · ĥνr

have the same harmonic time-dependence ω =
∑

i µi +
∑

j νj.

In what follows, we generalize the two-point contractions defined in Lee et al. [27] to multi-point

contractions. According to Eq.(17), Lkρ can always be written as the sum of a collection of nested

averages of Ĥ(t), Ûi(t), and Û †
j (t) multiplied to either sides of ρ, where Ûi(t) and Û †

j (t) can only

appear on the left and right side of ρ respectively, while Ĥ is always present and can appear on either

end of the product. Therefore, as discussed in the main text, we can group terms in Lk by the shape

of the nested averages so that

Lkρ(t) =
k−1∑
r=0

Wk−r,r(t)[ρ]− h.c. (B3a)
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for any k ≥ 1, where the contraction Wl,r(t)[ρ] is the sum of all nested averages that have l(r)

operators to the left(right) of ρ with the first operator being Ĥ.

Plugging Eq.(18) into the recurrence relation 17 and grouping together all terms that have the

weight (l, r) with l + r = k, we find the following recurrence relation for these contraction superop-

erators

W0,0 ≡ 0 (B4a)

Wk,0[ρ] = HUk−1ρ−
k−1∑
k′=1

Wk′,0

[
Uk−k′ρ

]
(B4b)

Wl,k−l(t)[ρ] = HUl−1ρU
†
k−l −

k−1∑
k′=1

min(l−1,k−k′)∑
l′=max(0,l−k′)

Wl−l′,k′−(l−l′)

[
Ul′ρU

†
k−k′−l′

]
(B4c)

where the second equation is just a special case of the third equation, given here for clarity only. The

contraction in the second sum of the last two equations are to be understood as operating on the inner

time-averaged product, multiplying operators to the left and/or to the right of the time-average. The

recurrence relation in Eq.(B4) can be confirmed by plugging it back into Eq.(17) together with the

decomposition in Eq.(18).

Looking at the contractions as defined through the recurrence relation in Eq.(B4), we see that

they are always of the following form,

Wl,r[ρ] =
∑

d∈diagrams(l,r)

ĤÛl∥d∥−1[·]Û †
r∥d∥

∥d∥−1∏
n=1

(
− Ûln [·]Û

†
rn

)
ρ = ĤÛl−1ρÛ

†
r − ĤÛl−2Û1ρÛ

†
r + · · · (B5)

where “diagrams(l, r)” is a partition-valued function which represents the different ways in which

the averages may be arranged by the different natural-number partitions of the 2-tuple (l, r). These

different partitions can be represented visually by “bubble diagram”, where each bubble corresponds

to the n-th part of a particular partition d. Namely, for the n-th bubble we would have a 2-tuple

(ln, rn) such that
∑∥d∥

n=1 ln = l and
∑∥d∥

n=1 rn = r.

Fig. 8, shows a couple of examples of the bubble-diagram visualization, where the dots in a bubble

represent the Hamiltonian operators appearing in the corresponding time average. In particular, dots

in the upper (lower) half of the diagram represent operators to the left (right) of the density matrix.

A contraction with weight (l, r) can then be represented by the set of all bubble diagrams with l
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Figure 8. A couple of example bubble diagrams contributing to the contraction superoperator W4,2[ρ]. The

time-averaged (super)operator inside the bubble represents the factor the bubble gives rise to, and the nested

average to the right of the bubble shows the total contribution from that diagram. The diagram is read left

to right, with the leftmost bubbles operating closest to ρ and the subsequent bubbles operating on the result

of previous ones, appearing further away from ρ.

upper operators and r lower operators inserted into the bubbles. Finally, the hollow dot represents

the leftmost Ĥ term in the product.

Note that the contractions are not symmetric with respect to the weights, since there is always

an Ĥ term on the left. For example, a W3,1[ρ] contraction superoperator would be a sum over the

following time-averaged terms

W3,1[ρ] ≡ HÛ2ρU
†
1 =

HU2ρU
†
1 −HU2ρU

†
1 −HU2ρU

†
1 −HU2ρU

†
1 + 2HU2ρU

†
1

−HU1U1ρU
†
1 −HU1U1ρU

†
1 + 2HU1 · U1ρU

†
1 +HU1U1ρU

†
1

+HU1U1ρU
†
1 +HU1U1ρU

†
1 − 3HU1U1ρU

†
1

where we have generalized the contraction notation in Lee et al. [27] as another representation of

W3,1[ρ] in the first equality. These are all the contributions appearing in the TCG master equation
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with weight (3, 1), where the weight implies the number of Hamiltonian operators in Ĥ appearing

on either side of the density matrix.

2. Proving the harmonic time-dependence of the contractions

In Eq.(19), we made the ansatz that the contraction superoperators can be written as a sum of

operator product with only a harmonic time-dependence,

Wl,r(t)[ρ] =
∑

(µ⃗,ν⃗)∈Pl,r[Ω]

Cl,r(µ⃗, ν⃗)e
−i(

∑l
i µi+

∑r
i νi)t · ĥµ1 · · · ĥµl

ρ̂ĥν1 · · · ĥνr

where the the contraction coefficients Cl,r(µ⃗, ν⃗) are time-independent functions of the inserted fre-

quencies, and they effectively encode all the diagram contributions.

Additionally, in Equation B5 we have shown that the contraction superoperators can be written

as a sum of products of averages:

Wl,r[ρ] =
∑

d∈diagrams(l,r)

αd ·HUl∥d]∥−1[·]U †
r∥d∥

∥d∥−1∏
n=1

Uln [·]U
†
rnρ = HUl−1ρU

†
r +HUl−2U1ρU

†
r + · · ·

More specifically, each nested average in the sum can be obtained by repeatedly acting superoperators

of the form Ul[·]U †
r on ρ before finally acting the last superoperator HUl−1[·]U †

r onto the preceding

result. Using these two assumptions, and by calculating these averages, we can derive an expression

for the contraction coefficients.

We start by assuming that the Hamiltonian can be written as a discrete sum of Harmonic terms

Ĥ =
∑

j ĥje
−iωjt, where the coupling strengths have been absorbed into the Hamiltonian operators

ĥj. We can derive an analytical expression for Ûk in the expression of the unitary evolution operator:

Ûn(t) = −i
∫ t

0

dt′Ĥ(t′)Ûn−1(t
′) = (−i)n

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

dt1 · · · dtn · Ĥ(t1) · · · Ĥ(tn). (B6)

Plugging in the expansion of the Hamiltonian gives a simpler integral and allows us to decouple the

limits of integration

Ûn(t) =
∑

ω1,··· ,ωn∈Ω

ĥω1 · · · ĥωn · (−i)n
∫ t

0

dt1e
−iω1t1

∫ t1

0

· · ·
∫ tn−1

0

dtn · e−iωntn . (B7)
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The last integral over tn is fully decoupled, allowing us to calculate it explicitly:∫ tn−1

0

dtn · e−iωntn = − 1

iωn

[
e−iωntn−1 − 1

]
(B8)

Plugging it back into Eq.(B7), we see that there is now a sum of two terms that have the same

structure of integrals but with different frequencies. If we keep doing that n times, we end up with

Ul =
∑
µ⃗

l∑
jl=0

(−1)l+jle−i
∑jl−1

k=0 µl−kt

µ⃗[l − jl + 1 : l]!µ⃗[l − jl : 1]!
hµl
· · ·hµ1 (B9)

