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Model order reduction encompasses mathematical techniques aimed at reducing the complexity of mathemat-
ical models in simulations while retaining the essential characteristics and behaviors of the original model. This
is particularly useful in the context of large-scale dynamical systems, which can be computationally expensive
to analyze and simulate. Here, we present a model order reduction technique to reduce the time complexity
of open quantum systems, grounded in the principle of measurement-adapted coarse-graining. This method,
governed by a coarse-graining time scale τ and the spectral band center ω0, organizes corrections to the lowest-
order model which aligns with the RWA Hamiltonian in certain limits, and rigorously justifies the resulting
effective quantum master equation (EQME). The focus on calculating to a high degree of accuracy only what
can be resolved by the measurement introduces a principled regularization procedure to address singularities
and generates low-stiffness models suitable for efficient long-time integration. Furthermore, the availability of
the analytical form of the EQME parameters significantly boosts the interpretive capabilities of the method.
As a demonstration, we derive the fourth-order EQME for a challenging problem related to the dynamics of a
superconducting qubit under high-power dispersive readout in the presence of a continuum of dissipative waveg-
uide modes. This derivation shows that the lowest-order terms align with previous results, while higher-order
corrections suggest new phenomena.

I. INTRODUCTION

When driven by oscillatory sources, non-linear quantum
systems can exhibit dynamics at multiple time-scales. In an
effort to ease the requirements on hardware, recent experi-
mental efforts at building a quantum computer exploit this
fact [1–4] to engineer desired interactions between qubits by
driving the associated parametric interactions through external
oscillatory sources. The fidelity of quantum operations is of-
ten limited by the purity of these interactions, hence a general
and systematic approach to deriving effective quantum mod-
els that describe the unitary and non-unitary processes alike
is needed and has been the subject of recent studies [5–9].
In thinking about a systematic approach, one has several ex-
isting theoretical approaches at hand to choose from which
in one way or another attempt to generalize and systematize
corrections to the well-known rotating wave approximation
(RWA) through the choice of an appropriately chosen set of
unitary transformations, which we discuss in some detail be-
low. However none of those approaches, to the extent ana-
lyzed by the authors, have sufficient generality and flexibility
to organize the resulting series of effective corrections in a
way that it simultaneously (i) delivers in equal measure all
unitary and non-unitary corrections so that the truncation of
the series is physically grounded, (ii) is by construction not
subject to any divergences in the parameters of the series, and
(iii) can be of direct practical utility in designing and analyz-
ing experimental data obtained through a measurement appa-
ratus with a finite bandwidth.

Here we take the point of view that a physically grounded
approach to the derivation of effective models should be in-
formed by the measurement process, and explore its full im-
plications to the dynamics of open quantum systems by treat-
ing the coherent and the driven-dissipative dynamics on the
same footing. First, we acknowledge that the quantum sys-
tems one prepares and measures in experiments can never be

fully isolated, which necessitates any measurement-adapted
modeling of the system to account for its openness and the re-
sulting dissipative dynamics. However, the coupling between
the quantum system and the measurement channel cannot be
arbitrarily strong either, which implies that there can never
be ideal projective measurements taking place at any instant
of time. In fact, the time duration of the measurement pro-
cess can be comparable or even longer than some of the in-
ternal system dynamics, as is usually the case in circuit QED
[10]. Consequently, there will be fast dynamics that are sub-
ject to substantial coarse-graining in the time domain during
the measurements in general, which leads to loss of informa-
tion and coherence in the quantum system.

Therefore, a physically grounded approach to deriving ef-
fective models must account for this inevitable information
loss due to coarse-graining, and consider a non-unitary time
evolution informed by the measurement process in order to
accurately account for the information extractable from the
system. In fact, the resulting dissipation and decoherence in
such measurement-adapted effective models will in general
depend on one’s choice of the measurement channel, as illus-
trated by the schematic in Fig.1.

Motivated by these observations, we introduce and analyze
the measurement-adapted time-coarse graining (MaTCG) ap-
proach which is a general scheme for deriving the effective
dynamics of an open quantum system that can be measured
through a finite-bandwidth measurement chain defined by a
certain band center ω0 and bandwidth 1/τ , with τ repre-
senting the coarse-grained information transfer through the
measurement chain characterized by an overall response time
scale τ . The expansion of the resulting effective Liouvillian
L governing the coarse-grained dynamics is then organized
through these two time(energy) scales, with the band center
ω0 defining an appropriate interaction picture (i.e., rotating
frame), and the response time τ functioning as an additional
free parameter characterizing the fundamental time resolution
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of the observable dynamics in that interaction picture. The
τ → 0 limit corresponds to the microscopic dynamics de-
fined by the von-Neumann equation, whereas finite values of
τ correspond to the dynamics of the density matrix coarse-
grained at the time scale τ . This paper is devoted to explor-

ing the implications of the general principle of measurement-
adapted coarse-graining based on a minimal physical descrip-
tion of the measurement process, although the method can
be straightforwardly generalized to more sophisticated mea-
surement protocols by formulating the measurement chain in
terms of carefully modeled filter functions.

Figure 1: A schematic showing measurement-adapted model reduction giving rise to different effective models depending on the measurement channel. During
the readout of a quantum system represented by the coherently interacting modes in (a), one can send in drive pulses near frequency ω′

A of the hybridized mode
Â′ or ω′

D of mode D̂′, where the prime symbols indicate mode hybridization due to the couplings. Since readout pulses are sent in through channels which
also function as sources of dissipation (here considered as bosonic modes in two waveguides), the spectral density and the drive amplitude are plotted together
as functions of the mode frequency ω for each waveguide. Depending on choices of the readout channel and time resolution τ , different effective models with
reduced complexity can be obtained, as represented by (b) and (c). Considering the situation where differences between ω′

A, ω′
B , and ω′

D ∼ ω′
C are large in

comparison with τ−1, one finds that the relevant degrees of freedom as well as their effective couplings and dissipation can be very different in the two different
effective models. In particular, unresolvable (virtual) transitions are replaced by dispersive couplings, with the drive inducing dissipative transitions in some of
the modes whose rates are modulated by the state of other parts of the system. Remarkably, these modulated dissipative transitions are different from direct or
Purcell dissipation into the waveguide modes (which are denoted by the highlighted bands on the functions J1,2(ω) in the schematic above) since they do not
directly probe the corresponding spectral density; instead, they account for non-Markovian dissipative effects which, in the case of panel (b) for example, can
manifest as dissipators of the form ϵd⟨f(Â′)⟩Dg(B̂′,Ĉ′,D̂′) for some functions f and g, where the corresponding rates are dependent on not only the drive

amplitude ϵd but also the time-dependent expectation value ⟨f(Â′)⟩ which depends on the entire dynamical history.

From this perspective, the method’s emphasis on measur-
able quantities inevitably requires a precise specification of
the measurement process. While abstracting the measurement
channel by the corresponding filter function is sufficient for
exploring the general principle, assessing its practical utility
demands a specific physical system and an extensively stud-
ied measurement setup. The superconducting qubit readout
problem [10–12] meets these criteria well. The readout prob-
lem has well-established theoretical foundations [6–8, 13–
16], is of great practical importance for quantum comput-
ing [10, 17, 18], and has recently garnered increased interest in

characterizing the readout dynamics under high-power read-
out pulses in an effort to increase the speed and accuracy of
readout [19–21]. We therefore consider the readout problem
for the purpose of benchmarking the MaTCG method devel-
oped in this work. More specifically, we analyze the readout
dynamics under a wide range of conditions, compare to exist-
ing results in the literature, and find analytical expressions for
higher order processes that have not been captured before.

MaTCG draws on the solution of a set of technical prob-
lems one encounters in describing the observable dynamics
filtered through a measurement apparatus with a finite re-
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sponse time. Ideally, when the system is observed through
a certain channel with finite time resolution τ , the effective
model should consist only of degrees of freedom that ap-
pear to be evolving slowly through that channel in comparison
with the observation time scale τ , while the secular effects of
high-frequency (virtual) transitions are absorbed into the co-
efficients of a limited set of bandpass-filtered superoperators.
This conceptual procedure is reminiscent of Wilsonian renor-
malization [22–24], although the flow equation method [25–
27] would be a more appropriate analogy to MaTCG since
both involve the bandpass filtering of direct transitions with-
out truncating the Hilbert space at any step. The Rotat-
ing Wave Approximation (RWA) along with its generaliza-
tions [28, 29], as a venerable first line of attack in quantum
optics, misses the impact of the high-frequency processes on
the filtered, slow dynamics, whereas more sophisticated meth-
ods such as the Schrieffer-Wolff transformation and adiabatic
elimination can be very laborious due to the lack of closed-
form expressions at each order, and may encounter singulari-
ties in the presence of a resonant drive [6, 7].

In order to tackle these difficulties, we adopt the time-
coarse graining (TCG) approach which automatically filters
out the fast dynamics in the observation channel with the time
resolution of our choice. The TCG method has been intro-
duced in the literature as an improved version of the RWA
for multi-level atomic systems [30, 31]. However, without
measurement-informed prescription for the choice of the in-
teraction picture or the coarse-graining time scale, it is dif-
ficult to relate such approximation schemes to effective the-
ories in experimentally relevant models. Furthermore, with-
out closed-form expressions for the effective superoperators
at each order, the difficulty of solving the noncommutative re-
currence equation prohibits efficient calculation beyond the
second order, and hence greatly limits the applicability of
the method to open multi-oscillator systems subject to strong
drive.

In this paper, we overcome these technical problems by
systematically deriving the measurement-adapted time-coarse
graining (MaTCG) method with an explicit formula for the
TCG superoperators at arbitrary orders. In addition, we also
develop a diagrammatic representation for each term in those
superoperators, which is not only a convenient tool for visu-
alizing the various corrections from MaTCG, but also a help-
ful conceptual technique for predicting the types of possible
effective superoperators that can arise from a particular mi-
croscopic Hamiltonian. In the same way that Feynman dia-
grams can be considered as decomposition of the Dyson series
into distinct (virtual) processes, each TCG diagram also repre-
sents a particular combination of (virtual) processes contribut-
ing to a superoperator in the effective quantum master equa-
tion (EQME). The resulting EQME has two added benefits:
(i) it provides an interpretable series expansion for physical
processes, ordered by their relevance to experimental prepara-
tion and measurement, and (ii) it is much less stiff in numer-
ical simulations compared to the original microscopic von-
Neumann equation, and can be integrated with considerably
less computational resource. One important technical prob-
lem that we address here is that the coarse-graining proce-

dure is applied starting with the original many-body system-
bath Hamiltonian to derive an EQME that is informed by non-
linear mixing processes that down- or up-convert excitations
from the electromagnetic environment of the oscillator sys-
tem. This stands in contrast to earlier studies that have ana-
lyzed coarse-graining directly on a Lindbladian [31].

The sections of this paper are organized as follows: Section
II introduces the TCG perturbation theory where we present
a closed-form formula for the TCG master equation at each
order assuming that the interaction-picture Hamiltonian ad-
mits a Fourier expansion in the frequency domain; we also
propose a diagrammatic representation for each superopera-
tor coefficient in the master equation. Section III discusses
the time-coarse grained dynamics of open quantum systems in
the system+bath formalism, and shows how a reduced Marko-
vian master equation for the system can be derived from the
EQME of the system+bath density matrix. We show how
TCG provides natural justification for the Markov and sec-
ular approximations in the derivation of the Lindblad master
equation (LME), and extend the LME to account for finite
time resolutions. Section IV investigates a toy model of the
dispersive readout of a spin with a linear cavity mode, and
discusses in detail the effective corrections and emergent dy-
namics obtained at each order in the corresponding EQME.
In particular we find measurement-induced spin energy jumps
which have not been captured by any effective Hamiltonian
methods in the literature. Section V applies the MaTCG to an
experimentally-relevant model of the transmon readout prob-
lem, where we demonstrate the emergence of drive-induced
dissipation of the artificial atom, along with other renormal-
ization effects from MaTCG. Finally, we summarize our re-
sults in Section VI and propose some directions for future
studies. Details of the mathematical derivations and some
lengthy formulas can be found in the Appendices.

II. DYNAMICS OF THE TIME-
COARSE GRAINED DENSITY MATRIX

We first briefly review the notion of the time-coarse grained
density matrix ρ(t) of a closed quantum system. It is helpful
for the purposes of this section to think of the density matrix as
a book-keeping device for the statistical information available
about a system that in the limit of infinite time-resolution is
described by ρ(t). The time-evolution of ρ(t) is described by
the von Neumann equation

∂tρ(t) = −i
[
HI(t), ρ(t)

]
. (1)

where we like to think that there exists a Hamiltonian genera-
tor HI(t) that describes the perfectly resolved system dynam-
ics in an interaction picture that we shall specify later. By con-
sidering time-coarse graining, we recognize the impossibility
of the infinite time resolution of the dynamics of observables
through a measurement. The finite time-resolution dynam-
ics we actually observe can be described by the time-coarse
grained density matrix ρ(t) in a certain interaction picture de-
termined by the kind of measurement we perform. In order to
describe the slow dynamics observed by realistic instruments,



4

we need an effective dynamical equation for the time-coarse
grained density matrix ρ(t) defined as

ρ(t) :=

∫ ∞

−∞
dt′ · f(t′; τ)ρ(t− t′) (2)

where f(t′; τ) is some window function centered around t′ =
0 with the parameter τ indicating its width and providing a
coarse-graining time scale. To ensure unit trace for ρ(t), we
require that

∫∞
−∞ dt′ · f(t′; τ) = 1. We would also use

O(t) :=

∫ ∞

−∞
dt′ · f(t′; τ)O(t− t′)

to denote the time average of any operator with respect to the
window function f(t; τ).

Since the von Neumann equation and the coarse-graining
operation ρ(t) 7→ ρ(t) are both linear in ρ(t), there also exists
a linear dynamical equation for ρ(t) of the form

∂tρ(t) = L(t)ρ(t) (3)

which is local in time, with L being the TCG superoperator
that describes the time-coarse grained evolution of ρ(t). We
will refer to Eq.(3) as the TCG master equation. Although it
is difficult to obtain the exact TCG master equation explicitly
in general, one may find a perturbative expansion of Eq.(3) if
the interaction Hamiltonian HI(t) can be considered as con-
trolled by some small parameters. In most cases, the small pa-
rameters are either the ratios between the coupling strengths
and the corresponding transition frequencies or the products
of the coupling strengths and the coarse-graining time scale.

To perform the perturbative expansion, we expand the Liou-
villian superoperator L(t) in powers of the Hamiltonian HI :

L(t) =
∞∑
k=1

Lk(t). (4)

In the existing literature, closed-form formula for Lk has been
recursively derived for k = 1, 2, 3, with explicit calculations
done only up to the second order (k = 2) due to the complex-
ity of the third-order formula [30, 31]. In this work, we report
a closed-form formula for Lk at arbitrary order, and associate
each term in the general formula with a diagrammatic repre-
sentation. In fact, if the interaction-picture Hamiltonian can
be written as HI(t) =

∑
j e

iωjthj , then one has the following
general form for Lk:

Lk(t)ρ = −i

k∑
k1=1

∑
n1···nk

Ck1,k−k1

(
ωn1 , ωn2 · · · , ωnk

)
ei(ωn1

+···+ωnk
)thn1 · · ·hnk1

ρhnk1+1
· · ·hnk

− h.c. (5)

where the numerical coefficient in Eq.(5) is given by the func-
tion Ck1,k−k1

(
ωn1 , ωn2 · · · , ωnk

)
of k frequencies, which re-

ceives contribution from all possible loop diagrams contain-
ing k1 left frequencies and k − k1 right frequencies, as in-
troduced with more details in Appendix(B). To write down an
explicit formula for the function Cl,r, we define f̃(ω) to be the
Fourier transform of the time-coarse graining window func-
tion: f̃(ω) :=

∫∞
−∞ dtf(t)e−iωt (typically, f̃(ω) is a low-pass

filter, and f̃(ω) = e−
ω2τ2

2 for a gaussian window of half width

τ ), and define the factorial of a vector µ = (ω1, ω2, · · · , ωn)
to be

µ! := (ω1 + ω2 + · · ·+ ωn)(ω1 + ω2 + · · ·+ ωn−1) · · ·ω1.

Then, as derived in the Appendix(B), the following formula
can be obtained for Cl,r where ∥d∥ is the number of loops in
the diagram while µi and νi are the ordered left, and right
frequencies in i-th loop respectively:

Cl,r

(
ω1, ω2, · · · , ωl+r

)
=

∑
d∈diagrams

(−1)l+∥d∥ f̃
(
ω1 +

∑
µ1 +

∑
ν1

)
f̃
(∑

µ2 +
∑

ν2

)
· · · f̃

(∑
µ∥d∥ +

∑
ν∥d∥

)
µ1!ν1!µ2!ν2! · · ·µ∥d∥!ν∥d∥!