U †
r =

∑
ν⃗

jr∑
jr=0

(−1)r+jre−i
∑jr−1

k=0 νr−kt

(−ν⃗[r − jr + 1 : r])!(−ν⃗[r − jr : 1])!
hν1 · · ·hνr

=
∑
ν⃗

r∑
jr=0

(−1)jre−i
∑jr−1

k=0 νr−kt

ν⃗[r − jr + 1 : r]!ν⃗[r − jr : 1]!
hν1 · · ·hνr

(B10)

and

HUl =
∑
µ⃗

l∑
jl=0

(−1)l+jle−i
∑jl

k=0 µl+1−kt

µ⃗[l − jl + 1 : l]!µ⃗[l − jl : 1]!
hµl+1

hµl
· · ·hµ1 (B11)

where µ⃗[i, j] ≡ (µi, µi+1, · · · , µj) and we define µ⃗! to be the “vector-factorial” so that

µ⃗! ≡
(
µ1, µ2, · · · , µ∥v∥

)
! = (µ1 + µ2 + · · ·+ µ∥v∥) · · · (µ1 + µ2) · µ1, (B12)

with ∥µ∥ indicating the number of elements in µ⃗. So for example, (µ1, µ2, µ3)! = (µ1 + µ2 + µ3) ·

(µ1 + µ2) · µ1. Therefore, we have the following expression for a typical bubble factor (here “typical”

means that it is not the special bubble at the right end of the diagram):

−Ul

[
·
]
U †
r =−

∑
µ⃗,ν⃗

l∑
jl=0

r∑
jr=0

(−1)l+jl+jrfτ (
∑jl−1

k=0 µl−k +
∑jr−1

k=0 νr−k)e
−i(

∑jl−1

k=0 µl−k+
∑jr−1

k=0 νr−k)t

µ⃗[l − jl + 1 : l]!µ⃗[l − jl : 1]!ν⃗[r − jr + 1 : r]!ν⃗[r − jr : 1]!

· hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr

=
∑
µ⃗,ν⃗

l∑
jl=0

r∑
jr=0

(
−Bjl,jr(µ⃗, ν⃗)

)
hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr

(B13)

where,

Bjl,jr(µ⃗, ν⃗) ≡ (−1)l+jl+jrfτ (
∑jl−1

k=0 µl−k +
∑jr−1

k=0 νr−k)e
−i(

∑jl−1

k=0 µl−k+
∑jr−1

k=0 νr−k)t

µ⃗[l − jl + 1 : l]!µ⃗[l − jl : 1]!ν⃗[r − jr + 1 : r]!ν⃗[r − jr : 1]!
(B14)
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with l and r being the lengths of µ⃗ and ν⃗ respectively; similarly, the special bubble at the right end

gives rise to the factor,

HUl

[
·
]
U †
r =

∑
µ⃗,ν⃗

l∑
jl=0

r∑
jr=0

(−1)l+jl+jrfτ (
∑jl

k=0 µl+1−k +
∑jr−1

k=0 νr−k)e
−i(

∑jl
k=0 µl+1−k+

∑jr−1
k=0 νr−k)t

µ⃗[l − jl + 1 : l]!µ⃗[l − jl : 1]!ν⃗[r − jr + 1 : r]!ν⃗[r − jr : 1]!

· hµl+1
hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr

≡
∑
µ⃗,ν⃗

l∑
jl=0

r∑
jr=0

B̃jl,jr(µ⃗, ν⃗) · hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr .

(B15)

where we define,

B̃jl,jr(µ⃗, ν⃗) ≡ (−1)l+jl+jrfτ (
∑jl

k=0 µl+1−k +
∑jr−1

k=0 νr−k)e
−i(

∑jl
k=0 µl+1−k+

∑jr−1
k=0 νr−k)t

µ⃗[l − jl + 1 : l]!µ⃗[l − jl : 1]!ν⃗[r − jr + 1 : r]!ν⃗[r − jr : 1]!
. (B16)

Therefore, we see that for each combination of inserted operators, the contributing factor of a

particular bubble can be written as a sum of terms each of which oscillates at the total frequency of

a subset of neighboring frequencies inserted on the right side of the bubble, as indicated by the blue

dots in Fig. 9.

Figure 9. These color-coded bubbles correspond to individual contributing terms oscillating at the total

frequency of the blue dots on the right side of the bubbles. As shown in Eq.(B13) and Eq.(B17), one has

the identity Bjl,jr
(
µ⃗, ν⃗

)
= B0,0

(
µ⃗[1 : l − jl], ν⃗[1 : r − jr]

)
Bjl,jr

(
µ⃗[1 : l − jl], ν⃗[1 : r − jr]

)
, which implies that

the bubble contributions in panel (a) and panel (b) cancel each other out exactly.

On the other hand, we also have the following formula for the contributions of two adjacent typical
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bubbles:

(
− Ujl

[
·
]
U †
jr

)(
− Ul−jl

[
·
]
U †
r−jr

)
=
∑
µ⃗,ν⃗

(−1)l−jr

µ⃗[l − jl : 1]!ν⃗[r − jr : 1]!
· (−1)

jlfτ (
∑jl−1

k=0 µl−k +
∑jr−1

k=0 νr−k)e
−i(

∑jl−1

k=0 µl−k+
∑jr−1

k=0 νr−k)t

µ⃗[l − jl + 1 : l]!ν⃗[r − jr + 1 : r]!

+
∑
µ⃗,ν⃗

(l−jl,r−jr,jl,jr)∑
(nl,nr,ml,mr )̸=(0,0,jl,jr)

(−1)l−jr+nl+nrfτ (
∑nl−1

k=0 µl−jl−k +
∑nr−1

k=0 νr−jr−k)

µ⃗[l − jl − nl + 1 : l − jl]!µ⃗[l − jl − nl : 1]!

· e−i(
∑nl−1

k=0 µl−jl−k+
∑nr−1

k=0 νr−jr−k)t

ν⃗[r − jr − nr + 1 : r − jr]!ν⃗[r − jr − nr : 1]!

· (−1)jr+ml+mrfτ (
∑ml−1

k=0 µl−k +
∑mr−1

k=0 νr−k)e
−i(

∑ml−1

k=0 µl−k+
∑mr−1

k=0 νr−k)t

µ⃗[l −ml + 1 : l]!µ⃗[l −ml : l − jl + 1]!ν⃗[r −mr + 1 : r]!ν⃗[r −mr : r − jr + 1]!

· hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr

=
∑
µ⃗,ν⃗

Bjl,jr(µ⃗, ν⃗) · hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr

+
∑
µ⃗,ν⃗

∑
(nl,nr,ml,mr )̸=(0,0,jl,jr)

Bnl,nr
(
µ⃗[1 : l − jl], ν⃗[1 : r − jr]

)
·Bml,mr

(
µ⃗[l − jl + 1 : l], ν⃗[r − jr + 1 : r]

)
· hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr

(B17)
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and similarly, for a typical bubble adjacent to the special bubble at the right end we have(
−HUjl

[
·
]
U †
jr

)(
− Ul−jl

[
·
]
U †
r−jr

)
=
∑
µ⃗,ν⃗

(−1)l−jr

µ⃗[l − jl : 1]!ν⃗[r − jr : 1]!
· (−1)

jlfτ (
∑jl−1

k=0 µl−k +
∑jr−1

k=0 νr−k)e
−i(

∑jl−1

k=0 µl−k+
∑jr−1

k=0 νr−k)t

µ⃗[l − jl + 1 : l]!ν⃗[r − jr + 1 : r]!