(6)

As shown in Fig.2, a generic diagram d is an ordered
set of ∥d∥ loops each of which consists of inserted oper-
ator frequencies that are arranged in a closed contour as
one goes from the left-most operator (with frequency ω1)
to the right-most one (with frequency ωl+r). In addition,
we also require that the first loop (the one consisting of
(µ1,ν1)) must contain the left-most frequency ω1. In other
words, all the diagrams containing l left frequencies and r
right frequencies can be generated by partitioning the 2-tuple
(l, r) into an ordered set of 2-tuples of non-negative integers{
(l1, r1), (l2, r2), · · · , (l∥d∥, r∥d∥)

}
so that

l1 + l2 + · · ·+ l∥d∥ = l and r1 + r2 + · · ·+ r∥d∥ = r

with l1 ≥ 1.

Notice that it is possible for individual diagrams to diverge
if certain frequencies sum up to zero in the denominator of
the formula above. However, one can regularize the diverging
diagrams by shifting all the frequencies by a small amount
δω, summing up contributions from all the diagrams, and
then take the δω → 0 limit. Crucially, the singular contri-
butions cancel out completely in all circumstances regardless
of one’s assumption about the coarse-graining window func-
tion f(t; τ), leaving only the finite part which can also be
calculated directly according to Eq.(B29) in the Appendix.
Therefore, effective master equations can be obtain straight-
forwardly without having to apply ad hoc regularizing tech-
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niques as is the case for many effective Hamiltonian methods
in some circumstances (e.g. the Schrieffer-Wolff transforma-
tion used in [7] is regularized based on a priori knowledge of
the system state). We attribute the regularity of the MaTCG
method to the fact that we are not trying to force the disappear-

ance of certain predetermined types of terms in the effective
Hamiltonian; rather, the effective dynamical equation is ob-
tained from a physical procedure of coarse graining informed
by the measurement channel.

ρ

ωl

ωl−1 ωl−l∥d∥+2

ωl−l∥d∥+1

ωl+1

ωl+2 ωl+r1−1

ωl+r1

µ∥d∥

ν∥d∥

. . .

ωl1+l2

ωl1+l2−1 ωl1+2

ωl1+1

ωl+r−r1−r2+1

ωl+r−r1−r2+2 ωl+r−r1−1

ωl+r−r1

µ2

ν2

ωl1

ωl1−1

ω2

ω1

ωl+r−r1+1

ωl+r−r1+2 ωl+r−1

ωl+r

µ1

ν1

left

right

(−1)l+∥d∥ f̃
(
ω1+

∑
µ1+

∑
ν1

)
f̃
(∑

µ2+
∑

ν2

)
···f̃

(∑
µ∥d∥+

∑
ν∥d∥

)
µ1!ν1!µ2!ν2!···µ∥d∥!ν∥d∥!

h1h2hl hl−1

hl+1 hl+2 hl+rhl+r−1

· · ·

· · ·

Figure 2: The structure of a generic diagram that contributes to the coefficient Cl,r

(
ω1, ω2, · · · , ωl+r

)
as in Eq.(6). The green contour encircling the diagram

indicates the order of the corresponding operators from left to right as they appear in the superoperator h1h2 · · ·hl[•]hl+1hl+2 · · ·hl+r . The arrows inside
each loop of the diagram indicate the order in which the frequencies are arranged in the corresponding vectors µi and νi used in the closed-form formula of the
diagram’s contribution.

In addition, we can organize the terms in Lk(t) at each or-
der into the sum of a Hamiltonian term and a dissipator term
(the dissipator term here may or may not dissipate energy over
time):

Lk(t)ρ = −i
[
H

(k)
eff (t), ρ

]
+D

(k)
eff (t)ρ (7)

where H
(k)
eff (t) and D

(k)
eff (t) are defined in Eq.(B21) and

Eq.(B22) respectively as proven in the Appendix(B). In fact,
these closed-form formulas allow for fully automated sym-
bolic as well as numerical calculations on computers, which
we address in an accompanying paper [32].

Finally, note that the starting point of the TCG perturba-
tion theory is a closed quantum system evolved by the von-
Neumann equation. All quantum electrodynamical systems
are systems with infinite degrees of freedom, in practice de-
scribed by a system+bath Hamiltonian. We show in the next
section that time-coarse graining justifies many of the stan-
dard approximations that is adopted in Quantum Optics. With
a suitable choice of the coarse-graining time scale, the bath
can be safely traced out from ρ(t) which we take to be the
TCG density matrix observed over a time scale much longer
than the bath relaxation time. Therefore, the Markov approx-
imation, for instance, is automatically justified by the separa-
tion of time scales in many practical cases.

In the following section, we discuss in detail the disper-
sive readout of a spin-like degree of freedom, both as an il-
lustration of the TCG method, and as a toy model towards
an in-depth analysis of the readout problem of superconduct-
ing qubits. In order to obtain more explicit results, starting
from here, we assume a gaussian window function f(t; τ) =

1√
2πτ

e−
t2

2τ2 of half width τ , which gives rise to the following

low-pass filter function f̃(ω) = e−
ω2τ2

2 .

III. TCG-BASED ANALYSIS
OF OPEN QUANTUM SYSTEMS

In this section, we demonstrate how open quantum systems
can be analysed using the TCG framework in the system+bath
framework. Our derivation proceeds in two stages. First we
obtain the coarse-grained full system+bath Hamiltonian. At
the second stage, we derive a Quantum Master Equation that
is of the Lindblad form, the derivation building on mathemati-
cal justification of the approximations allowing the integration
out of the bath for the coarse-grained system+bath Hamilto-
nian. This derivation should be distinguished from derivations
that take as starting point a phenomenological Lindblad QME
and than coarse-graining it [7, 8]. In this way, we justify
the Markov approximation through a comparison between the
coarse-graining time scale τ and the correlation time τB of the
bath two-point function, which allows one to assess its valid-
ity through experimentally controllable parameters. Not sur-
prisingly, the resulting effective quantum master equation for
the system is in general dependent on the coarse-graining time
scale τ , which is a general feature that has been suggested by
other analyses in the literature [33–35], and may only be ig-
nored when τ is limited to certain ranges in comparison with
the various time scales of the system.

We model the bath by a continuum of bosonic modes fea-
turing a linear spectrum described by the Schrödinger-picture
Hamiltonian

ĤB =

∫ ∞

0

dω

2π
· DωωB

†
ωBω (8)
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with a prescribed density of states Dω . We further assume that
the interaction-picture Hamiltonian takes the form

HI(t) = Hs(t) +HsB(t)

≡Hs(t) +

∫ ∞

0

dω

2π
Dωgω

(∑
k

e−i(ω−ωk)SkBω + h.c.
)
(9)

where the coupling strength gω is much smaller than the other
energy scales in the model as well as the TCG energy scale
τ−1, which allows us to consider it as a small parameter for
perturbative expansion. Following the recipe in the previ-
ous section, we can perturbatively calculate the TCG Liou-
villian superoperator L, and for the purpose of this section,
we rewrite L as a power series in the system-bath coupling
strengths gω:

L = L(0) + L(1) + L(2) + · · · (10)

where L(k) is of order O
(
gkω
)
. In particular, L(0) acts as iden-

tity on the space of bath operators, whereas L(1) is linear in
Bω and B†

ω . Denoting the total density matrix of system+bath
by ρtot(t), we can trace out the bath modes from the TCG mas-
ter equation to obtain the following equation for the reduced
density matrix of the system:

∂tρ(t) = TrB
[
L(t)ρtot(t)

]
=TrB

[
L(t)

(
ρ(t)⊗ ρB(0)

)]
+ TrB

[
L(t)χcorr(t)

] (11)

where ρ(t) ≡ TrB
[
ρtot(t)

]
is the TCG system density matrix,

and the TCG system-bath correlation is defined as

χcorr(t) := ρtot(t)− ρ(t)⊗ ρB(0). (12)

Here ρB(0) represents a thermal state of the bath, and we as-
sume that χcorr(0) = 0. Now we define the projection opera-
tors P and Q as

Pρtot(t) := TrB
[
ρtot(t)

]
⊗ ρB(0) ≡ ρ(t)⊗ ρB(0)

Q := 1− P
(13)

which allows us to write χcorr(t) = Qρtot(t) and therefore

∂tχcorr(t) ≡∂tQρtot(t)

=QL(t)Qρtot(t) +QL(t)Pρtot(t).
(14)

In addition, it is straightforward to verify from the definitions
in Eq.(13) that

TrB
[
L(0)(t)Qρ

]
= 0, TrB

[
L(1)(t)Qρ

]
= TrB

[
L(1)(t)ρ

]
(15)

for any operator ρ. Formally integrating Eq.(14), we obtain

χcorr(t)

=

∫ t

0

dt1T e
∫ t
t1

dt2QL(t2)Q
[
L(t1)

[
ρ(t1)⊗ ρB(0)

]]
=

∫ t

0

dt1Q
[
L(1)(t1)

[
ρ(t1)⊗ ρB(0)

]]
+O

(
g2
) (16)

and therefore

∂tρ(t) = TrB
[
L(t)

[
ρ(t)⊗ ρB(0)

]]
+ TrB

[
L(t)χcorr(t)

]
=TrB

[
L(0)(t)

[
ρ(t)⊗ ρB(0)

]
+ L(2)(t)

[
ρ(t)⊗ ρB(0)

]]
+ TrB

[
L(1)(t)

∫ t

0

dt1L(1)(t1)
[
ρ(t1)⊗ ρB(0)

]]
+O

(
g3
)

=L(0)(t)ρ(t) + TrB
[
L(2)(t)

[
ρ(t)⊗ ρB(0)

]]
+

∫ t

0

dt1G(2)(t, t− t1)ρ(t− t1) +O
(
g3
)

(17)

where G(2)(t, t− t1) := TrB
[
L(1)(t)L(1)(t− t1)ρB(0)

]
, and

we have used Eq.(16) as well as the properties in Eq.(15).
Since L(1) is linear in Bω and B†

ω , it follows that G(2)(t, t−t1)
is proportional to the (time-coarse grained) two-point bath
correlation functions which decay over the bath correlation
time scale τB . Under most realistic conditions, τB is much
smaller than the coarse-graining time scale τ with which the
system is observed1, and consequently, the Markov approxi-
mation and the secular approximation are simultaneously jus-
tified with sufficiently low time resolution, which allows us to
approximate Eq.(17) with a Markovian master equation:

∂tρ(t) ≈L(0)(t)ρ(t) + TrB
[
L(2)(t)

[
ρ(t)⊗ ρB(0)

]]
+

∫ ∞

0

dt1G(2)(t, t− t1)ρ(t)
(18)

where the first term represents the direct action of L(t) on
ρ(t), the second term includes the effects of one virtual change
with the bath, and the third term gives us the leading-order
contribution from the accumulated system-bath correlation.
Furthermore, assuming the type of system-bath couplings in
Eq.(9), we can in general rewrite Eq.(18) in the following
form:

∂tρ(t) ≈L(0)(t)ρ(t) + TrB
[
L(2)(t)

[
ρ(t)⊗ ρB(0)

]]
− i
[
H(2)

corr(t), ρ(t)
]
+D(2)

corr(t)ρ(t)
(19)

where the analytical expressions for H(2)
corr(t) and Dcorr(t) are

given in the Appendix(C).

1 With the form of system-bath couplings in Eq.(9), the effective system-bath
coupling coefficients produced by TCG are in general band-pass-filtered
around certain system operator frequencies, which apparently reduces the
width of the spectral density function and thereby increases the bath corre-
lation time τB . At first sight, this seems to suggest that the large-τ limit
does not necessarily justify the Markov and secular approximations. How-
ever, we recognize that the increasing value of τB predicted by naive ap-
plication of TCG essentially originates from taking into account some un-
realistic Poincaré-recurrence-like phenomena in the bath which are in fact
prevented by other thermalizing mechanisms of the bath that are not in-
cluded in the simplistic model presented here. Therefore, we make the
physical assumption that the bath correlation time τB is always limited be-
low some very small value as we increase the coarse-graining time scale
τ .
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In the rest of this paper, all open quantum systems will be
modeled using the approach presented in this section under the
assumptions of weak system-bath couplings and sufficiently
large coarse-graining time scale τ , so that the dynamics of
the reduced system density matrix ρ(t) can be described by
a Markovian master equation in the form of Eq.(18) which
is of second order in the system-bath coupling strengths gω .
However, we note that the derivation presented in this section
can be straightforwardly generalized to obtain effective mas-
ter equations at higher orders in gω . In addition, even though
we will see that some of the canonical Lindblad dissipators are
exactly reproduced by the TCG-based analysis, we emphasize
that they act on the coarse-grained density matrix ρ(t) rather
than ρ(t). In situations where there are fast internal dynamics
of the system taking place over time scales comparable with
or smaller than the bath correlation time scale, we expect the
TCG-based approach to be phenomenologically more accu-
rate than methods which simply assume the canonical Lind-
blad dissipators to act on the instantaneous system density
matrix ρ(t).

IV. TIME-COARSE GRAINED
DISPERSIVE SPIN READOUT

In this section we consider a model for the readout of a
qubit through the lens of the TCG approach. In Section IV A
we derive the EQME to the fourth order in the dispersive
limit. At that order, there are more than one thousand terms
in the TCG series. Nonetheless, as we demonstrate in this
section, the process of pruning these terms down to most sig-
nificant terms, a process that depends on the parameters un-
der consideration, can be automatized. We present analytical
expressions for the most significant unitary and non-unitary
corrections under assumed conditions, compare these terms
to known expression obtained before using unitary transfor-
mation techniques and present corrections to them that have
not been found before. We also find and discuss analytical
expressions for processes that have not been noted before in
literature.

Next, in Section IV B, we discuss a more difficult regime
from the perspective of effective model synthesis, where the
drive, cavity and the qubit are quasi-resonant with another and
many terms in the TCG series are no longer negligibly small.
This regime has been studied before using direct numerical
techniques and does not present any special challenges un-
less the number of excitations becomes large [15]. The goal
of the analysis here is to demonstrate the flexibility and the
broad applicability of the TCG method. The resulting terms
are well-behaved and the series does not display the kind of
divergences that one may encounter in unitary transformation
techniques [7], which have to be addressed using specialized
techniques [36].

We then proceed to numerically solve the resulting EQME
in Section IV C. Although findings in this subsection are not
entirely new, they provide us with an opportunity to exam-
ine the role of coarse-graining on qubit measurement through
heterodyne readout of the cavity mode. We also point out a

few new observations that are only possible through the TCG
approach. In the section we also analyze the numerical sta-
bility and the computational resource requirements of EQME,
and provide comparisons to directly solving the exact von-
Neumann equation. One of the most compelling reasons why
it may be meaningful to deal with thousands of terms ana-
lytically generated by TCG at high orders (once automatized
through symbolic computation) becomes immediately appar-
ent: greatly enhanced numerical stability for long-time simu-
lation, and enormous savings in computational resources due
to the resulting equations being far less stiffer than the original
ones.

Those readers who are interested in the final expression for
the effective spin-only QME to fourth order can skip to Sec-
tion IV A 5. Here we present the final formulas under ap-
proximations that have been previously employed in litera-
ture, where the TCG corrections can be cleanly delineated.

A. The spin-cavity model for the dispersive readout of a qubit

In order to demonstrate the phenomenological predictions
as well as the conceptual implications of the time-coarse
grained effective master equation, we first study a toy model
for the dispersive readout of a qubit. More specifically, we
consider a system described by the following Schrodinger-
picture Hamiltonian:

Ĥ =
ωa

2
σz + ωcc

†c+ ĤB + gacσx

(
c+ c†

)
+ ϵd

(
c+ c†

)(
e−iωdt + eiωdt

)
+ ĤcB

(20)

where the bath is modeled by free bosonic modes:

ĤB =

∫
dω · Dω · ωB†

ωBω (21)

and the cavity is coupled to the bath via the Hamiltonian term

ĤcB =

∫
dω · Dωgω

(
c+ c†

)(
Bω +B†

ω

)
. (22)

In circuit QED experiments, the actual measurement pro-
cess can hardly be modeled by an instantaneous ideal pro-
jection of the quantum state onto some predetermined basis.
Instead, a readout pulse is sent to probe a particular compo-
nent of the quantum device (e.g. the readout cavity), and the
resulting output signal is then mixed with a local oscillator
at some frequency ωLO, producing a down-converted signal
which is then averaged over some time scale τ by an integra-
tor to obtain a finite reading. As explained in Appendix(G),
quantum input-output theory suggests that measurement re-
sults obtained in such processes can be directly related to the
time-coarse grained density matrix ρ(t) in the rotating frame
where the mode coupled to the readout drive rotates at fre-
quency ωLO. Therefore, for the spin-cavity readout system to
be discussed in this section, we go to the rotating frame of the
drive, i.e., the interaction picture defined by the free Hamilto-
nian

Ĥ0 =
ωa

2
σz + ωdc

†c+ ĤB (23)
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where the interaction-picture Hamiltonian can be written as

HI(t) =

∫
dω · Dωgω

(
ei(ω−ωd)tB†

ωc+ ei(ω+ωd)tB†
ωc

†

+ h.c.
)
+ ϵd

(
c+ e−2iωdtc+ h.c.

)
+ (ωc − ωd)c

†c

+ gac
(
ei(ωd−ωa)tc†σ− + ei(ωd+ωa)tc†σ+ + h.c.

)
.