+
∑
µ⃗,ν⃗

(l−jl,r−jr,jl,jr)∑
(nl,nr,ml,mr )̸=(0,0,jl,jr)

(−1)l−jr+nl+nrfτ (
∑nl−1

k=0 µl−jl−k +
∑nr−1

k=0 νr−jr−k)

µ⃗[l − jl − nl + 1 : l − jl]!µ⃗[l − jl − nl : 1]!

· e−i(
∑nl−1

k=0 µl−jl−k+
∑nr−1

k=0 νr−jr−k)t

ν⃗[r − jr − nr + 1 : r − jr]!ν⃗[r − jr − nr : 1]!

· (−1)jr+ml+mrfτ (
∑ml−1

k=0 µl−k +
∑mr−1

k=0 νr−k)e
−i(

∑ml−1

k=0 µl−k+
∑mr−1

k=0 νr−k)t

µ⃗[l −ml + 1 : l]!µ⃗[l −ml : l − jl + 1]!ν⃗[r −mr + 1 : r]!ν⃗[r −mr : r − jr + 1]!

· hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr

=
∑
µ⃗,ν⃗

B̃jl,jr(µ⃗, ν⃗) · hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr

+
∑
µ⃗,ν⃗

∑
(nl,nr,ml,mr )̸=(0,0,jl,jr)

Bnl,nr
(
µ⃗[1 : l − jl], ν⃗[1 : r − jr]

)
· B̃ml,mr

(
µ⃗[l − jl + 1 : l + 1], ν⃗[r − jr + 1 : r]

)
· hµl
· · ·hµ1

[
·
]
hν1 · · ·hνr

(B18)

In fact, according to Fig. 9, only two kinds of typical bubble contributions cannot be canceled

in this fashion: the contributing term is either a constant in time (only red crosses are inserted) or

oscillates at the total bubble frequency (only blue dots are inserted), which we refer to as “empty” or

“full” bubbles respectively. Following the same procedure, one can also show that the contributions

from the special bubble at the right end can also be canceled by bubble-splitting unless it is either

full or empty (here the contribution corresponding to the “empty” special bubble oscillates at the

frequency µl of the special operator at the right end, instead of being a constant in time).

On the flip side of cancellation by bubble splitting, we see that an empty bubble right to the left

of a full bubble can be canceled by merging the two bubbles together. Therefore, the only bubble

diagrams surviving this cancellation process are those with full bubbles on the left and empty bubble

on the right. However, this implies that there are no empty bubbles, since the special operator

inserted on the right end of a diagram is always filled (represented by a blue dot) by construction,

as shown in Fig. 10.
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Figure 10. For a diagram not to be canceled by splitting partially filled bubbles or by merging adjacent empty

and full bubbles, it has to contain no partially filled bubbles, and all its empty bubbles have to be on the

right side of the diagram. However, by our construction, the special operator on the right end of a diagram

comes from the un-integrated Hamiltonian H and is therefore always filled (i.e., it always contributes the

time-dependent factor e−iµlt corresponding to its frequency µl). Therefore, the diagrams shown in panel (a)

and panel (b) cancel each other out.

Consequently, according to Eq.(B5), we have

Wl,r[ρ] =
∑

d∈diagrams(l,r)

(
B̃l∥d∥,r∥d∥(µ⃗(b∥d∥), ν⃗(b∥d∥))

) ∥d∥−1∏
n=1

(
−Bln,rn(µ⃗(bn), ν⃗(bn))

)
· ĥµl
· · · ĥµ1ρĥν1 · · · ĥνr

=
∑

d∈diagrams(l,r)

(∑
i

µ
(b∥d∥)

i

)(−1)r∥d∥fτ (∑i µ
(b∥d∥)

i +
∑

i ν
(b∥d∥)

i )e−i(
∑

i µ
(b∥d∥)
i +

∑
i ν

(b∥d∥)
i )t

µ⃗(b∥d∥)!ν⃗(b∥d∥)!

· (−1)∥d∥−1

∥d∥−1∏
n=1

(−1)rnfτ (
∑

i µ
(bn)
i +

∑
i ν

(bn)
i )e−i(

∑
i µ

(bn)
i +

∑
i ν

(bn)
i )t

µ⃗(bn)!ν⃗(bn)!

· ĥµl
· · · ĥµ1ρĥν1 · · · ĥνr

=
[ ∑
d∈diagrams(l,r)

(−1)r+∥d∥−1
(∑

i

µ
(b∥d∥)

i

)∏
b∈d

fτ (
∑

i µ
(b)
i +

∑
i ν

(b)
i )

µ⃗(b)!ν⃗(b)!

]
e−i(

∑l
i=1 µi+

∑r
i=1 νi)t

· ĥµl
· · · ĥµ1ρĥν1 · · · ĥνr

(B19)

51



Or equivalently,

Wl,r(t)[ρ] =
∑

(µ⃗,ν⃗)∈Pl,r[Ω]

Cl,r(µ⃗, ν⃗)e
−i(

∑l
i=1 µi+

∑r
i=1 νi)t · ĥµl

· · · ĥµ1ρĥν1 · · · ĥνr .

with

Cl,r(µ⃗, ν⃗) =
∑

d∈diagrams(l,r)

(−1)r+∥d∥−1

(∑
i

µ
(b∥d∥)

i

)∏
b∈d

fτ

(∑
i µ

(b)
i +

∑
i ν

(b)
i

)
µ⃗(b)!ν⃗(b)!

,

which proves Eq.(19) and Eq.(20) in the main text. Noticeably, the mass cancellation of the different

frequency terms is due to the summation of all diagram contributions, leaving only a single harmonic

contribution for each diagram; in particular, the special operator due to H inserted on the right end

of each diagram is crucial for this mass cancellation to take place.

3. Symmetries and separation into Hamiltonian and pseudo-dissipators

We notice that Eq.(20) reveals some important symmetries of the contraction coefficients. These

symmetries keep the last element of µ⃗ constant as we permute the vectors,

Cl,r = Cl,r ((µ1, · · · , µl−1, µl), (ν1, · · · , νr)) (B20)

To respect the symmetries of Cl,r, permutations of the frequencies must keep ω1 as the last element

of µ⃗. For example, with µ⃗ = (µ1, µ2, · · · , µl) and ν⃗ = (ν1, ν2, · · · , νr), one has

Cl,r(−µ⃗,−ν⃗) = (−1)l+r−1Cl,r(µ⃗, ν⃗) (B21a)

Cl,r(µ⃗, ν⃗) = Cr+1,l−1

(
− (ν1, ν2, · · · , νr, µl),−(µ1, µ2, · · · , µl−1)

)
. (B21b)

where the symmetry in the second identity reflects swapping the upper modes and lower modes,

while keeping the special Hamiltonian mode contribution µl unaffected.

Cl,r(µ⃗, ν⃗) = Cr+1,l−1

(
− (ν⃗ ⊕r+1 µl),−(µ⃗⊖l µl)

)
. (B22)

where ⊕r+1 denotes concatenation at index r+1 and ⊖l denotes removing from position l, producing

vectors with length r + 1 and l − 1 respectively.
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Figure 11. The symmetries of the contraction coefficients reflect the underlying time reversal and Hermitian

symmetries of the dynamics in the absence of spontaneous symmetry breaking. In terms of the diagrams,

they manifest as a symmetry for reflection around the main axis of the diagram, and the fact that the special

frequency µl from the H operator does not participate in the vector factorials in Eq.(20) and may therefore

be moved from the right of ρ to the left of ρ together with an extra minus sign. However, the time reversal

symmetry can be spontaneously broken if some of the inserted operators assume nonzero expectation values

or if the regularization of apparently singular bubbles produces imaginary prefactors.

This symmetry reflects the mirror symmetry of the diagrams around the main axis, as shown in

Fig. 11, which in turn is a manifestation of the Hermicity of the terms. In particular, the second

identity is not only useful for deriving the analytical expression of Cl,r from that of Cr+1,l−1, but also

necessary for the partial Liouvillian Lk to be trace-preserving at all orders in the perturbation theory,

by virtue of the Lindblad-like form of Lk in subsection IVB. Let us write the TCG Liouvillian again,

Lk(t)ρ =
k∑

l=1

Wl,k−l[ρ]− h.c. (B23)

=
k∑

l=1

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

(
Cl,r(µ⃗, ν⃗)sµ⃗ revρsν⃗ − Cl,r(µ⃗, ν⃗)s

†
ν⃗ρs

†
µ⃗ rev

)
(B24)

where we have absorbed the harmonic time-dependent factors as well as the coupling strengths into

the operator sν⃗ for brevity:

sν⃗ =
(∏

ω∈ν⃗

e−iωt
)
hν1hν2 · · ·hνr . (B25)

Since we sum over all frequencies in the set Ω and all vector lengths

(l, r) ∈
{
(1, k − 1), (2, k − 2), · · · , (k, 0)

}
,
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we can make the following dummy variable substitution in the second term of the right-hand side of

Eq.(B24) for all 1 ≤ l ≤ k − 1:

µ⃗→ −ν⃗ (B26)

ν⃗ → −µ⃗ (B27)

whereas for l = k we make the substitution µ⃗→ −µ⃗ rev. This allows us to write the sum in terms of

a single operator,

Lk(t)ρ =
∑

µ⃗,ν⃗∈Pk,0[Ω]

Ck,0(µ⃗, ∅)sµ⃗ revρ−
∑

µ⃗,ν⃗∈Pk,0[Ω]

Ck,0(−µ⃗ rev, ∅)ρsµ⃗ rev

+
k−1∑
l=1

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

(
Cl,r(µ⃗, ν⃗)− Cr,l(−ν⃗,−µ⃗)

)
sµ⃗ revρsν⃗

(B28)

where we have used the identity s†−µ⃗ = sµ⃗, and then divided the sum into l = k and l ̸= k terms.

Now we note that we can rearrange the terms into dissipators and commutators, with the help of

the following identities:

sµ⃗ revρsν⃗ = D[sµ⃗ rev , sν⃗ ]ρ+
1

2
{sν⃗sµ⃗ rev , ρ} (B29)

sµ⃗ revρ =
1

2
([sµ⃗ rev , ρ] + {sµ⃗ rev , ρ}) (B30)

ρsµ⃗ rev =
1

2
(−[sµ⃗ rev , ρ] + {sµ⃗ rev , ρ}) . (B31)

Plugging the identities above into Eq.(B28), we have

Lk(t)ρ =
∑

µ⃗,ν⃗∈Pk,0[Ω]

Ck,0(µ⃗, ∅) + Ck,0(−µ⃗ rev, ∅)
2

[sµ⃗ rev , ρ]

+
k−1∑
l=1

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

(
Cl,r(µ⃗, ν⃗)− Cr,l(−ν⃗,−µ⃗)

)
D[sµ⃗ rev , sν⃗ ]ρ

+
∑

µ⃗,ν⃗∈Pk,0[Ω]

Ck,0(µ⃗, ∅)− Ck,0(−µ⃗ rev, ∅)
2

{sµ⃗ rev , ρ}

+
k−1∑
l=1

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

Cl,r(µ⃗, ν⃗)− Cr,l(−ν⃗,−µ⃗)
2

{sν⃗sµ⃗ rev , ρ}

(B32)
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where by the symmetry relation in Eq.(B22), we can rewrite the anti-commutator terms in the last

two lines of Eq.(B32) as∑
µ⃗,ν⃗∈Pk,0[Ω]

Ck,0(µ⃗, ∅)− Ck,0(−µ⃗ rev, ∅)
2

{sµ⃗ rev , ρ}

+
k−1∑
l=1

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

Cl,r(µ⃗, ν⃗)− Cl+1,r−1(µ⃗⊕l νr, ν⃗ ⊖r νr)

2
{sν⃗sµ⃗ rev , ρ}

=−
∑

µ⃗,ν⃗∈Pk,0[Ω]

Ck,0(−µ⃗ rev, ∅)
2

{sµ⃗ rev , ρ}+
k∑

l=1

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

Cl,r(µ⃗, ν⃗)

2
{sν⃗sµ⃗ rev , ρ}

−
k∑

l=2

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

Cl,r(µ⃗, ν⃗)

2
{sν⃗sµ⃗ rev , ρ}

=−
∑

µ⃗,ν⃗∈Pk,0[Ω]

Ck,0(−µ⃗ rev, ∅)
2

{sµ⃗ rev , ρ}+
∑

µ⃗,ν⃗∈P1,k−1[Ω]

C1,k−1(µ⃗, ν⃗)

2
{sν⃗sµ⃗ rev , ρ}

=−
∑

µ⃗,ν⃗∈Pk,0[Ω]

Ck,0(−µ⃗ rev, ∅)
2

{sµ⃗ rev , ρ}+
∑

µ⃗,ν⃗∈P1,k−1[Ω]

Ck,0(−ν⃗ ⊕k−1 µ1, ∅)
2

{
sν⃗⊕k−1µ1 , ρ

}
= 0

(B33)

where one can make the dummy variable substitution ν⃗ ⊕k−1 µ1 → µ⃗ in the second term of the last

time in order to make the cancellation manifest. Now that the anti-commutator terms vanish, we

are left with

Lk(t)ρ =
∑

µ⃗,ν⃗∈Pk,0[Ω]

Ck,0(µ⃗, ∅) + Ck,0(−µ⃗ rev, ∅)
2

[ŝµ⃗ rev , ρ] (B34)

+
k−1∑
l=1

∑
µ⃗,ν⃗∈Pl,k−l[Ω]

(Cl,r(µ⃗, ν⃗)− Cr,l(−ν⃗,−µ⃗))D[ŝµ⃗ rev , ŝν⃗ ]ρ (B35)

which is separated into dissipator and Hamiltonian terms, proving Eq.(22, 23, 26).

Appendix C: Algorithms and implementation

1. Enumeration of the diagrams

To calculate a contraction coefficient Cl,r, we first need to identify all the diagrams associated

with such a contraction, and then calculate the TCG corrections associated with each diagram. For
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example, the contraction coefficient Cl,r receives contributions from all diagrams that have l left

modes and r right modes.