(24)

Following the recipe in Section II, we can write down the
resulting TCG master equation for the full density matrix
ρtot(t) describing the spin, the cavity mode, as well as the bath:

∂tρtot(t) =− i
[
HTCG(t), ρtot(t)

]
+DTCG(t)ρtot(t) (25)

where HTCG and DTCG receive contributions from each order
in the perturbative expansion of the TCG Liouvillian L

HTCG = H
(1)
TCG +H

(2)
TCG +H

(3)
TCG + · · ·

DTCG = D
(1)
TCG +D

(2)
TCG +D

(3)
TCG + · · ·

(26)

In the rest of this subsection, we discuss the most signifi-
cant terms of the TCG master equation at different orders in
the perturbative expansion. Unless stated otherwise, when nu-
merical values need to be calculated we assume a typical su-
perconducting qubit readout scenario with
ωa

2π
= 5GHz;

ωc

2π
= 7GHz;

ωd

2π
= 7GHz;

gac
2π

= 48.0MHz; ϵd = 12.1MHz τ = 3ns;

J(ω) ≡ Dωg
2
ω =

αω

1 + (ωΛ )
2

with

κc ≡ J(ωd) = 1MHz and
Λ

2π
= 50GHz

(27)

When the analytical expressions for the most significant
terms are presented, we ignore superoperators that are at least
exponentially suppressed by a factor of e−

ω2τ2

2 with ω > 2π
τ ,

where all frequencies are assumed to be close to the numerical
values listed above (close in comparison with 1

τ ). In addition,
we assume that ωd = ωc for simplicity of the analytical ex-
pressions. After presenting the most significant TCG super-
operators up to the third order, we discuss the effects of the
thermal bath using the method presented in Section III.

1. Rotating-wave approximation at the leading order

At the leading order, TCG is equivalent to time-averaging
the interaction-picture Hamiltonian, which reduces to the
rotating-wave approximation (RWA) in the τ → ∞ limit. In
the spin-readout model studied here, we have

H
(1)
TCG ≈

∫ ∞

0

dω · Dωgωe
− (ω−ωd)2τ2

2

(
ei(ω−ωd)tcB†

ω

+ e−i(ω−ωd)tc†Bω

)
+ ϵd

(
c+ c†

) (28)

and

D
(1)
TCG ≈ 0. (29)

In particular, we see that the transverse coupling between the
spin and the cavity mode is suppressed by TCG, and its effects
on the slow dynamics show up at higher orders in the TCG ex-
pansion. In addition, coupling coefficients between the cavity
mode and the bath modes are band-filtered around the drive
frequency ωd, and we will discuss their effects at the end of
this subsection.

2. Dispersive spin-cavity coupling and emer-
gent spin decay channel at the second order

At the second order, corrections to the effective Hamilto-
nian can be written as

H
(2)
TCG ≈ Hg2

ac
+Hgacg (30)

with

Hg2
ac

=− 2g2ac

(1− e−(ωd−ωa)
2τ2

ωd − ωa
− 1− e−(ωd+ωa)

2τ2

ωd + ωa

)
· σz

2

(
c†c+

1

2

)
+ const.

≈− 2g2ac
( 1

ωd − ωa
− 1

ωd + ωa

)σz

2

(
c†c+

1

2

)
+ const.

(31)

and

Hgacg =

∫ ∞

0

Dω

2π
· g̃(2)ω

(
σ−B

†
ωe

i(ω−ωa)t + h.c.
)

(32)

where

g̃(2)ω =− gωgac

[
e−

(ω−ωa)2τ2

2

( ωd

ω2
d − ω2

a

+
ωd

ω2
d − ω2

)
−

e−
(ω−ωd)2+(ωd−ωa)2

2 τ2(
ω3
d − 1

2ω
2
a(ωd + ω)

)
(ωd − ω)(ωd + ω)(ωd − ωa)(ωd + ωa)

]
.

(33)

Notice that, starting from the second line of Eq.(31), we have
ignored terms that are exponentially suppressed by a factor of
e−ω2

effτ
2

with some ωeff
2π > 1GHz. For the purpose of concise

presentation, we will always make this approximation in the
rest of this paper unless otherwise stated. In fact, the coeffi-
cients of the TCG superoperators are τ -dependent in general,
and apparently τ -independent expressions such as the second
line of Eq.(31) can only be valid when τ is assumed to be
sufficiently large so that the superoperator coefficients have
reached “fixed points” in the infrared (IR) limit of the renor-
malization flow due to coarse-graining. We will later show
that, once the bath modes are traced out, the effective direct
couplings in Eq.(33) between the spin and the bath modes lead
to Purcell decay of the spin.
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As for the second-order effective spin-cavity coupling
Hg2

ac
, we notice that the term

− 2g2ac
ωd − ωa

σz

2

(
c†c+

1

2

)
reproduces the result in [13] obtained from second-order per-
turbative diagonalization of the Jaynes-Cummings Hamilto-
nian; the additional term

2g2ac
ωd + ωa

σz

2

(
c†c+

1

2

)
originates from the counter-rotating terms in the Rabi Hamil-
tonian, and is a first example of the effect of high-frequency
virtual processes modifying the secular dynamics of a quan-
tum system, which is not captured in [13]. Here we empha-
size that such high-frequency virtual processes are exceed-
ingly cumbersome to be incorporated into well-known pertur-
bative diagonalization methods as in [13, 37, 38], because the
unitary transformation that one has to postulate as an ansatz
become much more complicated with those high-frequency
(non-RWA) terms in the Hamiltonian, especially at high or-
ders in the perturbative expansion. The time-coarse graining
method developed in this work, on the other hand, puts both
high- and low-frequency processes on the same footing, and
efficiently calculates all the non-RWA corrections at arbitrary
time resolution. Such non-RWA corrections are especially
important in a systematic perturbation theory when ωd−ωa

ωd+ωa
is

comparable with or greater than small parameters such as
gac

ωd − ωc
or gacτ

in the perturbative expansion. We will have more discussion
on the corrections from non-RWA Hamiltonian terms in Sub-
section IV A 4.

Bringing the discussion back to the second-order TCG cor-
rections to the spin-cavity model, we notice that there is no
significant TCG dissipator at this order, namely

D
(2)
TCG ≈ 0. (34)

Hence we conclude that, at order g2ac, the effects of the spin-
cavity coupling on the slow dynamics are:

• A cavity-state independent shift of the spin transition
frequency, as represented by

δ(2)ωa = −g2ac
( 1

ωd − ωa
− 1

ωd + ωa

)
(35)

• A dispersive longitudinal coupling between the spin and
the cavity, as represented by the effective Hamiltonian
term

δH
(2)
disp = −g2ac

( 1

ωd − ωa
− 1

ωd + ωa

)
σzc

†c (36)

which shifts the cavity frequency by

δω(2)
c (n) = g2ac

( 1

ωd − ωa
− 1

ωd + ωa

)
(1− 2n) (37)

when the spin is at level n ∈ {0, 1}.

• Emergent direct couplings between the spin and the
bath modes, as shown in Eq.(32). These effective spin-
bath couplings function as decay channels for the spin
and are responsible for its Purcell decay.

3. Drive-induced spin level transitions at the third order

At the third order, the only significant correction to the ef-
fective Hamiltonian can be written as

H
(3)
TCG ≈ Hϵdg2

ac
+Hg2

acg
(38)

with

Hϵdg2
ac

=
ϵdλ

2

2
σz(c+ c†) (39)

and

Hg2
acg

=

∫ ∞

0

Dω

2π
· g̃(3)ω σz

(
cB†

ωe
i(ω−ωd)t + h.c.

)
(40)

where

λ2 =g2ac
2ωa(3ω

2
d − ω2

a)

ωd(ω2
d − ω2

a)
2

=g2ac

( 1

(ωd − ωa)2
+

2ωa

ωd(ω2
d − ω2

a)
− 1

(ωd + ωa)2

)
(41)

while

g̃(3)ω

∣∣∣∣
ω→ωd

=gωd

λ2

2
. (42)

In particular, Hϵdg2
ac

can be considered either as a spin-
state dependent modification of the drive strength on the cav-
ity, or as a cavity-state dependent shift in the spin transition
frequency. In the second line of Eq.(41), we have split the
frequency-dependent factor into three terms, where the first
one is exactly the “drive Hamiltonian” correction in the first
line of Eq.(3.15) in [13], and the following two terms are non-
RWA corrections which are not captured by diagonalizing the
Jaynes-Cummings Hamiltonian in [13]. For the purpose of
dispersive spin readout, this Hamiltonian correction provides
another mechanism for the cavity state to distinguish between
different spin states, in addition to the dispersive longitudinal
coupling discussed previously. However, for moderate drive
strengths, this correction is overwhelmed by the lower-order
longitudinal coupling. On the other hand, Hg2

acg
is a spin-

dependent modification to the cavity-bath coupling, which re-
sults in the following modification to the cavity thermal dissi-
pator

κcDc,c† −→ κcDc(1+λ2σz/2), c†(1+λ2σz/2) (43)

as will be discussed in Subsection IV A 5. Notice that here we
have used the notation

DL,Rρ ≡ LρR− RLρ+ ρRL

2
(44)
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for any operators L and R, which generalizes the notation for
Lindblad dissipators by allowing R ̸= L†. So far, these re-
sults exactly reproduce the Hamiltonian corrections that can
be obtained in principle by perturbative diagonalization [13].

More interestingly, the leading-order significant TCG dis-
sipators also appear at this order:

D
(3)
TCG ≈ Dϵdg2

ac

=iϵd
g2ac

(ωd − ωa)2
(
Dσ−,σ+c +Dσ+c,σ−

)
+ iϵd

g2ac
(ωd + ωa)2

(
Dσ−c,σ+

+Dσ+,σ−c

)
+ h.c.

(45)

which has not been predicted by any effective Hamilto-
nian method. Noticeably, these dissipators represent non-
coherent processes in the effective coarse-grained dynamics
that emerge with or without coupling to a bath. In fact, one
can tell from the coefficients of these dissipators that they are
induced by the cavity drive as well as the spin-cavity coupling.
Focusing on their effects on the spin dynamics, we trace out
the cavity mode and write the effective spin dissipators as

Dspin
ϵdg2

ac
(t) = K(t)Dσ−,σ+

+ Γ(t)Dσ+,σ− (46)

with the drive-induced spin transition rates being

K(t) := −2ϵdg
2
ac

( 1

(ωd − ωa)2
+

1

(ωd + ωa)2

)
Im⟨c(t)⟩1

Γ(t) := −2ϵdg
2
ac

( 1

(ωd − ωa)2
+

1

(ωd + ωa)2

)
Im⟨c(t)⟩0

(47)

where we use ⟨c(t)⟩l to denote the conditional expectation
value of c when the spin is at level l:

⟨c(t)⟩l :=
Tr
(
c|l⟩⟨l|ρ(t)

)
Tr
(
|l⟩⟨l|ρ(t)

) . (48)

In the scenario of dispersive spin readout, the lifetime 1
κc

of
the cavity mode is much shorter than that of the spin, and
therefore the quasi-steady state of the cavity mode will be
close to a spin-state dependent coherent state with

lim
κct→∞

⟨c(t)⟩n ≈ ϵd

−δω
(2)
c (n) + κc

2 i
(49)

at low temperatures where energy absorption from the bath
is much smaller than the energy emission into the bath. In
such cases, we find the drive-induced relaxation and excitation
rates to be approximately

lim
κct→∞

K(t) ≈ κcg
2
ac

( 1

(ωd − ωa)2
+

1

(ωd + ωa)2

)
· |ϵd|2

|δω(2)
c (1)|2 + κ2

c

4

lim
κct→∞

Γ(t) ≈ κcg
2
ac

( 1

(ωd − ωa)2
+

1

(ωd + ωa)2

)
· |ϵd|2

|δω(2)
c (0)|2 + κ2

c

4

(50)

after the cavity mode settles to its (quasi-)steady state. Notice
that K(∞) and Γ(∞) are proportional to the (steady-state)
cavity photon occupation number

lim
t≫κ−1

c

⟨nc(t)⟩l ≈
|ϵd|2

|δω(2)
c (l)|2 + κ2

c

4

. (51)

And by the end of this subsection, we will show that these
drive-induced transition rates become greater than the Purcell
decay rate of the spin at low temperatures once the drive is
strong enough to maintain a few photons in the readout cav-
ity. Therefore, for strong readout drives, these drive-induced
transitions can become the dominant source of spin relax-
ation/excitation, which eventually destroys the quantum non-
demolition feature of the dispersive readout scheme.

We note that the TCG master equation is not positive-
definite in general for arbitrary density matrix. In fact, for
certain extreme ρ, the effective qubit transition rates can be
negative. However, as explained in Appendix(D), if physi-
cally achievable initial conditions for ρ(t) are chosen, then
the TCG master equation will not lead to unphysical states
with negative probabilities, even if some of the effective tran-
sition rates are temporarily negative during parts of the evolu-
tion. In fact, by comparing with the dynamics obtained from
coarse-graining the exact numerical solution in Fig.17 of Ap-
pendix(D), we are able to demonstrate that the appearance of
negative effective transition rates does not signal failure of the
TCG perturbation theory. Instead, it is a faithful represen-
tation of physical phenomena at finite time resolution which
cannot be explained by Lindblad master equations with posi-
tive relaxation/excitation rates.

4. RWA and non-RWA corrections at the fourth order

At the fourth order in the TCG expansion, non-RWA cor-
rections are more prevalent. For instance, the most significant
terms in H

(4)
TCG can be written as

H
(4)
TCG ≈Hg4

ac
+Hϵ2dg

2
ac

(52)

with

Hg4
ac

=ζ ′c†c+ ζ
(
c†c+

1

2

)
σz + ζ

(
c†c
)2
σz (53)

and

Hϵ2dg
2
ac

=− ξc†c+ µσz (54)
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where the coefficients in the formulas above are defined as

ζ = g4ac

[ 1

(ωd − ωa)3
− 2(3ω2

a + ω2
d)

(ωd + ωa)3(ωd − ωa)2

+
1

(ωd + ωa)3

]
;

ζ ′ = g4ac

[ 1

(ωd − ωa)3
− 2(ω2

a + ω2
d)

ωd(ωd + ωa)2(ωd − ωa)2

+
1

(ωd + ωa)3

]
;

ξ =
g2acϵ

2
d

ωd(ω2
d − ω2

a)
; µ = −g2acϵ

2
d

ωa(3ω
2
d − ω2

a)

ω2
d(ω

2
d − ω2

a)
2
.

(55)

In particular, we notice that the first terms in ζ and ζ ′ re-
produce the highest-order corrections in the effective system
Hamiltonian in [13], while the rest of the terms therein corre-
spond to non-RWA corrections; the effective AC-Stark shifts
to the spin and cavity frequencies in Hϵ2dg

2
ac

, on the other
hand, are not captured by the effective Hamiltonian in [13]
since there the drive is excluded from the diagonalization pro-
cedure. However, it is already remarkable that the effective
Hamiltonian obtained by perturbative diagonalization is ex-
actly identical to the IR limit of the TCG Hamiltonian up
to high orders in the coupling constants, considering that the
physical pictures are different in the two formalisms. Never-
theless, since the terms in the diagonalized Hamiltonian are
conserved by the time evolution, it is not unreasonable to ex-
pect phenomenological convergence to the TCG Hamiltonian
in the IR limit.

The TCG dissipators, on the other hand, account for cor-
rections to the effective dynamics which cannot be captured
by any effective Hamiltonian method. In particular, the most
significant fourth-order TCG dissipators for the spin-cavity
model can be written as

D
(4)
TCG ≈ Dg4

ac
+Dϵ2dg

2
ac

(56)

with

Dg4
ac

=κ̃+

(
Dσ−c†c2,σ+c† −Dσ+c†2c,σ−c

)
+ κ̃−

(
Dσ−c†2c,σ+c −Dσ+c†c2,σ−c†

)
+ h.c.

(57)

and

Dϵ2dg
2
ac

=γ̃
(
Dσ−c†c,σ+

+Dσ+c†c,σ−

)
+ γ̃z

(
Dσzc,c† −Dσzc†,c

)
+ h.c.

(58)

where κ̃±, γ̃, and γ̃z are defined as

κ̃± =
4ig4acωa

(ωd ∓ ωa)(ωd ± ωa)3
;

γ̃ = −i
ϵ2dg

2
ac

ωd(ω2
d − ω2

a)
; γ̃z = i

ϵ2dg
2
acωa

ω2
d(ω

2
d − ω2

a)
.