Figure 12. A single level (the first one in this case) in a decomposition tree. It covers all the different ways in

which a single-bubble diagram of the form (3, 2) can be decomposed into two-bubble diagrams. The process

is repeated on each non-trivial bubble until none is left.

1: procedure diagram_node(root_bubble, new_bubble)

2: if root_bubble.left ≥ 1, root_bubble.right ≥ 0 then

3: left_node← diagram_node(root_bubble, (new_bubble.left + 1, new_bubble.right))

4: right_node← diagram_node(root_bubble, (new_bubble.left, new_bubble.right + 1))

5: return diagram_node(root_bubble, new_bubble, left_node, right_node)

6: end if

7: end procedure

8: procedure decompose_diagram(node, decomp_list)

9: if node can be broken and is not in decomp_list then

10: decomp_list ← node.left, node.right

11: decompose_diagram(node.left, decomp_list)
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12: decompose_diagram(node.right, decomp_list)

13: end if

14: return decomp_list

15: end procedure

Eq.(B4) establishes a recurrence relation between a contraction coefficient of weight (l, r) and

those of lower weights, as elaborated upon in appendix B. This recursive structure bears resemblance

to a binary tree, which we refer to as the decomposition tree of the coefficient, as depicted in Fig.

12. For the purpose of systematically examining all possible diagrams, we arrange them in a tree-like

structure, with a single-bubble diagram at the pinnacle. A rightward (leftward) step down the tree is

equivalent to rupturing the rightmost bubble in the diagram, removing a right-mode (left-mode) from

it and incorporating it into a bubble to its left, as illustrated in Fig. 12. This yields all the distinct

ways in which we can break a bubble into two bubbles while preserving the same number of left-

modes and right-modes. By iterating this process over the newly added bubble, generating another

tree, we obtain all the bubble diagrams. The algorithm for this process is outlined in Algorithm 0

and illustrated in Fig. 12.

One caveat is worth noting regarding the handling of the Ĥ term in the contraction defined by

Eq.(B4), which we refer to as the “special mode” and represent by a hollow dot in the diagrams. This

term has to be treated in a different manner since the time averages in Eq.(17) are asymmetrical

around the density matrix – the only Ĥ term always appears as the left-most operator in the con-

traction. Therefore the mode associated with the Ĥ term must remain within the right-most bubble

in order to preserve this structure, and is treated differently from the other modes in the calculation

of their contributions to the diagram.

2. Calculating singular diagram corrections

Once we have all the different diagrams, calculating the contraction coefficient is a simple matter of

summing up the corrections due to each diagram, according to the formula in Eq.( 20). Although the

formula is simple enough, it proves problematic to directly implement numerically and symbolically,

since the different bubble corrections can diverge when any factor in the vector factorial vanishes.
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In more exact terms, we can define a set that enumerates these singular points for a bubble i in a

diagram,

s
(µ)
i =

{
s
∣∣µ1

i + µ2
i + · · ·+ µs

i = 0
}

(C1a)

s
(ν)
i =

{
s′
∣∣ν1i + ν2i + · · ·+ νs

′

i = 0
}

(C1b)

Defined for a particular bubble correction with a vector of left-modes µ⃗i and a vector of right-modes

ν⃗i. For example, for a bubble left-modes µi = (0, 1, 2,−3) we would have si = {1, 4}, since the first

factor is 0 and vanishes trivially, and the fourth factor 0+1+2−3 = 0 sums up to zero and vanishes

as well.

Let us define the contribution due to a single diagram as ϵd. In order obtain the finite contribution

near these singular terms, we expand the diagram near the poles by taking each frequency ω → ω+dω

and expanding to the order of the pole.

ϵd = ϵ
(0)
d

∑
n1≥0,u1≥0,l1≥0

· · ·
∑

n||d||≥0,u||d||≥0,l||d||≥0

(
ani

(µ⃗i, ν⃗i) +
bui

(µ⃗i) · cli(ν⃗i)∏
k∈s(µ)i ,l∈s(ν)i

k · l

)

× δ

(∑
i

(ni + ui + li)−
∑
i

(|si|+ |s′i|) = 0

) (C2)

where the Kronecker-delta δ denotes that the sum is only over solutions to the partition problem in

the argument and the sum is over 3||d|| indices, for example for ni we have (n1, n2, ..., n||d||).

ϵ
(0)
d is just the simple product of the correction factors excluding the resonant terms in the factorial.

ϵ
(0)
d = (−1)r+||d||−1

||d||∏
i=1

1

µ⃗i!∗ · ν⃗i!∗
f

(∑
j

(
µ
(j)
i + ν

(j)
i

))
(C3)

and we define the non-singular vector factorial as v⃗i!∗ =
∏

j /∈s(v)i
(v1 + · · ·+ vj).
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Additionally, we define the auxiliary functions,

ani
(µ⃗i, ν⃗i) =

⌊ni
2
⌋∑

k=0

c(ni, k)

ni!
τ 2(ni−k)

(∑
i

µi +
∑
i

νi

)ni−2k

(||µi||1 + ||ν1||1)ni (C4a)

bui
(µ⃗i) =

∑
m

∏
j /∈s(µ)

i

(
−j

µ1
i + · · ·+ µj

i

)mj

δ

∑
j /∈si

mj − ui

 (C4b)

cli(ν⃗i) =
∑
mj

∏
j /∈si

(
−j

ν1i + · · ·+ νji

)mj

δ

∑
j /∈s(ν)i

mj − li

 (C4c)

(C4d)

where c(n, k) are the expansion coefficient, defined recursively through,

c(0, 0) = 1 (C5a)

c(n,−1) ≡ 0 for any n (C5b)

c(n, k) ≡ 0 for n < 2k (C5c)

In that form, the diagram corrections are always finite and well defined, and can be explicitly

calculated without relying on explicit limits, which are difficult to calculate numerically.

Appendix D: The TCG effective model – examples

1. Rabi-model contraction coefficients and the effective master equation

These coefficients are determined by a set of diagrams. In this simple example, we have five

diagrams contributing to the process, as illustrated in Fig. 13. For the first-order contractions we

have a single diagram with only a single mode.

The diagram contributions yield the following coefficients,

C1,0(ω) = e−
ω2τ2

2 . (D1)

Similarly, for the second-order contractions we have

C2,0(ω, ω
′) = −C1,1(ω, ω

′) =
e−

(ω+ω′)2τ2
2

ω′ − e−
ω2+ω′2

2
τ2

ω′ . (D2)
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Figure 13. The different diagrams contributing to the TCG superoperators. The top diagram shows the

first-order (single-mode) contributions, whereas the bottom diagrams show the second-order (two-mode)

contributions.

Adding up contributions from all the diagrams, we end up with the second-order effective Hamiltonian

Ĥ
(2)
TCG =Ĥ(2)

r + Ĥ(2)
cr (D3)

where the “co-rotating” terms Ĥ(2)
r are not exponentially suppressed in the ωa ∼ ωc ≫ 1

τ
limit:

Ĥ(2)
r =

g

2
e−

(ωa−ωc)
2τ2

2

(
e−i(ωa−ωc)tâσ̂+ + e+i(ωa−ωc)tâ†σ̂−

)
+
g2

8

(1− e−(ωa−ωc)2τ2

ωa − ωc

+
1

ωa + ωc

)
σ̂z

+
g2

4

(1− e−(ωa−ωc)2τ2

ωa − ωc

+
1

ωa + ωc

)
â†âσ̂z

(D4)

while the “counter-rotating” terms Ĥ(2)
cr will be exponentially suppressed in the same limit:

Ĥ(2)
cr =

g

2
e−

(ωa+ωc)
2τ2

2

(
ei(ωa+ωc)tâ†σ̂+ + e−i(ωa+ωc)tâσ̂−

)
+
g2

4

(
e−2ω2

cτ
2 − e−(ω2

a+ω2
c )τ

2
) ωa

ω2
a − ω2

c

[
e−2iωctâ2σ̂z + e2iωctâ†2σ̂z

]
.