(59)

5. Effects of the bath and the reduced spin master equation

Following the recipe in Section III, we know that the bath-
independent superoperators at order g0 acts directly on the re-
duced spin+cavity density matrix ρ(t) ≡ TrBρtot(t), whereas

the bath-induced corrections at order g2 can be calculated
from L(1) and L(2) according to Eq.(17). Based on the nu-
merical values of the parameters assumed at the beginning of
this subsection, we find the most significant bath-related ef-
fects to be described by the following terms in Eq.(19):

∂tρ(t) = · · · − i
[
Hg2 +H(2)

corr, ρ(t)
]
+D(2)

corr(t)ρ(t) (60)

with

Hg2

=−
∫ ∞

0

dω

2π
· Dωg

2
ω

(1− e−(ω−ωc)
2τ2

ω − ωc
+

1

ω + ωc

)
c†c,

(61)

H(2)
corr = −

∫ ∞

0

dω

2π
· P
(
Dωg

2
ω

e−(ω−ωc)
2τ2

ω − ωc

)
c†c, (62)

and

D(2)
corr =J(ωd)

(
n(ωd) + 1

)
Dc,c† + J(ωd)n(ωd)Dc†,c

+ J̃(ωa)
(
n(ωa) + 1

)
Dσ−,σ+

+ J̃(ωa)n(ωa)Dσ+,σ−

(63)

where

n(ω) = TrB
(
B†

ωBωd
ρB(0)

)
; J̃(ω) = Dω

∣∣∣g̃(2)ω

∣∣∣2. (64)

In particular, the sum of Hg2 and H
(2)
corr gives us the following

formula for the Lamb shift of the cavity frequency

Hg2 +H(2)
corr

=−
∫ ∞

0

dω

2π
· P
[
Dωg

2
ω

( 1

ω − ωc
+

1

ω + ωc

)]
,

(65)

which reproduces the standard formula for the Lamb shift of a
harmonic oscillator coupled to a bosonic thermal bath. As for
dissipators, we find the zero-temperature cavity decay rate to
be

κc = J(ωd) ≡ Dωd
g2ωd

(66)

at the second order in the coupling constants. Incorporating
the additional coupling terms in Eq.(40), we find the spin-
dependent cavity decay rates to be

κe
c = (1 + λ2/2)2κc and κg

c = (1− λ2/2)2κc (67)

for the excited and ground spin states respectively. Similarly,
for an Ohmic spectral density J(ω), the low-temperature Pur-
cell decay rate of the spin is found to be

κs =J̃(ωa) ≡ Dωa

(
g̃(2)ωa

)2 ≈ Dωa
g2ωa

4g2acω
2
d(

ω2
d − ω2

a

)2
=Dωa

g2ωa

( 1

(ωd − ωa)2
+

4ωd

(ωd + ωa)2(ωd − ωa)

− 1

(ωd + ωa)2

)
=

4κcg
2
acωaωd

(ω2
d − ω2

a)
2
.

(68)
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Again, the first term in the second line reproduces the Pur-
cell decay rate calculated in [13], while the rest of the terms
account for the non-RWA corrections.

Similar to the system superoperators, the effective TCG
spectral density also depends on the coarse-graining time
scale τ . For example, if we assume the infinite-resolution
spectral density to be Ohmic, then we can lump together all
the TCG superoperators that are proportional to B†

ω by adding
up their coefficients and obtain the following effective spectral
densities for τ = 0, 0.1 ns, and 1 ns:

Figure 3: The effective spectral densities at different coarse-graining time
scale τ as obtained from the third-order TCG master equation. The verti-
cal axis is on the log scale, and the reference point J(ωd; 0) is equal to the
leading-order cavity decay rate κc. In this figure, τ = 0 corresponds to the
infinite-resolution Ohmic spectral density, whereas τ = 1 ns is close to the
IR limit.

We note in Fig.3 that, as we approach the IR limit, the ef-
fective spectral density peaks more and more sharply around
a discrete set of system resonant frequencies (in this example
the peaks are at 2ωa−ωd, ωa, ωd, and 3ωa). In general, these
system resonant frequencies would include nonlinear (e.g., the
peaks at 2ωa − ωd and 3ωa) as well as linear processes (e.g.,
the peaks at ωa and ωd). In addition, the finite band width at
feasible values of τ makes the ultraviolet (UV) cutoff Λ irrel-
evant to the experimentally measured dynamics in most if not
all situations.

Comparing this low-temperature Purcell decay rate with the
drive-induced transition rates at the (conditional) steady state
of the cavity, we find that

lim
κct→∞

K(t)

κs
≈J(ωd)

J(ωa)
· ω

2
d + ω2

a

2ω2
d

⟨nc(∞)⟩1

≈ω2
d + ω2

a

2ωdωa
⟨nc(∞)⟩1

(69)

lim
κct→∞

Γ(t)

κs
≈J(ωd)

J(ωa)
· ω

2
d + ω2

a

2ω2
d

⟨nc(∞)⟩0

≈ω2
d + ω2

a

2ωdωa
⟨nc(∞)⟩0.

(70)

Since ωd is on the same order of magnitude as ωa, the equa-
tions above suggest that the drive-induced transition rates are
comparable with the low-temperature Purcell decay rate when
the corresponding conditional cavity occupation numbers are
on the order of 1.

Although the TCG superoperators obtained so far imply in-
tricate effective interactions between the spin and the cavity,
one can significantly simplify the master equation by focusing
on the spin degrees of freedom alone. Following the assump-
tions and approximations made in [13], we can trace out the
cavity degrees of freedom assuming that the cavity is approx-
imately in conditional coherent states depending on the spin
state. In particular, if the (approximate) coherent-state ampli-
tudes are αg and αe for relaxed and excited spin states respec-
tively, then we can use the results in Appendix(E) to obtain
the following fourth-order TCG effective master equation for
the reduced spin density matrix ρS(t) = TrCρ(t):

∂tρS ≈− i
ωS

2

[
σz, ρS

]
+

γφeff

2
Dσz,σz

ρS + γ↓Dσ−,σ+
ρS

+ γ↑Dσ+,σ−ρS
(71)

where

ωS =χ+ 2
[
χ+ ζ(1 + |αe|2 + |αg|2) +

λ4κc

4

]
Re(αgα

∗
e)

− ζ(|αg|4 + |αe|4) + λ2Re
(
ϵd(α

∗
e + α∗

g)
)

+ 2µ+ Im(κd
− + κd

+)Re(αe − αg)

(72)

γφeff =2
[
χ+ ζ(1 + |αe|2 + |αg|2)−

λ4κc

4

]
Im(αgα

∗
e)

+ λ2Im
(
ϵd(α

∗
e − α∗

g)
) (73)

γ↓ = κs +K(t) γ↑ = Γ(t) (74)

with

χ = −g2ac
( 1

ωd − ωa
− 1

ωd + ωa

)
+ ζ (75)

and

κd
± = i

ϵdg
2
ac

(ωd ± ωa)2
. (76)

Details of the derivation can be found in Appendix(E). In par-
ticular, we see that the results above not only reproduce all the
relevant corrections in Eq.(5.4) and Eq.(5.6) of [13] but also
include all the non-RWA corrections and, most importantly,
additional measurement-induced corrections to the qubit fre-
quency ωS and the qubit transition rates γ↑↓. We emphasize
that the measurement-induced corrections K and Γ to the ef-
fective spin transition rates have not been captured by any ef-
fective Hamiltonian methods in the literature. In fact, more
sophisticated analyses based on the method in [13] mostly
focus on the effects of non-RWA terms or the introduction
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of additional noise or heat bath [6, 39, 40], and cannot ac-
count for spin dissipation of the type of Eq.(46) to the best
of our knowledge. Therefore, the drive-induced TCG dissipa-
tors on the qubit are potentially very important for explaining
measurement-induced enhancement of spin decay rates that
has been observed in experiments with relatively strong read-
out strength [41, 42].

B. Near-resonant behavior and parametric de-
pendence on the coarse-graining time scale τ

Unlike the dispersive case, if one brings the cavity mode
frequency ωd close to the spin transition frequency ωa, the
TCG effective superoperators will become sensitive to the
coarse-graining time scale τ , and more corrections from TCG
will become relevant. Alternatively, when τ is sufficiently
small to be comparable with some of the system (virtual)
transition frequencies, the effective EQME will also depend
strongly on τ , even in the dispersive limit of the model pa-
rameters.

For example, the spin-cavity coupling can no longer be ig-
nored in the leading-order TCG Hamiltonian H

(1)
TCG

H
(1)
TCG ≈

∫
dω · Dωgωe

− (ω−ωd)τ2

2

(
ei(ω−ωd)tcB†

ω

+ e−i(ω−ωd)tc†Bω

)
+ ϵd

(
c+ c†

)
+ gace

− (ωd−ωa)2τ2

2

(
ei(ωd−ωa)tc†σ− + h.c.

) (77)

whereas the spin-cavity hybridization correction Hg2
ac

be-

comes

Hg2
ac

=− g2ac
(1− e−(ωd−ωa)

2τ2

ωd − ωa
− 1

ωd + ωa

)σz

2

(
1 + 2c†c

)
+ const.,

(78)

and the TCG dissipator D(2)
TCG is no longer negligible:

D
(2)
TCG(t) =− 2ig2ace

−(ωd−ωa)
2τ2 1− e−(ωd−ωa)

2τ2

ωd − ωa

· e2i(ωa−ωd)tDσ+c,σ+c + h.c.

(79)

Noticeably, Hg2
ac

and D
(2)
TCG(t) remain regular in the ωa →

ωd limit:

lim
ωa→ωd

Hg2
ac

=− g2ac

(
(ωd − ωa)τ

2 − 1

ωd + ωa

)σz

2

(
1 + 2c†c

)
+O

(
(ωd − ωa)

2
)
+ const.

(80)

lim
ωa→ωd

D
(2)
TCG(t)

=− 2ig2ac(ωd − ωa)τ
2e2i(ωa−ωd)tDσ+c,σ+c + h.c.

+O
(
(ωd − ωa)

2
) (81)

In fact, we emphasize that the superoperators generated in the
perturbative expansion of a TCG master equation are always
regular and do not suffer from near-resonant divergences that
often plague other method such as the Schrieffer–Wolff trans-
formation [7].

Figure 4: The lumped discrete spectra of effective coupling strengths at different coarse-graining time scales τ , as obtained from the third-order TCG master
equation of the spin-cavity model. The vertical axes of panel (a) and panel (b) are on the log scale, whereas those of the other panels are on the linear scale.
Superoperators involving the bath modes are not included in this figure, and the TCG effective spectral density will be discussed in the next subsection. These
discrete spectra lump together all the superoperators at a certain frequency, and therefore does not correspond to any physical observables. Instead, they only
provide a simple illustration of how the TCG effective master equation “flows” from one fixed point to another as one changes the value fo τ .

In general, all coefficients in the TCG effective master
equation depend smoothly on the coarse-graining time scale

τ . Usually, the value of a particular coefficient will approach
certain constants (i.e., the UV and IR fixed points) when τ is
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much smaller or much greater than certain threshold scales.
As a result, there typically exist a few effective models that
depend weakly on τ within their respective range of validity,
and those effective models are bridged by relatively rapid tran-
sitions from one to another when the time resolution is close
to one of the threshold time scales. For instance, if we sum up
the absolute values of the superoperator coefficients obtained
from the third-order TCG master equation of the spin-cavity
model, then the resulting lumped discrete spectra of coupling
strengths at various coarse-graining time scales τ can be seen
in Fig.4. In particular, we note that

• With large τ , as shown in panel (a) of Fig.4, we would
be in the IR limit where only the superoperators that
are static in the rotating frame remain significant. How-
ever, these include effective dissipators as well as effec-
tive Hamiltonian corrections in general, and account for
various virtual processes that cannot be resolved by the
time resolution.

• When τ decreases sufficiently to resolve (ωd−ωa)
−1 =

0.080 ns, as shown in panel (b) and (c), superoperators
at frequencies ±(ωd − ωa) and ±2(ωd − ωa) begin to
have noticeable effects on the observed dynamics, and
the coefficients of TCG superoperators drop quickly as
the corresponding frequencies become much greater in
magnitude than τ−1.

• When τ begins to resolve (ωd + ωa)
−1 = 0.013 ns and

(2ωd)
−1 = 0.011 ns, as shown in panel (d), superopera-

tors at frequencies ±(ωd+ωa)
−1 and (2ωd)

−1 become
important, whereas those at frequencies ±2(ωd − ωa)
get suppressed back down again. Both τ = 0.1 ns and
τ = 0.01 ns are close to some “threshold time scales”
discussed earlier, and the effective dynamics are rela-
tively sensitive to τ near those thresholds.

• Finally, with sufficiently small τ , as shown in panel (e),
we approach the UV limit which is exactly described by
the infinite-resolution Hamiltonian HI .

As stated before, we will focus on the IR limit of the TCG
dynamics in the remaining of this work. In addition, for ar-
bitrary values of the spin transition frequency ωa, the TCG
perturbative expansion remains valid as long as the coarse-
graining time scale τ is small compared to the inverse of the
coefficients of the terms in HI . For example, we have

g2ac
1− e−(ωd−ωa)

2τ2

ωd − ωa

≤g2acτ ·max
[
2(ωd − ωa)τe

−(ωd−ωa)
2τ2
]
=

√
2

e
g2acτ

(82)

which shows that the magnitude of the prefactor at order g2ac is

bounded from above by
√

2
egacτ times the prefactor at order

g1ac. And in general, if we denote the largest coupling (drive)
strength in HI by gmax, then τgmax can be used in the TCG
perturbative expansion as the small control parameter.

C. Numerical solutions to the EQME

To solve the TCG master equation for the driven dissi-
pative spin-cavity system, we use the conditional Husimi
representation Q

ab

µ (ϕ, n) of the density matrix ρ discussed
in Appendix(F), where for any µ ∈ {x, y, z} there is a
complete set of three independent functions for (a, b) ∈
{(0, 0), (1, 1), (0, 1)}. The TCG master equation then gets
translated into a set of partial differential equations for
Q

ab

z (ϕ, n) which we solve numerically in this subsection. The
same QME can also be solved by truncating the cavity mode
Hilbert space or applying a cumulant expansion in the cav-
ity quadrature variables, as we do in Section XX. Here we
choose to numerically solve for the evolution of the condi-
tional Husimi Q functions, to allow us to get physical in-
sight into measured observables in a heterodyne measure-
ment. Q

aa

µ (ϕ, n) can be interpreted as the joint probability
distribution of the spin being found in state |σµ = a⟩ and
the quadrature variables (ϕ, n) measured in an an ideal het-
erodyne record [43–45]. The resulting solutions are closely
related to experimental observables and can be conveniently
used to infer the mutual information between the spin state
and the cavity mode pointers.

In the rest of this subsection, we first demonstrate the con-
vergence of the TCG perturbation theory by comparing solu-
tions to the EQME at different orders with that obtained by di-
rectly time-coarse graining the exact numerical solution to the
microscopic von-Neumann equation. Once the TCG method
has been validated, we continue to discuss details of the spin
dynamics, relating numerical results to the analytical formu-
las presented in Subsection IV A 5. In particular, we focus
on how the cavity state affects the dephasing, relaxation, and
excitation of the spin. Finally, we take a closer look at the
cavity mode dynamics and how it is conditioned by the spin
state. The impact of higher-order TCG corrections on the cav-
ity mode cumulants is emphasized. All the simulations pre-
sented in this subsection are performed assuming τ = 3ns as
well as all the other parameter values in Eq.(27).

1. Comparison with direct coarse-
graining of the exact numerical solution

As discussed previously, we numerically solve the TCG ef-
fective master equation at each order in terms of the condi-
tional Husimi functions Q

ab

z (ϕ, n). In order to demonstrate
convergence of the TCG perturbation theory, we also numeri-
cally solve the following microscopic master equation for the
exact interaction-picture density matrix ρ(t) of the spin-cavity
system:

∂tρ(t) =
[
HI(t), ρ(t)

]
+ κcDc,c†ρ(t). (83)

In particular, we assume the initial condition

ρ
(
− 9 ns

)
=
(√2

5
|0⟩+

√
3

5
|1⟩
)(√2

5
⟨0|+

√
3

5
⟨1|
)
⊗ |0⟩c⟨0|c

(84)
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at time ti = −9 ns so that the solution to Eq.(83) can be man-
ually time-coarse grained to provide the initial conditions for
the TCG master equations at time t = 0.

In addition, directly coarse-graining the UV-limit (τ = 0)
solution Qaa

z (t) gives us a target of convergence against which
solutions to the TCG master equations at different orders can
be compared. In Fig.5 we plot the time-evolution of different
observables. Panel (a) of Fig.5 displays the dynamics of the
conditional expectation value of the cavity quadrature variable
ϕ when the spin is in the ground state. We see in the main plot
that the coarse-grained exact cavity dynamics is reproduced
reasonably well with the second order TCG master equation,
and the accuracy is even better if we go to the 4th order, as
shown in the inset in the upper-right corner. The inset in the

upper-left corner shows a zoomed-out view of ⟨ϕ(t)⟩0 over
longer time scales, which confirms one’s expectation of a typ-
ical damped oscillation (the averaged exact dynamics has not
been calculated over this longer time period since that is too
time-consuming in the Husimi-PDE formalism). On the other
hand, drive-induced spin transitions from the third-order TCG
are indispensable for understanding the spin dynamics. As
shown in panel (b) of Fig.5, the time evolution of the coarse-
grained ground state population nz

0(t) of the spin cannot be
accurately described in terms of the Purcell decay of the spin
which appears at the second order, and drive-induced spin
level transitions (Eq. (47)) are necessary for capturing its dy-
namics (see also Eq. (69) and Eq. (70)).

Figure 5: Numerical results obtained from solving the PDE for the conditional Husimi functions Qab
µ (ϕ, n) assuming the parameters in Eq.(27). In particular,

TCG is performed with a time resolution of τ = 3ns. Panel (a) shows the time evolution of the conditional expectation value of the quadrature variable ϕ if
the spin is in the ground state |0⟩; the inset in the upper-right corner shows the zoomed-in view of all the simulated dynamics around t = 61.5ns whereas the
inset in the upper-left corner shows the zoomed-out view of the 4th-order TCG dynamics for t from 0 to 4µs. Panel (b) shows the time evolution of the ground
state population of the spin. For the parameters in Eq.(27), increasing order in the TCG perturbative expansion gives rise to solutions that gradually converge to
the exact coarse-grained dynamics. For different dynamical variables, however, different orders of the TCG expansion are required to attain the same level of
accuracy.

For the examples shown in Fig.5, the total time of sim-
ulation is limited by the maximum time step size required
to numerically solve the infinite-resolution master equation.
To quote some performance numbers for examples studied
here, depending on the model parameters and the time pe-
riod to simulate, the speedup by EQME can range from about
100-fold to over 1000-fold. Perhaps more importantly, in the
analysis in the Appendix(A) we argue that it is precisely the
coarse-grained cavity state represented by Q

00

z +Q
11

z that de-
scribes more faithfully the distributions that can be expected
to be observed in realistic readout experiments with finite
time resolution, even though further digital integration over
the classical readout signal is often applied after the quantum
measurement to increase the SNR.

2. The EQME and the cavity state

For the initial conditions in Eq.(84) and the model param-
eters in Eq.(27), a typical histogram of simulated heterodyne
measurement results at t = 300ns is shown in Fig.6, where
the cavity pointer states are both close to coherent states, as
one would expect in a typical readout experiment. In particu-
lar, the positions of the pointer states on the ϕ − n plane can
be predicted relatively accurately by the second-order EQME
which accounts for the cavity drive and the dispersive shift of
the cavity mode frequency. The precise shapes of the pointer
states, however, can receive considerable corrections from
the third- and the fourth-order EQME, depending on parame-
ters. This can be seen by directly visualizing the evolution of
second-order cumulants

C2,0 ≡ ⟨a2⟩ − ⟨a⟩2; C1,1 ≡ ⟨a†a⟩ − |⟨a⟩|2

whose time evolution is shown in Fig.7.
These second-order cumulants characterize the squeezing
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of the pointer states, and will be sufficient for describing the
shapes of the pointer states as long as their Husimi functions
are roughly of elliptical shapes in the phase space (i.e., the
cavity stays close to some gaussian state depending on the
spin state).

Figure 6: The simulated histogram of heterodyne measurement results for
the dispersive spin readout system at time t = 300ns assuming the set of
parameters in Eq.(27). The left and right high-probability clusters correspond
predominantly to the ground and the excited states of the spin respectively.

Figure 7: The second-order cumulants of the cavity pointer states calculated
from EQME at different orders. In particular, the fourth-order superoperators
provide important corrections for the pointer state deformation from a perfect
coherent state, although they do not have much effects on the spin dynamics
or the position of the cavity state in the phase space.

Once we have solved for the positions and shapes of the
cavity pointer states in the phase space, we can use them to

calculate the mutual information between the heterodyne ob-
servables and the spin energy levels. More precisely, with the
joint probability distributions Q

00

z and Q
11

z , we can calculate
the mutual information shared by the random variables σµ and
(ϕ, n) according to the equation

I
(
σµ, (ϕ, n)

)
=
∑
a=0,1

∫
dϕdn ·Qaa

µ (ϕ, n) log2
Q

aa

µ (ϕ, n)

Qµ(ϕ, n) · nz
a

(85)

where Qµ(ϕ, n) ≡ Q
00

µ (ϕ, n)+Q
11

µ (ϕ, n) and the log is taken
with base 2 so that I

(
σµ, (ϕ, n)

)
is bounded between 0 and 1,

with I = 0 meaning complete independence of the two vari-
ables and I = 1 representing the limit where ideal heterodyne
measurements of the cavity state is equivalent to projective
measurements of the µ-component of the spin. Conceptually,
one can think of I

(
σµ, (ϕ, n)

)
as indicating the amount of

information about the µ-component of the spin stored in the
cavity state, and we will see in the next subsection that this
amount of information is closely related to the dephasing of
the spin.

In other words, although the high-order terms in the EQME
are not necessary for simulating the evolution of the cavity
quadrature variables during their transient period. We would
nonetheless need them for obtaining more accurate estimates
of the amount of spin-state information that one can in prin-
ciple learn from measuring the state of the cavity mode. And
the same is true if we would like to more accurately calculate
the corresponding backreaction to the spin state in the form
of a time-dependent dephasing rate. On the other hand, over
the much longer time period of spin dissipation, the higher-
order terms in the QME also has noticeable impact on the ex-
pectation values of the cavity quadrature variables, as will be
discussed in more detail in Section V.

As shown in Fig.8, the mutual information with σz rises
quickly above 0.9, whereas those with σx and σy first increase
together with I

(
σz, (ϕ, n)

)
before they get suppressed back

down to near zero during the same period of time

τinfo ≈ 1

|χ|
arccos

(
1− |χ|

ϵd

)
−−−−→
ϵd≫|χ|

√
2

ϵd|χ|
(86)

in the |χ| ≫ κc limit. As will be explained in the next sub-
section, τinfo is on the same order of magnitude as the spin
dephasing time scale T2, i.e., the time scale for nx

0(t) and
ny
0(t) to stabilize around 0.5. In fact, while the cavity mode

acquires information about the spin state in a certain direc-
tion, the spin also receives backreaction from the cavity mode
which reduces its coherence (manifest in Fig.8 as the damp-
ing of the oscillations in nx

0(t) and ny
0(t)). However, as dis-

cussed in the next subsection as well as in the past literature
[13, 46], the measurement-induced dephasing can be negative
during some periods of time, signaling the backflow of spin
information from the cavity. We will revisit this point after
discussing the spin dynamics in Subsection IV C 3. In particu-
lar, we will find that there are also measurement-induced spin
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energy jumps whose rates can be temporarily negative, which is a phenomenon that has not been captured by any effective
Hamiltonian methods in the literature.

Figure 8: The time evolution of the spin state population and spin-cavity mutual information in different spin basis for the dispersive readout model, as obtained
from the third-order TCG master equation. The cavity is initially empty whereas the spin at the initial time t = −9ns is a coherent superposition of the two
pointer states: |Ψ(−9ns)⟩ =

√
0.4|0⟩+

√
0.6|1⟩. Panel (a) shows the simulated dynamics with the parameters given in Eq.(27), whereas panel (b) shows the

same same variables for a smaller readout drive.

3. The EQME and the spin dynamics

As shown in Subsection IV A 5, the cavity degrees of free-
dom can be traced out from the EQME, which gives us the
following effective master equation for the spin in the interac-
tion picture:

∂tρS ≈− i
ωS(t)

2

[
σz, ρS

]
+

γφeff(t)

2
Dσz,σzρS

+ γ↓(t)Dσ−,σ+ρS + γ↑(t)Dσ+,σ−ρS

if we ignore the superoperators that are exponentially sup-
pressed by the TCG operation. Notice in particular that the
spin frequency shift ωS, the pure dephasing rate γφeff , and the
relaxation/excitation rates γ↓↑ are all time-dependent in gen-
eral due to their dependence on the cavity state, as shown in
Fig.9. In particular, all of these dephasing and transition rates
can be temporarily negative. However, the temporary negativ-
ity of the dephasing and transition rate are not unphysical, but
rather capture the time-dependent two-way exchange of infor-
mation between the spin and the cavity mode as well as the
two-way exchange of energy between the spin and the drive,
as will be discussed later in this subsection. In the literature,
such negative qubit dephasing rates are sometimes considered
as manifestation of the non-Markovianity of the dynamics of
the reduced spin system [47–50].

For the set of parameters in Eq.(27), the spin QME coeffi-
cients defined in Eq.(72-74) of Subsection IV A 5 are domi-

nated by the following contributions:

ωS(t) ≈ − 2g2acωa

ω2
d − ω2

a

(
1 + 2Re

[
αg(t)α

∗
e(t)

])
γφeff(t) ≈ − 4g2acωa

ω2
d − ω2

a

Im
[
αg(t)α

∗
e(t)

]
γ↓(t) ≈

4κcg
2
acωaωd

(ω2
d − ω2

a)
2
−

4ϵdg
2
ac

(
ω2
d + ω2

a

)(
ω2
d − ω2

a

)2 Im
[
αe(t)

]
γ↑(t) ≈ −

4ϵdg
2
ac

(
ω2
d + ω2

a

)(
ω2
d − ω2

a

)2 Im
[
αg(t)

]
(87)

In particular, we notice that on average, ωS(t) and γφeff(t)
are on the same order of magnitude for more than one pho-
ton in the cavity, and they are both much greater than the
drive-induced spin transition rates γ↓↑. Therefore, the spin
dynamics take place on two distinct time scales: a short de-
phasing time T2 determined by the total dephasing rate γϕ ≡
γφeff +

1
2 (γ↓ + γ↑), and a relatively long relaxation/excitation

time T1 determined by γ↑↓ alone. If we define the dephasing
time T2 during readout by the relation∫ T2

0

dt · γϕ(t) = 1 (88)

then for parameters on the same order of magnitude as those
in Eq.(27), we have

T2 ≈

√ √
2

ϵd|χ|
+

1

12

√
|χ|√
2ϵ3d

+
7κc

30
√
2|χ|ϵd

+
59κ2

c

1800 · 2 1
4 (|χ|ϵd)

3
2

(89)

where the first term is the dominant contribution and is in-
deed on the same order of magnitude as information acquisi-
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tion time in Eq.(86). The spin relaxation/excitation time scale
T1, on the other hand, can be characterized by

T1 ≡ 1

γ↓(∞) + γ↑(∞)

≈ (ω2
d − ω2

a)
2

4κcg2ac

[
ωaωd +

ϵ2d
(
ω2
d + ω2

a

)
|χ|2 + (κc

2 )2

]−1
(90)

since the cavity state stabilizes over a much smaller time scale
κ−1
c ≪ T1 ∼ γ−1

↑↓ . In terms of the (semi-classical) steady-
state cavity occupation number

nss
c ≡ lim

t≫κ−1
c

⟨nc(t)⟩ ≈
|ϵd|2

χ2 +
κ2
c

4

, (91)

the inverse T1 time can in general be written as a power series

T−1
1 = κs

(
1 + c1n

ss
c + c2(n

ss
c )

2 + · · ·
)

(92)

where performing TCG up to the 5th order gives us

c1 ≈ ω2
d + ω2

a

ωdωa
− 2g2ac

ωaωd

[8ω2
a(ω

2
a + ω2

d)

(ω2
d − ω2

a)
2

− 1
]

(93)

c2 ≈ −
2g2ac

(
7ω4

a + 10ω2
aω

2
d − ω4

d

)
ωaωd

(
ω2
d − ω2

a

)2 (94)

We emphasize that the dependence of T1 on the drive strength
ϵd is due to the emergent incoherent spin level transitions in
the effective EQME, which has not been captured by analyti-
cal models before.

As can be seen in Fig.9 and Fig.10, while the temporarily
negative γϕ(t) and γ↑↓(t) lead to revival of spin coherence and
reversed level transitions during the corresponding periods in
time, they are nonetheless limited to either a short transient
period in the early dynamics or longer periods where their ef-
fects are rendered negligible by the corresponding dynamics.
When the initial condition for the coarse-grained density ma-
trix is taken from a physical domain (which is a subset of the
density matrix space and depends on the coarse-graining time
scale), the temporarily negative rates do not produce any un-
physical states. In fact, throughout the time evolution, there is
still strong directionality in the exchange of information and
energy although they are two-way in principle. In addition,
we see that the pure dephasing rate γφeff and the drive-induced
transition rates γ↑↓ are responsible for physics at two very dis-
tinct time scales: the decay of the off-diagonal matrix element∣∣ρ01S (t)

∣∣ ∝ e−
∫ t
0
dt′·γϕ(t

′) is controlled by γϕ and takes about
100ns whereas the drive-induced transitions of the diagonal
matrix elements ρ00S and ρ11S occur over about 100µs. How-
ever, they can be obtained in a unified fashion as corrections
that occur at different orders in the TCG perturbative expan-
sion. Usually, the higher-order corrections are responsible for
phenomenology over longer time periods. Lastly, we note that
this analysis does not include additional loss channels acting
locally on the qubit itself, which in many applications can not
be ignored.

Figure 9: Time dependence of the total dephasing rate γϕ(t) as well as the
quantum-jump-induced dephasing rate 1

2

(
γ↑(t) + γ↓(t)

)
calculated from

Eq.(73) and Eq.(74) with numerically solved conditional cavity states assum-
ing the initial condition in Eq.(84) and the parameters in Eq.(27). The vertical
axes assume the unit of GHz.

Figure 10: The numerically simulated spin dynamics.

From another perspective, the dependence of γφeff and γ↑↓
on αg/e(t) can be regarded as representing channels of infor-
mation/energy exchange that are controlled by the entire his-
tory of the readout drive (resolved up to the coarse-graining
time scale τ ). In fact, as mentioned in the previous subsec-
tion, the time-dependent spin dephasing is modulating the ex-
change between quantum information of the spin and the mu-
tual information I

(
σz, (ϕ, n)

)
, as shown in Fig.11 where we

see that the time periods of negative γϕ(t) correspond to the
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periods of decreasing mutual information as well as increasing
spin coherence (since ∂t

∣∣ρ01S (t)
∣∣ = −γϕ(t)

∣∣ρ01S (t)
∣∣). Now,

if we are free to give the coefficient ϵd of the readout drive
some engineered time dependence that is slow compared to
the coarse-graining time scale τ , then we expect the EQME
to be still valid if we replace ϵd by ϵd(t) or its complex con-
jugate, and it would follow from Eq.(87) that the flow of in-
formation and energy due to γϕ(t) and γ↑↓ may be controlled
to some degree. For example, one can slowly modulate the
frequency of the drive by replacing ϵd with |ϵd|eiθ(t) for some
slowly-varying phase θ(t) (slow in comparison to τ ). In par-

Figure 11: Time evolution of the dephasing rate γϕ(t) and the mutual infor-
mation I

(
σz , (ϕ, n)

)
.

ticular, if one adopt the θ(t) defined by panel (a) of Fig.12,
then in theory one can significantly reduce the drive-induced
relaxation of the spin by minimizing

∣∣Im[αe(t)
]∣∣ while at the

same time maintaining approximately the same distance be-
tween the cavity pointer states in the phase space. However,
this scheme requires very precise control of the fine-tuned fre-
quency of the readout drive which may not be easily achiev-
able in readout experiments.

Finally, we note that, apart from the Purcell decay, both
spin dephasing and the incoherent energy level transitions can
be viewed as drive-induced phenomena, since αg/e is propor-
tional to ϵd. If one increases the drive strength, then γφeff(t),
γ↓, and γ↑ will all increase as |ϵd|2, leading to faster spin de-
phasing as well as more frequent incoherent spin level tran-
sitions, which has been widely observed in readout experi-
ments [41, 42]. In view of an accurate analysis of modern
readout experiments, however, the multi-level structure of the
transmon must be taken into account, which we do in the next
section.

V. THE TRANSMON READOUT PROBLEM

In this section we consider the readout dynamics for a more
accurate model of the qubit that is being measured. To this
end we consider the dispersive readout of a transmon qubit,
modeled by its Josephson potential, monitored through a de-
tuned linear resonator to which it is capacitively coupled (see
Fig.13 for the schematic circuit diagram). During the mea-

Figure 12: The fine-tuned time dependence of the frequency of the readout
drive shown in panel (a) is capable of suppressing the drive-induced spin re-
laxation, as shown in panel (b) with a spin initialized mostly in its excited
state.

surement, a readout drive close to the resonator frequency ωc

is applied to the resonator to perform heterodyne detection of
its quadrature variables. Since different energy levels of the
transmon shift the resonator frequency by different amounts,
the steady states of the resonator have previously been shown
to function as pointer states for the different qubit excitation
levels[13, 51].

Rapid qubit readout requires a large SNR which can be
achieved through a strong probe pulse, i.e. a large ϵd. But in-
creasing the amplitude of the probe pulse results in undesired
transitions to other states of the qubit than the one started out,
limiting the readout fidelity through misassignment errors. In
the two-level model of the qubit in the previous section, such
transition are limited to transitions between the two spin levels
(as found e.g. in Eq. (90)) however such transitions can also
be significant to levels outside the computational subspace, as
has been reported in recent experiments [41, 42] and analyzed
in early theoretical work [6–8, 13–16]. Such transitions can
easily be perceived in experiments as leading to a reduction in
the effective spin-T1 time, as concluded in Figure S2 of [42].
To distinguish these drive-induced transitions from each other,
the occupation of other levels have to be simultaneously mon-
itored in well-calibrated readout experiments [52, 53].

We analyze this situation as an informative case study in
this section. We shall not be concerned here with the effects
of an additional qubit-bath which can be important [54], nor
are we interested in the question of engineering qubits to sup-
press such readout errors [55, 56]. The goal here is to pro-
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vide the perspective offered by the TCG approach, analyze
the effectiveness of a TCG-based numerical analysis and the
interpretive power provided by the availability of high-order
analytical expressions.