(D5)

In addition to the effective Hamiltonian, TCG also gives rise to effective pseudo-dissipators. In

particular, at the second order, we can write D̂(k) as

D̂(k) = D̂(k)
r + D̂(k)

cr (D6)

where the rotating and counter-rotating pseudo-dissipators can be written as

D̂(k)
r =

g2

2
· e

−(ωa−ωc)2τ2 − e−2(ωa−ωc)2τ2

ωa − ωc

e−2i(ωa−ωc)tD
[
â†σ̂−, â

†σ̂−
]
+ h.c. (D7)
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and

D̂(k)
cr =

g2

2

(
e−2ω2

cτ
2 − e−(ω2

a+ω2
c )τ

2
) ωc

ω2
a − ω2

c

e−2iωct
(
D
[
âσ̂+, âσ̂−

]
+D

[
âσ̂−, âσ̂+

])
+
g2

2

(
e−2ω2

aτ
2 − e−(ω2

c+ω2
a)τ

2
) ωa

ω2
c − ω2

a

e−2iωat
(
D
[
âσ̂−, â

†σ̂−
]
+D

[
â†σ̂−, âσ̂−

])
+
g2

2

(
e−(ωa+ωc)2τ2 − e−2(ωa+ωc)2τ2

) 1

ωa + ωc

e−2i(ωa+ωc)tD
[
âσ̂−, âσ̂−

]
+ h.c.

(D8)

respectively.

2. The driven Kerr-parametron

Assuming the numerical values of the parameters presented in Eq.(31), we present all TCG su-

peroperators with coefficients greater than 0.08MHz for a coarse-graining time scale of τ = 0.125ns.

The resulting TCG effective Hamiltonian and dissipators can be written as

ĤTCG(t) =g11â
†â+ g22â

†2â2 + g33â
†3â3 +

(
g20â

†2 + g31â
†3â+ h.c.

)
(D9)

and

D̂TCG(t) =Γ2,0;0,2D[â†2, â2] + Γ0,2;2,0D[â2, â†2] +
(
Γ2,0;2,0D[â†2, â†2] + Γ2,0;2,2D[â†2, â†2â2]

+ Γ0,2;2,2D[â2, â†2â2] + Γ1,1;2,0D[â†â, â†2] + Γ1,1;0,2D[â†â, â2] + h.c.
) (D10)

respectively, with

g11 =∆(t)−
2
(
β(t)2 + β(τ)2

)
ωp

− 4χ2

ωp

+∆0β(τ)
2
(
20τ 2 +

11

2ω2
p

)
−∆(t)β(τ)2

(
26τ 2 +

13

ω2
p

)
−
(τ 2∆0

T

)2
∆(t) +

3

2

β0∆0

T 2ω4
p

β(t)

+ 2
(β(t)
ωp

)2
∆(t)− 51

2

( β0
Tω2

p

)2
χ−

(
6
(β(t)
ωp

)2 − 4
(β(τ)
ωp

)2)
χ+ 8

( χ
ωp

)2
∆(t)− 151χ3

6ω2
p

(D11)

g22 =−
χ

2
− 17

4

χ2

ωp

+∆0β(τ)
2
(
16τ 2 +

26

ω2
p

)
−∆(t)β(τ)2

(
24τ 2 +

52

ω2
p

)
−
(τ 2∆0

T

)2(
3∆(t)− 2χ

)
+ 7β(τ)2τ 2χ− 9

( β0
Tω2

p

)2
χ−

(
4
(β(t)
ωp

)2 − 137

4

(β(τ)
ωp

)2)
χ+

17

2

( χ
ωp

)2
∆(t)− 199

4

χ3

ω2
p

(D12)
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g33 =−
17

18

χ2

ωp

+∆0β(τ)
2
(
4τ 2 +

17

2ω2
p

)
−∆(t)β(τ)2

(
6τ 2 +

17

ω2
p

)
−
(τ 2∆0

T

)2(
∆(t)− 5

2
χ
)

+ β(τ)2
(
6τ 2 +

191

6ω2
p

)
χ+

5

2

( β0
Tω2

p

)2
χ+

17

9

( χ
ωp

)2
∆(t)− 233χ3

9ω2
p

(D13)

g20 =β(t) +
5χ

2ωp

β(t)− 17

4

χ2

ωp

+ i
(
β(τ)τ

(
∆0 −

χ

2

)
− 9β0χ

8Tω2
p

)
+
(
16∆0 − 17β(t)

)
β(τ)2τ 2 − 24∆(t)β(τ)2τ 2 −

(
7β(t)− 4β0

)(τ 2∆0

T

)2
− 3∆(t)

(τ 2∆0

T

)2
+

15

2
β(τ 2)τ 2χ− 2

(3β0 −∆0)∆0χτ
4

T 2
+
( 11β0
2Tω2

p

)2
β(t)− 53

6

( β0
Tω2

p

)2
χ− 3β0∆0χ

16
(
Tω2

p

)2
− 7β(t)3

ω2
p

−
( β0τ
Tωp

)2(
74β(t) + 52∆(t)− 26∆0

)
+

197

12

( χ
ωp

)2
β(t) +

17

2

( χ
ωp

)2
∆(t)− 199χ3

4ω2
p

+
559
16
β(τ)2 − 83

48
β(τ) τ

T
∆0 − 4β(t)2 − 11

4
β(t)∆(t)

ω2
p

χ

+ i
[(

2β(t)2τ 2 +
7
(
β(t)2 + β(τ)2

)
2ω2

p

) β0
Tωp

−
χ
(
β0

6
− 15

8
∆0

)
Tω3

p

β(t) +
β0χ

Tω3
p

(∆0

4
− 167χ

24

)
+

5β0∆0χτ
2

2Tωp

− 5β0τ
2χ2

Tωp

]
(D14)

g31 =
5χ

3ωp

β(t)− i
[
τβ(τ)χ+

3β0χ

4Tω2
p

]
− 3τ 2

(
4β(τ)2 + 3

(τ∆0

T

)2)
β(t)− 9

( β0
Tω2

p

)2
β(t)− 52

(β(τ)
ωp

)2
β(t) +

β0∆0τ
4

T 2

(
6∆0 − 5χ

)
− 11χ

6ω2
p

∆(t)β(t)− β0∆0χ

8T 2ω2
p

(
27τ 2 +

1

ω2
p

)
+

119

6

( χ
ωp

)2
β(t)

+ i
[5∆0χ

4Tω3
p

β(t)− 9β0
Tω3

p

(
β(t)2 + β(τ)2

)
+
β0∆0χ

6Tω3
p

− 50β0χ
2

3Tω3
p

+
5β0∆0χτ

2

3Tωp

− 49β0τ
2χ2

3Tωp

]
(D15)
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Γ2,0;0,2 = Γ0,2;2,0 =
β0
T