We demonstrate that time-coarse graining the system dy-
namics down to below the GHz range would:

• give rise to explicit formula for the dispersive shift of
the resonator frequency as a function of the transmon
energy level;

• give rise to effective direct coupling between the trans-
mon and the bath, from which we derive the Purcell
decay rate for different transmon energy levels;

• reveal drive-induced incoherent transitions among the
transmon energy levels which can significantly impact
the lifetimes of all transmon levels as well as their pop-
ulations in non-equilibrium steady states.

Figure 13: The Hamiltonian in Eq.(G1) can be used to model either a super-
conducting circuit as shown in (a), or a driven atom-cavity system as shown
in (b). Therefore, we use “the transmon” and “the atom” interchangeably, and
also use “the (linear) resonator” and “the cavity” interchangeably. The bath
is modeled by the bosonic modes supported by a transmission line, and we
refer to the transmon (atom) and the resonator (cavity mode) as “the system”.

A. The Model for Dispersive Transmon Qubit Readout

In the rest of this paper, we investigate an experimentally-
relevant model for the dispersive readout of a transmon qubit,
where we suppose that the system both dissipates to and is
driven through a bath of transmission line modes capacitively
coupled to the readout resonator (see Fig. 13). We also as-
sume the bath to be at zero temperature, although general-
ization to finite temperatures is straightforward. In addition,
as motivated in the Appendix(A) through input-output theory,

we suppose that the recorded signal at the end of the measure-
ment chain is some time average (with resolution τ > 2ns) of
the output signal carried by the transmission line after down-
converting it by a local oscillator (LO) at frequency ωLO. See
Appendix(G) for further details. For simplicity, we assume
that the local oscillator frequency ωLO is the same as the read-
out drive frequency ωd, since small deviations from this value
would not qualitatively change the system dynamics. The free
and interaction-picture Hamiltonians can be written as

Ĥ0 =ωLOc
†c+ ωaa

†a− ϵωa

48

(
a+ a†

)4
+

∫
dωDωω

2π
B†

ωBω

(95)

and

HI(t) =HAC(t) +HA3C(t) +HD(t) +Hδ +HCB(t)
(96)

respectively, with

HAC(t) = gace
i(ω′

a(na)−ωd)t
(
1− ϵna

8

)
ca†

− gacca
(
1− ϵna

8

)
e−i(ω′

a(na)+ωd)t + h.c.;

HA3C(t) = −ϵgac
16

ei(3ω
′
a(na−1)−ωd)tca†3

+
ϵgac
16

ca3e−i(3ω′
a(na−1)+ωd)t + h.c.;

HD(t) =
(
ϵ∗dc− ϵde

−2iωdtc
)
+ h.c.;

Hδ = −(ωd − ωc)c
†c;

HCB(t) =

∫
dω

2π
Dωgω

(
ei(ω−ωd)tcB†

ω − e−i(ω+ωd)tcBω

)
+ h.c.

(97)

where the operator-valued function

ω′
a(na) := ωa

(
1− ϵ

4
na

)
(98)

gives us the phase frequency of the transmon quadrature vari-
able a depending on the energy level na, with the dependence
being a consequence of transmon anharmonicity. In addition
to variation in the transmon transition energies, a nonzero an-
harmonicity ϵ also gives rise to the nonlinear atom-resonator
couplings in HAC and HA3C .

Finally, we emphasize that we have chosen to include the
anharmonic transmon potential into the free Hamiltonian Ĥ0

in order to simplify the interaction Hamiltonian and more ac-
curately calculate the dispersive shift and Purcell rates at low
orders in perturbative TCG. The price we pay, however, is
that the modified transmon frequency ω′

a(na) in the interac-
tion picture now depends the energy level na. This also leads
to the inconvenient fact that the frequencies to be used in the
TCG calculations would be operator-valued and do not com-
mute with an arbitrary density matrix in general. However,
since we are interested in the coarse-grained density matrix
ρ(t) with sub-GHz resolution, the diagonal matrix elements
in the transmon energy eigenbasis (i.e., the “pointer basis”)
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are expected to decouple from the off-diagonal ones below the
fifth order in TCG, because the only operator products of no
more than four Hamiltonian terms in Eq.(97) whose total fre-
quencies can be resolved by τ would contain equal numbers
of a and a†. In fact, we can verify a posteriori from the TCG
master equation obtained in Subsection V B that there are no
significant superoperators coupling the diagonal density ma-
trix elements in the transmon pointer basis to the off-diagonal
ones up to the fourth-order EQME. Therefore, in the deriva-
tion of the TCG master equation, one can adopt the rule of
thumb that na commutes with ρ and understand the resulting
TCG superoperators as acting on those diagonal matrix ele-
ments in the transmon pointer basis. Furthermore, when we
obtain a superoperator whose coefficient depends on na, we
adopt the convention that the operator-valued coefficient acts
on the diagonal elements of ρ before any action of the dissi-
pator, i.e.,

κ(na)DA,Bρ ≡ Aκ(na)ρB − BAκ(na)ρ+ κ(na)ρBA

2
(99)

with the coefficient κ(na) being any function of na.

B. The TCG master equation and drive-induced dynamics

To explicitly calculate the TCG superoperators, we assume
that the coarse graining time scale τ is much greater than
1
ωc

, 1
ω′

a(na)
, and 1

|ωc−ω′
a(na)| (which are typically below the

nanosecond range) while allowing τ to be comparable or
smaller than 1

|ωd−ωc| . In summary, we make the following
assumptions in this section:

1

ωc
,

1

ω′
a(na)

,
1

|ωc − ω′
a(na)|

≪ τ ≲
1

|ωd − ωc|
,

1

J(ωc)
;

g

|ωc − ω′
a(na)|

≪ 1; ϵ < 1; ωd ∼ ωc.

(100)

With these conditions, we calculate the EQME up to the
fourth order while omitting superoperators that are expo-
nentially suppressed by factors smaller than or equal to

e−
(ωc−ω′

a(na))2τ2

2 . For all the numerical simulations per-
formed in this section, τ is assumed to be a few nanoseconds
so that the coefficients of the omitted superoperators are many
orders of magnitude smaller than the smallest of those to be
presented in the remainder of this subsection. In addition, for
the superoperators up to the fourth-order, τ > 2ns would be
safely in the IR limit, so the approximate (super)operator co-
efficients to be presented are all independent of τ . The bath
modes are traced out at zero temperature from the master
equation according to the formalism in Section III.

In addition, as detailed in the Appendix(H), we use the TCG
master equation to numerically solve for the dynamics of the
transmon pointer state populations pn(t) together with those
of the conditional resonator cumulant variables for each trans-
mon level n. For that purpose, we would be using the follow-
ing set of parameters that are not atypical of an experimental

readout scenario:

ϵ = 0.2 κc = 0.48MHz
ωc

2π
= 7GHz

ω01 ≡
ωa

(
1− ϵ

4

)
2π

= 5GHz
gac
2π

= 48.0MHz

(101)

where ω01 is the (approximate) transition energy between the
ground state and the first excited state of the transmon.

The transmon readout model described by the Hamiltonian
in Eq.(96,97) is in its essence similar to the toy model ana-
lyzed in the previous section, the Hamiltonian in Eq.(24). In
fact, the types of effective corrections obtained at each order
in the TCG master equations are exactly the same for both
models, and therefore we only present the fourth-order TCG
master equation here with corrections from all orders lumped
together. As in the general formalism, the fourth-order TCG
master equation can be written as

∂tρac(t) = −i
[
Heff, ρac(t)

]
+Deffρac(t) (102)

where the effective Hamiltonian contains the following cor-
rections

Heff =h0(na) + h1(na)nc + h2(na)n
2
c +

[
h
(−1)
0 (na)c

+ h
(−1)
1 (na)c

†c2 + h
(−2)
0 (na)c

2 + h.c.
]

(103)

while the effective dissipators can be split into three terms

Deff =D
(0)
eff +D

(−)
eff +D

(+)
eff (104)

with D
(0)
eff , D(−)

eff , and D
(+)
eff defined as the collections of dis-

sipators that keep the transmon level invariant, decrease it by
one, and increase it by one respectively. More explicitly, we
have

D
(0)
eff =d

(−1,−1)
0,0 (na)Dc,c† +

[
d
(−2,−1)
0,0 (na)Dc2,c†

+ d
(1,2)
0,0 (na)Dc†,c2 + h.c.

] (105)

D
(−)
eff =κ

(0,0)
0,0 (na)Da,a† + κ̃

(0,0)
0,0 (na)Da3,a†3

+
[
κ
(−1,−1)
(1,0) (na)Dac†c2,a†c† + κ

(1,1)
(1,0)(na)Dac†2c,a†c

+ κ
(0,0)
0,1 (na)Da,a†c†c + κ

(−1,0)
0,0 (na)Dac,a†

+ κ
(−1,0)
0,1 (na)Dac,a†c†c + κ

(0,1)
0,0 (na)Da,a†c

+ κ
(0,1)
1,0 (na)Dac†c,a†c + h.c.

]
(106)

D
(+)
eff =γ

(−1,−1)
(1,0) (na)Da†c†c2,ac† + γ

(1,1)
(1,0)(na)Da†c†2c,ac

+ γ
(0,0)
0,1 (na)Da†,ac†c + γ

(−1,0)
0,0 (na)Da†c,a

+ γ
(−1,0)
0,1 (na)Da†c,ac†c + γ

(0,1)
0,0 (na)Da†,ac

+ γ
(0,1)
1,0 (na)Da†c†c,ac + h.c.
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(107)

where we have again used the notation for generalized dissi-
pators defined in Eq.(43). In particular, we comment on the
following corrections which appear to have the most signif-
icant impact on observable dynamics at the coarse-graining
time τ :

• The emergent longitudinal coupling h1(na)nc between
the transmon and the resonator gives rise to the disper-
sive shift of the cavity frequency

χac ≡h1(0)− h1(1) ≈
ϵg2ac

(
ω′
a(1) + ω′

a(2)
)
ω2
d(

ω2
d − ω′

a(1)
2
)(
ω2
d − ω′

a(2)
2
)

which can be easily observed by heterodyne detection
and is the basis for dispersive readout of the transmon
state. From the structure of the contraction coefficients
in Eq.(6), we know that χac receives contributions from
virtual transitions between transmon levels 1 ↔ 2 as
well as 0 ↔ 1. If the artificial atom has nonzero ma-
trix elements ⟨0|(a− a†)|n⟩ or ⟨1|(a− a†)|n⟩ for some
higher levels n > 2, then virtual transitions to those
higher levels will also contribute to χac according to
the loop diagrams introduced in Section II. In addition,
the well-known Lamb shift

∆Lamb = −
∫ ∞

0

dω

2π
J(ω)

( 1

ω − ωc
+

1

ω + ωc

)
is also found to be an important contribution to the con-
stant part of h1(na).

• The resonator decay rate κc ≡ d
(−1,−1)
0,0 (na) = J(ωd)

is found by tracing out bath modes at zero temperature.
When the explicit form of the spectral density J(ω) is
needed in this section, we assume that

J(ω) =
αω

1 + ω2

Λ2

as suggested by the asymptotic behavior of the power
spectral density studied in [57] where the bath is mod-
eled by the modes of a transmission-line coupled to
semi-infinite waveguides at both ends. For the purpose
of numerical simulation, we would use the cutoff value
Λ = 2π · 100GHz. Note that J(ω) ≈ αω is approx-
imately Ohmic and insensitive to the cutoff Λ as long
as ω is comparable to system transition frequencies; on
the contrary, the Lamb shift ∆Lamb only converges if
J(ω) is properly regularized at high frequencies, be-
cause TCG only filters out direct transitions with large
energy differences but not any virtual transitions which
are responsible for the Lamb shift.

• The one- and three-photon Purcell decay rates are found
to be

κ
(0,0)
0,0 (na) = J

(
ω′
a(na)

)[2gac(1− ϵna

8

)
ωd

ω2
d − ω′

a(na)2

]2

and

κ̃
(0,0)
0,0 (na) =

ϵ2g2acω
2
dJ
(
3ω′

a(na − 1)
)

64
(
9ω′

a(na − 1)2 − ω2
d

)2
respectively. These Purcell decay processes are re-
sponsible for the drive-independent part of the trans-
mon relaxation. However, since the three-photon de-
cay rate κ̃(0,0)

0,0 (na) is at order ϵ2 and much smaller than

κ
(0,0)
0,0 (na) for the parameters in Eq.(101), we ignore it

in the effective dissipator Deff during numerical simu-
lations.

• The effective dissipators

κ
(−1,0)
0,0 (na)Dac,a† , κ

(0,1)
0,0 (na)Da,a†c,

γ
(−1,0)
0,0 (na)Da†c,a, γ

(0,1)
0,0 (na)Da†,ac,

and their hermitian conjugates are responsible for drive-
induced transitions among the transmon levels. These
dissipators are analogous to D

(3)
TCG in Eq.(45) for the

spin-cavity toy model, and their explicit forms are pre-
sented in Eq.(G27) of Appendix.(G). Tracing over the
resonator states, we find the corresponding relaxation
rate from level n to level (n− 1) of the transmon to be

K(n) = 2Re
[(
δ(3)κ

(−1,0)
0,0 (n) + δ(3)κ

(0,1)
0,0 (n)

)
· ⟨c⟩n

]
whereas the corresponding excitation rate from level n
to level (n+ 1) is

Γ(n) = 2Re
[(
δ(3)γ

(−1,0)
0,0 (n) + δ(3)γ

(0,1)
0,0 (n)

)
· ⟨c⟩n

]
.

With more detailed discussion at each order left to Ap-
pendix.(G), we focus on the phenomenological predictions of
the TCG master equation. In particular, we are interested in
the dynamics of the population pn(t) of the transmon level n.
Using the cumulant expansion method introduced in the Ap-
pendix(H), we solve for numerical solutions of the 4th-order
EQME for different drive strengths (measured in terms of
the steady-state resonator photon number n(0)

c := ⟨c†c⟩na=0

when the transmon is in the ground state); for all the numerical
simulations, the initial condition is taken to be the direct prod-
uct of the pure resonator vacuum state and the mixed transmon
state with the following nth-level populations pn(0):

p0 = 0.04; p1 = 0.95; pn = 9× 10−(n+1) ∀ n ≥ 2

As shown in panel (a) of Fig.14, the lifetime of the first
excited state of the transmon decreases by more than a fac-
tor of two for relatively small resonator photon occupancy
(n(0)

c ∼ 1) if the intrinsic dissipation of the transmon is neg-
ligible in comparison with the Purcell decay rate. However,
we emphasize that the EQME suggests different drive-induced
transition rates between all neighboring levels of the trans-
mon, so the relaxation of the transmon cannot be adequately
described by K(1) + Γ(1) alone.
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Figure 14: (a) Time evolution of the first excited state population p1 of the
transmon according to the 4th-order TCG master equation. The drive induced
transitions are significant compared to the Purcell decay rate for a moderately
driven readout resonator. The curves level off towards the end of the time evo-
lution as the system approach a non-equilibrium steady state. The horizontal
axis is in units of the zero-temperature Purcell decay time κ−1

a = 2.36ms as
defined in Eq.(G20). (b) The non-equilibrium steady-state transmon popula-
tion pn at level n plotted as a function the drive strength measured in n

(0)
c ,

the steady-state resonator photon number when the transmon is in its ground
state. All the simulations were obtained from the TCG QEM assuming that
τ = 2ns = 25(ωc − ω′

a(1))
−1 = 8.5× 10−7κ−1

a .

In addition, the steady-state population pn(∞) is nonzero
for any transmon level n due to the drive-induced transi-
tions, as shown in panel (b) of Fig.14 (it has been numer-
ically verified that the steady-state populations are indepen-
dent of the initial condition.). Moreover, for sufficiently large
drive strength, the steady-state population of a higher trans-
mon level will exceed that of a lower level, making it impos-
sible to assign a positive effective temperature to the transmon
in its steady-state [7, 41, 58]. Even for smaller drive strengths,
an effective-temperature description of the steady state is only
possible if we combine all the excited states of the transmon
into a single level for statistical purposes.

Figure 15: The predicted level-1 decay rate K(1)+Γ(1) as a function of the
drive strength measured in n

(0)
c is plotted at each order in the TCG pertur-

bation theory. Numerically, K(1) + Γ(1) is estimated by exponential curve
fitting during the time period where 0.78 < p1 < 1. The dashed curve,
on the other hand, represents the estimation given by the approximate ana-
lytical formula in Eq.(109). We observe good convergence of the theoretical
predictions starting at the third order in perturbative TCG.