(
2τ 2 +

1

2ω2
p

)
β(t); Γ2,0;2,0 =

2τ 2β0
T

β(t); Γ2,0;2,2 = Γ0,2;2,2 = −
τχ

2
β(τ)

Γ1,1;2,0 = −
45β0
2Tω3

p

(
β(t)2 + β(τ)2

)
− 2τ 2β0

Tωp

(
3β(t)2 + 2β(τ)2

)
− 5

2

(
2β(t)− β0

)τ 2∆0χ

Tωp

− 2∆0χ

Tω3
p

β(t)− 19β0χ
2

3Tω3
p

− 4τχ2

ωp

β(τ) + i
[
3τ 2
((τ∆0

T

)2
− 4β(τ)2

)
β(t)− 4

(τ 2∆0

T

)2
β0

+ 2τβ(τ)
(τ 2∆0

T

)
χ+

183

4

( β0
Tω2

p

)2
β(t)− 17

β(t)3

ω2
p

− 39
(β(τ)
ωp

)2
β(t)− 2β(t)∆(t)

ω2
p

χ

+
13τ 2β0∆0χ

4T 2ω2
p

−
( χ
ωp

)2
β(t)

]
Γ1,1;0,2 = −

33β0
2Tω3

p

(
β(t)2 + β(τ)2

)
− 2τ 2β0

Tωp

(
3β(t)2 + 2β(τ)2

)
− 5

2

(
2β(t)− β0

)τ 2∆0χ

Tωp

− 2∆0χ

Tω3
p

β(t)− 25β0χ
2

6Tω3
p

− 4τχ2

ωp

β(τ) + i
[
3τ 2
((τ∆0

T

)2
− 4β(τ)2

)
β(t)

− 159

4

( β0
Tω2

p

)2
β(t) + 17

β(t)3

ω2
p

+ 63
(β(τ)
ωp

)2
β(t) +

2β(t)∆(t)

ω2
p

χ− τ 2β0∆0χ

T 2ω2
p

+
( χ
ωp

)2
β(t)

]
(D16)

Although we assumed particular numerical values of the parameters for truncating the TCG master

equation, the formulas above can be used as good approximations as long as the coarse-graining time

scale is in the range 1
|β(t)| ,

1
|∆(t)| ,

1
|χ| ≫ τ ≫ 1

ωp
. Here the first inequality ensures the validity of the

TCG perturbative expansion regardless of the frequencies of the terms involved, whereas the second

inequality allows us to ignore the highly oscillatory terms in the TCG master equation.

3. The driven Duffing oscillator

The fourth-order effective TCG Hamiltonian can be written as

Ĥ
(4)
TCG ≡ K

(4)
1 â†â+K

(4)
2 â†2â2 +K

(4)
3 â†3â3 +K

(4)
4 â†4â4 +K

(4)
5 â†5â5 (D17)
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where the approximate expressions for the coefficients K(4)
n are given in subsection VIB, and the

exact analytical formulas for the coefficients can be written as

K
(4)
1

=
g24
ω

(
− 288

5
+

240448

385
|Π|2 + 29232

55
|Π|4

)
+
g24
ω2
δ
(288
25

+
403234112

444675
|Π|2 + 2011248

3025
|Π|4

)
+
g34
ω2

(14328
25

+
1228651264

88935
|Π|2 + 6411937792

148225
|Π|4 + 5904212871552

270438025
|Π|6

)
+
g44
ω3

(
− 39168

5
+

8297258809465088

33612242125
|Π|2 + 215864405353424

102719925
|Π|4

+
4629035610176328876032

1525442189145875
|Π|6 + 16321516698840554304

15121001291825
|Π|8

)
+
g34δ

ω3

(
− 28656

125
+

3609939830272

102719925
|Π|2 + 18278157853696

171199875
|Π|4 + 228204470088870144

4447353321125
|Π|6

)
+
g24δ

2

ω3

(
− 288

125
+

439080132928

513599625
|Π|2 + 107346672

166375
|Π|4

)

(D18)

K
(4)
2 =

g24
ω

(
− 306

5
+

120224

385
|Π|2

)
+
g24
ω2
δ
(306
25

+
201617056

444675
|Π|2

)
+
g34
ω2

(25164
25

+
531220656

29645
|Π|2 + 3205968896

148225
|Π|4

)
+
g44
ω3

(
− 513234

25
+

22048747044860544

33612242125
|Π|2 + 2825906273812

1037575
|Π|4

+
2314517805088164438016

1525442189145875
|Π|6

)
+
g34δ

ω3

(
− 50328

125
+

529778123296

11413325
|Π|2 + 9139078926848

171199875
|Π|4

)
+
g24δ

2

ω3

(
− 306

125
+

219540066464

513599625
|Π|2

)

(D19)

K
(4)
3 =− g24

ω
· 68
5

+
g24
ω2
δ · 68

25
+
g34
ω2

(
480 +

354147104

88935
|Π|2

)
+
g44
ω3

(
− 399092

25
+

286401882242048

806693811
|Π|2 + 5651812547624

9338175
|Π|4

)
+
g34δ

ω3

(
− 192 +

1059556246592

102719925
|Π|2

)
− g24δ

2

ω3

68

125

(D20)

K
(4)
4 =

g34
ω2
· 60 + g44

ω3

(
− 21378

5
+

35800235280256

806693811
|Π|2

)
− g34δ

ω3
· 24 (D21)

K
(4)
5 =− g44

ω3
· 42756

125
(D22)
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The TCG dissipators in DTCG(t) start to appear at the third-order in the perturbative expansion.

Keeping the lowest-order contributions, we have

D̂
(3)
TCG ≡ Γ

(3)
2,1;0,1D[â†2â, â] + Γ

(3)
0,1;2,1D[â, â†2â]

+ Γ
(3)
2,2;1,1D[â†2â2, â†â] + Γ

(3)
2,3;1,0D[â†2â3, â†]

+ Γ
(3)
1,0;2,3D[â†, â†2â3] + Γ

(3)
1,3;2,0D[â†â3, â†2]

+ Γ
(3)
2,0;1,3D[â†2, â†â3] + Γ

(3)
3,3;1,1D[â†3â3, â†â]

+ Γ
(3)
4,2;0,2D[â†4â2, â2] + Γ

(3)
0,2;4,2D[â2, â†4â2]

+ Γ
(3)
4,1;0,3D[â†4â, â3] + Γ

(3)
0,3;4,1D[â3, â†4â]

+ Γ
(3)
3,4;1,0D[â†3â4, â†] + Γ

(3)
1,0;3,4D[â†, â†3â4]

+ Γ
(3)
3,2;1,2D[â†3â2, â†â2] + Γ

(3)
1,2;3,2D[â†â2, â†3â2]

+ Γ
(3)
3,3;2,2D[â†3â3, â†2â2] + Γ

(3)
4,4;1,1D[â†4â4, â†â]

+ Γ
(3)
4,2;1,3D[â†4â2, â†â3] + Γ

(3)
1,3;4,2D[â†â3, â†4â2]

+ Γ
(3)
5,1;0,4D[â†5â, â4] + Γ

(3)
0,4;5,1D[â4, â†5â]

+ Γ
(3)
3,4;2,1D[â†3â4, â†2â] + Γ

(3)
2,1;3,4D[â†2â, â†3â4]

+ Γ
(3)
5,2;0,3D[â†5â2, â3] + Γ

(3)
0,3;5,2D[â3, â†5â2]

+ Γ
(3)
3,5;2,0D[â†3â5, â†2] + Γ

(3)
2,0;3,5D[â†2, â†3â5]

+ Γ
(3)
4,4;2,2D[â†4â4, â†2â2] + Γ

(3)
6,2;0,4D[â†6â2, â4]

+ Γ
(3)
0,4;6,2D[â4, â†6â2] + Γ

(3)
3,5;3,1D[â†3â5, â†3â1]

+ Γ
(3)
3,1;3,5D[â†3â1, â†3â5] + h.c.