In order to estimate the drive-induced transition rates K(n)
and Γ(n), we may approximate the conditional resonator state
by a coherent state with

⟨c⟩n ≈ ϵd

−
(
ω̃c(n)− ωd

)
+ κc

2 i
(108)

during all but the very initial period of the transmon time evo-
lution, where ω̃c(n) ≡ ωc + h1(n) is the modified resonator
frequency when the transmon is at level n. This approxima-
tion is justified since the lifetime of the resonator is much
shorter than that of the transmon in practical applications of
dispersive readout. Using this approximation of ⟨c⟩n in the
general formulas for K(n) and Γ(n), we find K(n) and Γ(n)
to be on the same order of magnitude with the corresponding
ratios between them and the Purcell decay rate κa(n) being

K(n)

κa(n)
=

|ϵd|2
(
1− ϵn

4

)(
ω̃c(n)− ωd

)2
+

κ2
c

4

ω2
d + ω′

a(n)
2

2ωdω′
a(n)

(
1− ϵn

8

)2
≈ n(n)

c

ω2
d + ω′

a(n)
2

2ωdω′
a(n)

Γ(n)

κa(n)
≈ n(n)

c

ω2
d + ω′

a(n+ 1)2

2ωdω′
a(n+ 1)

(109)

where n(n)
c is the quasi-steady state expectation value of nc ≡

c†c when the transmon is at level n. Analogous to Eq.(92) for
the spin-cavity model, the drive-induced transition rates can
in general also be written as a power series in n

(n)
c :

K(n)

κa(n)
= c−1 (n)n

(n)
c + c−2 (n)(n

(n)
c )2 + · · ·

Γ(n)

κa(n)
= c+1 (n)n

(n)
c + c+2 (n)(n

(n)
c )2 + · · ·

(110)

where higher-order terms are necessary for higher readout
drive power.

Since ωd and ω′
a(n) are both in the GHz range, the ratio

K(n)/κa(n) is on the same order of magnitude as n
(n)
c . If

Purcell decay is the dominant decay channel of the transmon,
then we expect the readout drive to significantly decrease the
T1 lifetime of the transmon qubit initially prepared in its first
excited state as soon as the drive is strong enough to main-
tain a few photons in the readout resonator. This is consistent
with observations from recent experimental studies[41, 59].
In fact, our analysis here show that the ratio between drive-
induced transition rates and the Purcell decay rate cannot be
easily reduced by tuning the transmon and resonator frequen-
cies or adjusting the transmon-resonator coupling strengths.
To minimize the relative strength of drive-induced transitions,
one has to fundamentally change the type of atom-resonator
couplings (employing longitudinal couplings for example) or
engineer the functional form of the spectral density.

On the other hand, we can also estimate the drive-induced
transition rate K(1) + Γ(1) by fitting the numerical solution
of p1(t) to an exponential curve. The resulting estimates for
K(1)+Γ(1) obtained with TCG master equations at different
orders can be found in Fig.15. In particular, we see that the
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drive-induced transitions kick in at the third order in the TCG expansion, and higher-order corrections only provide small
quantitative modifications to those transitions rates.

Figure 16: (a) The transient time evolution of resonator quadrature variables conditioned on the energy level of the transmon, as predicted by the 3rd-order
TCG equations of motion. The expectation values are plotted in solid curves whereas the second-order cumulants are represented by the shaded ellipses that
correspond to the one-sigma region of equivalent gaussian Husimi functions (i.e., the gaussian Husimi functions have the same second-order cumulants as the
corresponding cavity states, even though the cavity states are not necessarily gaussian). (b) The relative magnitude of the 2nd-order cumulants in the numerical
solutions to the 3rd-order TCG equations of motion. (c) The transient time evolution of resonator quadrature variables conditioned on the energy level of the
transmon, as predicted by the 4th-order TCG equations of motion. (d) The relative magnitude of the 2nd-order cumulants in the numerical solutions to the
4th-order TCG equations of motion.

In addition, we notice that the approximate analytical for-
mula in Eq.(109) is accurate for small drive strengths, but
deviates from the curve-fit values at high drive power. This
is mainly due to the fact that the resonator state sees greater
deviation from our coherent state ansatz with stronger drive.
This deviation can be characterized by the higher-order cu-
mulant variables introduced in the Appendix.(H) and shown
in Fig.16.

More precisely, the second-order cumulant C(n)

c†c
(t) mea-

sures the average increase in the variance of c from its Heisen-
berg limit along all directions in the phase space, whereas
C

(n)
c2 (t) reflects the amount and direction of squeezing. The

main effect of the fourth-order TCG superoperators appears
to be increasing the second-order cumulants during transient
evolution of the resonator.

For example, with the resonator empty at t = 0 and p1(0) =
0.95, numerical solutions to the third- and fourth-order TCG
equations of motion show noticeably different transient time
evolution of the resonator quadrature variables, as one can see
by comparing the upper panels with the lower ones in Fig.16.
More precisely, the fourth-order TCG superoperators generate
additional deviations from coherent states before the resonator

settles into its steady state.

Furthermore, in both the third- and the fourth-order simu-
lations, we find that the resonator only deviates from coherent
states during an intermediate transient time period where t is
on the same order of magnitude as 1/κc (see the left panels
of Fig.16). For both early- and late-time evolution, coherent
states can be considered good approximations to the condi-
tional resonator state for each transmon energy level. We em-
phasize that this fact agrees with and provides theoretical sup-
port for the experimentally successful practice of using res-
onator states as pointer states to indicate the transmon energy
level.

As a sanity check, we also present the relative magnitudes
of the second-order cumulants in the right panels of Fig.16
where C

(na)
c2 and C

(na)

c†c
are weighed against the squared ab-

solute value of the first-order cumulant C(na)
c . Since cumu-

lant expansion can be considered as a semi-classical expan-
sion around the coherent state, we may confidently truncate
the cumulant expansion only if the ratios |C(na)

c2 /C
(na)2
c | and

C
(na)

c†c
/|C(na)

c |2 remain below 1 for the vast majority of time
and never increase much beyond 1. This is indeed the case
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according to the right panels of Fig.16. And we have also ver-
ified that the transmon dynamics as well as the steady-state
means and variances of the resonator quadrature variables is
very insensitive to variations in the initial state, which further
increases our confidence in the validity of truncating the TCG
master equation.

VI. SUMMARY AND OUTLOOK

To summarize, we have developed the measurement-
adapted time-coarse graining (MaTCG) as a systematic per-
turbation theory with both closed-form combinatorial formu-
las for the superoperators generated at each order and a di-
agrammatic representation for each term in the correspond-
ing coefficients. In addition, we have given a prescription
for modeling the time-coarse grained dynamics of open quan-
tum systems, which starts from the standard system+bath for-
malism and treats the system and bath degrees of freedom on
the same footing in deriving the time-coarse grained effective
master equation before the bath degrees of freedom are traced
out. This approach not only directly relates the measurement
time resolution τ to the validity of Markov and secular ap-
proximations, but also suggests that the effective incoherent
processes need to be treated on the same footing as the coher-
ent ones in a measurement-informed system+bath formalism,
which opens up the possibility for new types of bath-induced
effective dynamics of the reduced system density matrix ob-
served with finite time resolution. In particular, the interplay
among the bath degrees of freedom, the external drives, and
the system nonlinearity can lead to intricate forms of non-
Markovian incoherent transitions which are very difficult to
capture with effective Hamiltonian methods. As a demonstra-
tion for the method, we have applied the MaTCG perturbation
theory to an experimentally relevant model for the dispersive
readout of a transmon qubit, where simple analytical expres-
sions for the drive-induced relaxation and excitation rates have
been found for each transmon energy level, along with other
corrections which contain all the known effective dynamics
in the literature as a subset. The drive-induced transition rates
have been found to be surpass the Purcell decay rates for mod-
erate drive strengths (⟨nc⟩ ∼ 1), for which there has been
at least indirect evidence from recent experimental analysis
[41, 59]. Noticeably, the most dominant contributions to the
drive-induced transitions are not sensitive to the anharmonic-
ity ϵ, and we expect similar phenomena both for coupled lin-
ear quantum oscillators and for fluxonium-resonator systems.
In addition, with cumulant expansion in the resonator quadra-
ture variables, we have derived effective equations of motion
for the relevant transmon and resonator variables with sub-
GHz time resolution. The limited number of relevant variables
and the absence of fast dynamics in those equations of motion
make numerical simulation much easier than in conventional
approaches, and we have been able to solve for the transient
resonator dynamics and the late-time steady state of the trans-
mon in a single simulation. Furthermore, we have also been
able to solve for higher moments of the resonator quadrature
variables in a time-efficient way using the TCG equations of

motion.
Similar lines of thought have also motivated the recently

developed perturbation method for computing static effective
Hamiltonians of rapidly driven nonlinear quantum systems
[9, 60]. This method offers another view of the effective
dynamics by canonically transforming to a frame with time-
independent Hamiltonian instead of direct time-coarse grain-
ing. In fact, the Hamiltonian part of the TCG master equa-
tion exactly reproduces the static effective Hamiltonian for
the examples calculated in [9]. However, unlike the canoni-
cally transformed density matrix ϱ(t), the time-coarse grained
ρ(t) does not undergo purely unitary time evolution generated
by an effective Hamiltonian in general, and the TCG dissipa-
tors become important in certain situations as we have seen
in the analysis of the transmon readout problem. As a gen-
eral rule of thumb, the TCG dissipators account for the inco-
herent transfer of information/energy across different degrees
of freedom in the system; while such incoherent processes
are usual weak in comparison with the coherent ones, they
assume great importance for the long-time dynamics of the
system when external drives and/or dissipative environments
induce directional flow of information/energy throughout the
system in a far-from equilibrium scenario. Furthermore, the
choice of frame in the MaTCG method is based on the read-
out channel rather than some presupposed steady state, which
makes results from MaTCG more reliable regarding the tran-
sient dynamics. From a practical point of view, the effective
model given by MaTCG is fully informed by the choice of
the observation channel and time resolution in experiments,
and the resulting EQMEs describe variables that can be di-
rectly observed in principle, without needing to perform any
extra transformation of the experimental observables. Finally,
we note that although the explicit analytical results in this pa-
per are derived assuming gaussian window functions, our gen-
eral formulas in Eq.(5) and Eq.(6) make no assumption about
the particular form of the window function f(t; τ), and more
complicated measurement chains may be effectively modeled
by some more sophisticated f(t; τ) through which informa-
tion about the quantum system is aggregated by the measure-
ment devices.

Considered in a broader context, MaTCG bears some sig-
nificant resemblance to the philosophy behind Wilsonian
renormalization [22–24]. Indeed, as an important theoreti-
cal tool and conceptual bedrock for quantum field theories,
Wilsonian renormalization allows one to obtain effective the-
ories at low-momentum/large scale from a microscopic the-
ory. It filters out the small-scale fluctuations from a model,
while keeping track of their contributions to the dynamics at
a certain large length scale that can be understood as the spa-
tial resolution of the resulting effective theory. In the same
spirit, MaTCG postulates that details of the high-frequency
transitions in a quantum theory should be irrelevant when a
system is prepared and observed with finite time-resolution
through a certain measurement channel, and it is only their
impact on the long-time dynamics of the resolvable degrees of
freedom, the “corrections from renormalization”, that should
be incorporated into the effective theory. However, as pointed
out in the Introduction, there are also important conceptual
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difference between Wilsonian renormalization and MaTCG,
in particular since the MaTCG does not explicitly truncate
the Hilbert space. In fact, MaTCG only validates the trun-
cation of the Hilbert space if the initial condition effectively
limits the relevant degrees of freedom to a particular sec-
tion of the Hilbert space. This feature renders MaTCG more
similar to the flow equation method by Wilson and Weg-
ner [25–27], which has been shown to be effective for solv-
ing non-equilibrium dynamics of quantum systems. An addi-
tional important feature of MaTCG is that the integrated high-
frequency transitions are with respect to a finite frequency
ω0 depending on the measurement channel; from that point
of view, MaTCG implements not a low-pass filter in the fre-
quency domain of the many-body dynamics (as in the flow-
equation method) but a band-pass filter. In addition, since
here we have mostly concerned ourselves with the measurable
quantum dynamics of finite dimensional dimensional non-
linear quantum systems embedded in the electromagnetic con-
tinuum, “integrating out” the fast transitions in MaTCG would
generate relevant superoperators in the effective master equa-
tion that are new and qualitatively different from those in the
microscopic theory, in contrast with high-dimensional quan-
tum field theories where only a handful of interactions remain
relevant in the IR limit. Inspired by the explanatory power
of Wilsonian renormalization and the flow equation method,
we think it is reasonable to expect that MaTCG would be
useful in a wide range of studies, from parametrically driven
qubits and quantum-limited amplifiers in 0+1 dimensions, to
higher-dimensional field theories with well-defined measure-

ment channels.
Potential future work includes combining TCG with spa-

tial coarse-graining in a congruent way so that effective field
theories may be developed to efficiently describe dissipative
and/or non-equilibrium quantum system in (d+1) dimensions.
This may not only provide a theoretical framework comple-
mentary to the Schwinger-Keldysh formalism, but also estab-
lish a more natural and experimentally relevant connection be-
tween field theories and their lattice counterparts described
in the discrete exterior calculus (DEC) formalism where vari-
ables defined on the simplicial complex of a lattice are inter-
preted as spatially and temporally integrated degrees of free-
dom that constitute the physical observables in the theory[61].
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Appendix A: Input-output theory and the choice of interaction picture in TCG

Analogous to the canonical formulation of quantum input-output theory in [62], we can investigate the extraction of quantum
information with finite time resolution. For instance, suppose that we probe a circuit QED system by sending in a microwave
pulse to a quantum resonator through a waveguide and reading out the reflected signal with some finite time resolution τ . Then

https://doi.org/10.1103/PhysRevApplied.11.014030
https://doi.org/10.1103/PhysRevApplied.10.034040
https://doi.org/10.1038/s41534-023-00689-6
https://doi.org/10.1103/PhysRevA.82.022335
https://doi.org/10.1103/PhysRevLett.105.173601
https://doi.org/10.1103/PhysRevLett.105.173601
https://doi.org/10.1109/TASC.2023.3254485
https://doi.org/10.1109/TASC.2023.3254485
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/RevModPhys.55.583
https://doi.org/10.1103/PhysRevD.48.5863
https://doi.org/https://doi.org/10.1016/S0920-5632(00)00911-7
https://doi.org/https://doi.org/10.1016/S0920-5632(00)00911-7
https://doi.org/10.1007/3-540-34068-8
https://doi.org/10.1007/3-540-34068-8
https://doi.org/10.1103/PhysRevA.91.013814
https://doi.org/10.1103/PhysRevA.82.052106
https://doi.org/10.1103/PhysRevA.97.012102
https://doi.org/10.1103/PhysRevA.97.012102
https://arxiv.org/abs/2407.06068
https://arxiv.org/abs/2407.06068
http://arxiv.org/abs/2407.06068
https://doi.org/10.1088/0031-8949/1986/T12/003
https://doi.org/https://doi.org/10.1002/9783527617197.ch4
http://arxiv.org/abs/1710.09939
https://doi.org/https://doi.org/10.1006/aphy.1996.0123
https://doi.org/https://doi.org/10.1016/0375-9601(79)90445-6
https://doi.org/https://doi.org/10.1016/0375-9601(79)90445-6
https://doi.org/10.1088/1355-5111/10/6/003
https://doi.org/10.1088/1355-5111/10/6/003
https://doi.org/10.1088/1355-5111/10/6/003
https://doi.org/10.1103/PhysRevA.80.033846
https://doi.org/10.1103/PhysRevA.80.033846
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1038/s41586-019-1287-z
https://doi.org/10.1103/PhysRevLett.117.070801
https://doi.org/https://doi.org/10.1016/0003-4916(92)90086-2
https://doi.org/10.1109/JSTQE.2009.2024959
https://doi.org/10.1109/JSTQE.2009.2024959
https://doi.org/10.1103/PhysRevA.74.042318
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1038/s41598-017-06059-5
https://doi.org/10.1038/s41598-017-06059-5
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevA.98.032328
https://doi.org/10.1103/PhysRevA.98.032328
https://doi.org/10.1103/PhysRevApplied.20.054013
https://doi.org/10.1103/PhysRevApplied.20.054013
https://doi.org/10.1103/PhysRevApplied.15.064030
https://doi.org/10.1103/PhysRevApplied.15.064030
https://doi.org/10.1038/s41467-021-26205-y
https://doi.org/10.1038/s41467-021-26205-y
https://arxiv.org/abs/2305.10508
https://arxiv.org/abs/2305.10508
http://arxiv.org/abs/2305.10508
https://doi.org/10.1038/s41467-023-42060-5
https://doi.org/10.1038/s41467-023-42060-5
https://doi.org/10.1038/s41534-021-00431-0
https://doi.org/10.1103/PhysRevLett.119.073601
https://doi.org/10.1103/PhysRevLett.119.073601
https://doi.org/10.1103/PRXQuantum.4.020312
https://doi.org/10.1103/PRXQuantum.4.020312
https://doi.org/10.1038/s41534-021-00461-8
https://doi.org/10.1038/s41534-021-00461-8
https://doi.org/10.1103/PhysRevA.107.053704
https://doi.org/10.1103/PhysRevA.107.053704
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.86.063802
https://doi.org/10.1103/PhysRevA.86.063802


28

a typical Hamiltonian description of such a system can be written as

Ĥ = Ĥs +

∫ ∞

0

dω

2π
· DωωB

†
ωBω −

(
a− a†

) ∫ ∞

0

dω

2π
· Dωgω

(
Bω −B†

ω

)
(A1)

where Ĥs is the Schrodinger-picture Hamiltonian of the quantum system of interest, Bω is the annihilation operator of a waveg-
uide mode through which the system dissipates and gets probed at the same time, while −i