(D23)

The analytical expressions for the coefficients Γ
(3)
α,β;γ,ρ are given below.

Γ
(3)
2,1;0,1 =− i

g34
ω2

(421632
121

|Π|2 + 1475712

121
|Π|4 + 131946344448

10817521
|Π|6 + 37726754304

10817521
|Π|8

)
− ig

2
4δ

ω2

(35136
121

|Π|2 + 52704

121
|Π|4 + 1571948096

10817521
|Π|6

) (D24)

Γ
(3)
0,1;2,1 =i

g34
ω2

(843264
121

|Π|2 + 2108160

121
|Π|4 + 150809721600

10817521
|Π|6 + 37726754304

10817521
|Π|8

)
+ i

g24δ

ω2

(35136
121

|Π|2 + 52704

121
|Π|4 + 1571948096

10817521
|Π|6

) (D25)
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Γ
(3)
2,2;1,1 =− ig34

(
1 + |Π|2

)(
5184τ 2 + 17280τ 2|Π|2 + (

48

ω2
+ 13824τ 2)|Π|4

)
− ig24δ

(
936τ 2 + 2592τ 2|Π|2 + (1728τ 2 +

2

ω2
)|Π|4

)
− ig4δ2τ 2(54 + 72|Π|2)− iδ3τ 2

(D26)

Γ
(3)
2,3;1,0 = −i

g34
ω2

(737856
121

|Π|2 + 1264896

121
|Π|4 + 47126011008

10817521
|Π|6

)
− iδ

2
4δ

ω2

17568

121
(|Π|2 + |Π|4) (D27)

Γ
(3)
1,0;2,3 = i

g34
ω2

(527040
121

|Π|2 + 1054080

121
|Π|4 + 47126011008

10817521
|Π|6

)
+ i

g24δ

ω2

17568

121
(|Π|2 + |Π|4) (D28)

Γ
(3)
1,3;2,0 =− i

g34
ω2

(108
5

+
2088

25
|Π|2 + 1284408

3025
|Π|4 + 763344

3025
|Π|6

)
− ig

2
4δ

ω2

(3
5
+

48

25
|Π|2 + 31806

3025
|Π|4

) (D29)

Γ
(3)
2,0;1,3 = i

g34
ω2

(36
5

+
936

25
|Π|2 + 521064

3025
|Π|4 + 763344

3025
|Π|6

)
+ i

g24δ

ω2

(3
5
+

48

25
|Π|2 + 31806

3025
|Π|4

)
(D30)

Γ
(3)
3,3;1,1 =− ig34

(
3456τ 2 + 10368τ 2|Π|2 + (

12

ω2
+ 6912τ 2)|Π|4

)
− ig24δ

(
432τ 2 + 576τ 2|Π|2

)
− i12g4δ2τ 2

(D31)

Γ
(3)
4,2;0,2 = −i

g34
ω2

(198
25

+
648

25
|Π|2 + 225684

3025
|Π|4

)
− ig

2
4δ

ω2

6

25

(
1 + 2|Π|2

)
(D32)

Γ
(3)
0,2;4,2 = i

g34
ω2

(342
25

+
936

25
|Π|2 + 225684

3025
|Π|4

)
+ i

g24δ

ω2

6

25

(
1 + 2|Π|2

)
(D33)

Γ
(3)
4,1;0,3 = −i

g34
ω2

3712

1323

(
|Π|2 + 2|Π|4

)
− ig

2
4δ

ω2

928

3969
|Π|2 (D34)

Γ
(3)
0,3;4,1 = i

g34
ω2

7424

1323

(
2|Π|2 + |Π|4

)
+ i

g24δ

ω2

928

3969
|Π|2 (D35)

Γ
(3)
3,4;1,0 = −i

g34
ω2

105408

121

(
|Π|2 + |Π|4

)
; Γ

(3)
1,0;3,4 = i

g34
ω2

105408

121

(
|Π|2 + |Π|4

)
(D36)

Γ
(3)
3,2;1,2 = −i

g34
ω2

527040

121

(
|Π|2 + |Π|4

)
− ig

2
4δ

ω2

17568

121
|Π|2 (D37)

Γ
(3)
1,2;3,2 = i

g34
ω2

105408

121

(
7|Π|2 + 5|Π|4

)
+ i

g24δ

ω2

17568

121
|Π|2 (D38)

Γ
(3)
3,3;2,2 = −i1728g34τ 2

(
1 + |Π|2

)
− i72g24δτ 2; Γ

(3)
4,4;1,1 = −i432g34τ 2

(
1 + 2|Π|2

)
− i36g24δτ 2 (D39)
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Γ
(3)
4,2;1,3 = −i

g34
ω2

12

25

(
11 + 14|Π|2

)
− i 4

25

g24δ

ω2
; Γ

(3)
1,3;4,2 = i

g34
ω2

12

25

(
19 + 14|Π|2

)
+ i

g24δ

ω2

4

25
(D40)

Γ
(3)
5,1;0,4 = −i

g34
ω2

3

100

(
1 + 2|Π|2

)
− ig

2
4δ

ω2

1

400
; Γ

(3)
0,4;5,1 = i

g34
ω2

3

100

(
5 + 2|Π|2

)
+ i

g24δ

ω2

1

400
(D41)

Γ
(3)
3,4;2,1 = −Γ

(3)
2,1;3,4 = −i

g34
ω2

105408

121
|Π|2; Γ

(3)
5,2;0,3 = −Γ

(3)
0,3;5,2 = −i

g34
ω2

1856

1323
|Π|2 (D42)

Γ
(3)
3,5;2,0 = −Γ

(3)
2,0;3,5 = −i

g34
ω2

36

25

(
1 + 2|Π|2

)
; Γ

(3)
4,4;2,2 = −i216g34τ 2 (D43)

Γ
(3)
6,2;0,4 = −Γ

(3)
0,4;6,2 = −i

g34
ω2

3

200
; Γ

(3)
3,5;3,1 = −Γ

(3)
3,1;3,5 = −i

g34
ω2

24

25
(D44)

In particular, we notice that the coefficients of the pseudo-dissipators with excitation-conserving

operators on both sides of the density matrix (e.g. Γ
(3)
2,2;1,1, Γ

(3)
3,3;1,1, Γ

(3)
3,3;2,2, Γ

(3)
4,4;1,1, and Γ

(3)
4,4;2,2)

are explicitly dependent on the coarse-graining time scale τ , whereas all the other coefficients are

independent of τ . And for the same reason explained in the last paragraph of VIA, we expect the

analytical expression of the TCG master equation above to be accurate as long as one works in the

regime where 1
g4
≫ τ ≫ 1

ω
.
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