(
a− a†

)
is the quadrature variable of

the resonator mode to which the waveguide modes couple. In the Heisenberg picture, we have the following operator equation:

∂tB
H
ω (t)

=i
[ ∫ ∞

0

dω

2π
DωωB

H†
ω (t)BH

ω (t)−
(
aH(t)− aH†(t)

) ∫ ∞

0

dω

2π
Dωgω

(
BH

ω (t)−BH†
ω (t)

)
, BH

ω (t)
]

=− iωBH
ω (t)− igω

(
aH(t)− aH†(t)

)
,

(A2)

∂ta
H(t) =i

[
Ĥs, a

H(t)
]
− i

∫ ∞

0

dω

2π
· Dωgω

(
BH

ω (t)−BH†
ω (t)

)
=i
[
Ĥs, a

H(t)
]
− i

∫ ∞

0

dω

2π
· Dωgω

(
e−iω(t−ti)BH

ω (ti)− eiω(t−ti)BH†
ω (ti)

)
+O(g2),

(A3)

where the first one can be formally solved to obtain

BH
ω (t) =e−iω(t−ti)BH

ω (ti)− igω

∫ t−ti

0

dt′ · e−iωt′
(
aH(t− t′)− aH†(t− t′)

)
=eiω(tf−t)BH

ω (tf ) + igω

∫ tf−t

0

dt′ · eiωt′
(
aH(t+ t′)− aH†(t+ t′)

)
,

(A4)

and the second one can be formally integrated to give us

aH(t− t′) ≈eiω0t
′
aH(t) +

∫ ∞

0

dω

2π
Dωgω

∫ t′

0

dt′′eiω0(t
′−t′′)

(
ie−iω(t−t′′)BH

ω + h.c.
)
. (A5)

Here ω0 is the system frequency of the Heisenberg-picture operator aH(t) during the measurement process, while the generation,
interaction, and detection times ti, t, tf are related as tf = ti +

L
c = t+ l

c with L ( or l ) the optical distance between the signal
generator ( or the artificial atom ) and the detector. Therefore, if we define the input and output waveguide mode operators as

BH
in (t) :=

∫ ∞

0

dω

2π
· Dωe

−iω(t−ti)BH
ω (ti) (A6)

and

BH
out(t) :=

∫ ∞

0

dω

2π
· Dωe

iω(tf−t)BH
ω (tf ) (A7)

respectively, then we can relate BH
in (t) to BH

out(t) by taking the difference between the following two expressions of
∫∞
0

dω
2π ·

DωB
H
ω (t) ∫ ∞

0

dω

2π
· DωB

H
ω (t) =

∫ ∞

0

dω

2π
· Dωe

−iω(t−ti)BH
ω (ti) + i

∫ ∞

0

dω

2π
· Dωgω

∫ t−ti

0

dt′

·
(
e−i(ω−ω0)t

′
e−iω0t

′
aH(t− t′)− e−i(ω+ω0)t

′
eiω0t

′
aH†(t− t′)

)
=

∫ ∞

0

dω

2π
· Dωe

iω(tf−t)BH
ω (tf ) + i

∫ ∞

0

dω

2π
· Dωgω

∫ tf−t

0

dt′

·
(
ei(ω−ω0)t

′
eiω0t

′
aH(t+ t′)− ei(ω+ω0)t

′
e−iω0t

′
aH†(t+ t′)

)
(A8)

which gives us the equation

BH
out(t) = BH

in (t)− i

∫ ∞

0

dω

2π
· Dωgω

∫ l
c

−L−l
c

dt′ ·
(
eiωt′aH(t+ t′)− eiωt′aH†(t+ t′)

)
(A9)
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In the usual formulation of input-output theory, one assumes the validity of the approximation aH(t + t′) ≈ e−iω0t
′
aH(t), for

some ω0 > 0, which then allows us to write

BH
out(t) =BH

in (t)− i

∫ ∞

0

dω

2π
Dωgω

∫ l
c

−L−l
c

dt′
(
eiωt′aH(t+ t′)− eiωt′aH†(t+ t′)

)
≈BH

in (t)− i

∫ ∞

0

dω

2π
Dωgω

∫ ∞

−∞
dt′
(
ei(ω−ω0)t

′
aH(t)− ei(ω+ω0)t

′
aH†(t)

)
=BH

in (t)− iDω0
gω0

aH(t).

(A10)

Usually, Eq.(A10) is regarded as the final formula for the observed output signal in terms of the input signal BH
in (t) and the

system observable −iDω0gω0a
H(t). In light of the epistemology of measurement-informed coarse graining, however, we would

like to delve deeper into the measurement process and assume finite time resolution for the physically observed signal. To this
goal, we first evaluate the expectation value of the output signal as

⟨BH
out(t)⟩ = Tr

(
ρ(t0)B

H
out(t)

)
=− i

∫ ∞

0

dω

2π
· Dωgω

∫ l
c

−L−l
c

dt′ ·
(
eiωt′Tr

[
ρ(t0)a

H(t+ t′)
]
− eiωt′Tr

[
ρ(t0)a

H†(t+ t′)
])

+ Tr
[
ρ(t0)B

H
in (t)

]
=− i

∫ ∞

0

dω

2π
· Dωgω

∫ l
c

−L−l
c

dt′ · eiωt′
(
e−iω′(t+t′−t0)Tr

[
ρ(t0)

· U†(t+ t′, t0)Uω′(t+ t′ − t0)aU
†
ω′(t+ t′ − t0)U(t+ t′, t0)

]
− h.c.

)
+

∫ ∞

0

dω

2π
· Dωe

−iω(t−ti)Tr
[
ρ(t0)B

H
ω (ti)

]
=− i

∫ ∞

0

dω

2π
· Dωgω

∫ l
c

−L−l
c

dt′ · eiωt′
(
e−iω′(t+t′−t0)Tr

[
ρω′(t+ t′)a

]
− h.c.

)
+

∫ ∞

0

dω

2π
· Dωe

−iω(t−ti)Tr
[
ρ(t0)B

H
ω (ti)

]

(A11)

for any ω′, where

Uω′(t+ t′ − t0) ≡ e−i(ω′a†a+H̃0)(t+t′−t0) (A12)

is the free time-evolution operator with arbitrary hermitian H̃0 so that [H̃0, a] = 0, and

ρω′(t+ t′) ≡ U†
ω′(t+ t′ − t0)U(t+ t′, t0)ρ(t0)U

†(t+ t′, t0)Uω′(t+ t′ − t0) (A13)

is the corresponding interaction-picture density matrix.
During heterodyne detection, the output signal BH

out(t) from the system is then combined with a local oscillator mode at
frequency ωLO] ∼ ω0 as it passes through an IQ-mixer, and the mixed signals at the two output ports of the IQ-mixer are
what get measured (with finite time resolution) and recorded eventually, as explained in [10, 63]. Therefore, the experimentally
observed signals are proportional to the real and imaginary parts of

⟨ei(ωLOt−φ)BH
out(t)⟩

=− i

∫ ∞

0

dω

2π
· Dωgω

∫ l
c

−L−l
c

dt′ · eiωt′−iφ
(
e−iω′(t′−t0)Tr

[
ei(ωLO−ω′)tρω′(t+ t′)a

]
− h.c.

)
+

∫ ∞

0

dω

2π
· Dωe−iω(t−ti)Tr

[
ρ(t0)B

H
ω (ti)

] (A14)

for some real-valued phase φ. The first line of the equation above will be a functional of ρ(t+ t′) iff we set ω′ = ωLO, in which
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case we have

⟨ei(ωLOt−φ)BH
out(t)⟩ ≈ − i

∫ ∞

0

dω

2π
· Dωgω

∫ l
c

−L−l
c

dt′ · eiωt′−iφe−iωLO(t
′−t0)Tr

[
ρωLO(t+ t′)a

]
+

∫ ∞

0

dω

2π
· Dωe−iω(t−ti)Tr

[
ρ(t0)B

H
ω (ti)

]
≈− i

∫ ∞

0

dω

2π
· Dωgω

∫ l
c

−L−l
c

dt′ · eiωt′−iφe−iωLO(t
′−t0)Tr

[
ρωLO(t+ t′)a

]
+ e−iφ DωLO√

2πτ
e−

(t−ti)
2

2τ2 Tr
[
ρ(t0)B

H
ωLO

(ti)
]

(A15)

where we have assumed that Dω and Tr
[
ρ(t0)B

H
ω (ti)

]
are roughly flat for

ω ∈
(
ωLO − τ−1, ωLO + τ−1

)
. (A16)

If we further make the Markov approximation

Tr
[
ρωLO(t+ t′)a

]
≈ ei(ωLO−ω0)t

′
Tr
[
ρωLO(t)a

]
(A17)

then we can also make the usual secular approximation and obtain that

⟨ei(ωLOt−φ)BH
out(t)⟩ ≈ − i

∫ ∞

0

dω

2π
· Dωgωe

−iφ+iωLOt0

∫ l
c

−L−l
c

dt′ · ei(ω−ω0)t
′
Tr
[
ρωLO(t)a

]
+ e−iφ DωLO√

2πτ
e−

(t−ti)
2

2τ2 Tr
[
ρ(t0)B

H
ωLO

(ti)
]

≈− iDω0
gω0

e−iφ+iωLOt0Tr
[
ρωLO(t)a

]
+ e−iφ DωLO√

2πτ
e−

(t−ti)
2

2τ2 Tr
[
ρ(t0)B

H
ωLO

(ti)
]

(A18)

where the second term in the last equation is a recurring background signal independent of the system dynamics and can be
ignored in the limit where t − ti ≫ τ . Consequently, according to the analysis in [10, 44, 64], ideal homodyne measurements
will correspond to the measurement of a particular resonator quadrature variable with respect to the TCG density matrix ρωLO(t),
whereas ideal heterodyne measurements will be sampling from the Husimi Q-distribution

Q
(
ϕ, n

)
=

1

2π
⟨α =

ϕ+ ni√
2

|ρωLO |α =
ϕ+ ni√

2
⟩. (A19)

The analysis above partially explains our particular choice of the interaction picture: the frame choice depends on the local
oscillator frequency ωLO of the IQ mixer. More explicitly, the free Hamiltonian can be written as

H0 = ωLOa
†a+ H̃0, (A20)

for some arbitrary hermitian H̃0 so that [H̃0, a] = 0. Although H̃0 is quite arbitrary in principle, the remaining freedom in H̃0

is usually fixed by minimizing coupling strengths in the interaction Hamiltonian in practice. Such choices will make the TCG
perturbative expansion more likely to converge up to high orders. More precisely, if the interaction-picture Hamiltonian takes
the form HI =

∑
k gke

iωkthk for some coupling constants gk, frequencies ωk, and operators hk, then the perturbative expansion
of the TCG Liouvillian is only valid when either of the following two conditions are true:[ gk

ωk − ωk′
≪ 1 ∀k′

]
or

[
gkτ ≪ 1

]
∀k. (A21)

With the frame choice understood, we will drop the subscript in ρωLO(t) and simply denote the TCG density matrix by ρ(t) in
the rest of this work.
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Appendix B: Closed-form formula and diagrammatic representation of the TCG Liouvillian Lk

We suppose that the interaction picture is chosen in such a way that HI is controlled by some small parameters and may
therefore be treated perturbatively to obtain an expansion of the Liouvillian superoperator L(t) in powers of HI . In this section,
we develop a relatively efficient method for explicitly calculating L(t) to arbitrary orders in this expansion.

To do this, we first expand the unitary time evolution operator U(t) ≡ T e−i
∫ t
0
dt′·HI(t

′) as

U(t0) =1 +

∞∑
k=1

(−i)k
∫ t0

0

· · ·
∫ tk−1

0

dtk ·HI(t1) · · ·HI(tk)

≡
∞∑
k=0

Uk(t)

(B1)

where Uk is the k-th order time-evolution operator. And in terms of these operators, we can formally expand the time-coarse
grained density matrix as

ρ(t) =

∞∑
k=0

k∑
k1=0

Uk1ρ0U
†
k−k1

(t) ≡
∞∑
k=0

Ek(t)ρ0 (B2)

where Ek(t)ρ0 =
∑k

k1=0 Uk1ρ0U
†
k−k1

(t) is considered a k-th order term. We can also formally expand the Liouvillian superop-
erator L(t) as L(t) =

∑∞
k=1 Lk(t) in powers of the interaction Hamiltonian. In order to obtain a functional equation for Lk, we

plug Eq.(B2) into Eq.(3):

∂tρ(t) =− i

∞∑
k=1

k∑
k1=1

(
HIUk1−1ρ0U

†
k−k1

(t)− Uk1−1ρ0U
†
k−k1

HI(t)
)

=

∞∑
j=1

Lj(t)ρ(t) =

∞∑
j=1

Lj(t)

∞∑
k=0

Ek(t)ρ0 =

∞∑
j=1

Lj(t)

∞∑
k−j=0

Ek−j(t)ρ0

=

∞∑
k=1

k∑
j=1

Lj(t)Ek−j(t)ρ0

(B3)

Matching terms that are at order Hk
I , expanding Ek−j(t) according to Eq.(B2), and replacing ρ0 by a generic density matrix ρ,

we find the following recurrence relation for any k ≥ 1

iLk(t)ρ =

k∑
k1=1

(
HIUk1−1ρU

†
k−k1

(t)− Uk1−1ρU
†
k−k1

HI(t)
)

− i

k−1∑
j=0

Lj(t)

k−j∑
k1=0

Uk1ρU
†
k−j−k1

(t)

(B4)

where we define L0 ≡ 0. Using this recurrence relation, one can calculate Lk(t) to all orders in HI . More explicitly, one has

HIUk = HIUk −
k∑

j=0

HIU j−1Uk+1−j (B5)

and

HIUk1−1ρU
†
k+1−k1

(t) = HIUk1−1ρU
†
k+1−k1

(t)−
k∑

j=1

min(k1−1,k+1−j)∑
k2=max(0,k1−j)

HIUk1−k2−1Uk2ρU
†
k+1−j−k2

U†
j+k2−k1

(t) (B6)

where ρ is an arbitrary density matrix and does not participate in any of the time averaging or contraction operations.
If the interaction-picture Hamiltonian takes the form HI(t) =

∑
j e

iωjthj , then one can derive a number of explicit analytical
formulas which will be useful for developing the closed-form expressions for the superoperator coefficients discussed in Section
(II). For example, the n-th order time evolution operator Un(t) can be explicitly written as

Un(t) =− i

∫ t

0

dt′ ·HI(t
′)Un−1(t

′) =
∑

k1,··· ,kn

n∑
j=0

(−1)jei(ωk1
+ωk2

+···+ωkj
)t

(ωkj
, ωkj−1

, · · · , ωk1
)! · (ωkj+1

, ωkj+2
, · · · , ωkn

)!
hk1

hk2
· · ·hkn (B7)
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where we define the factorial of a vector ω⃗ = (ω1, ω2, · · · , ωn) as

ω⃗! ≡ (ω1 + ω2 + · · ·+ ωn)(ω1 + ω2 + · · ·+ ωn−1) · · ·ω1 (B8)

with the factorial of a zero-length vector defined to be unity, i.e., ∅⃗! ≡ 1.
On the other hand, when calculating the TCG master equation according to the recursive relations in Eq.(B4), one needs to

calculate a large number of time averages of the form HIUk1−1ρU
†
k−k1

(t) which does not consist of operators with single-
frequency time dependence when k ≥ 2. For example, one has

HIU1(t) =
∑
l1,l2

(
− f̃(ωl1 + ωl2)e

i(ωl1
+ωl2

)t − f̃(ωl1)e
iωl1

t

ωl2

)
hl1hl2 . (B9)

for any operators eiω1th1 and eiω2th2 in the Hamiltonian. The complicated structure of HIUk1−1ρU
†
k−k1

(t) for k > 2 makes
it difficult to work with. However, one can group together all the terms in Lk(t)ρ which take the form of a c-number-valued
function of time multiplied to a certain operator product of the form hl1hl2 · · ·hlk1

ρhlk1+1
· · ·hlk , and define their sum as the

contraction

HIUk1−1ρU
†
k−k1

(t). (B10)

It then turns out that for any operator product hl1hl2 · · ·hlk1
ρhlk1+1

· · ·hlk that appears in such a contraction, its time dependence
is always a single-frequency evolution at the sum of the constituent operator frequencies ωl1 + · · ·+ ωlk . For example, one has

HIU1(t) =
∑
l1,l2

(
− f̃(ωl1 + ωl2)− f̃(ωl1)f̃(ωl2)

ωl2

)
ei(ωl1

+ωl2
)thl1hl2 (B11)

in contrast with Eq.(B9). More generally, for any k1 ≥ 1, the contractions will take the form

HIUk1−1ρU
†
k−k1

(t) =
∑
l1···lk

C
(
ωl1 , · · · , ωlk ; k1

)
ei(ωl1

+···+ωlk
)thl1 · · ·hlk1

ρhlk1+1
· · ·hlk (B12)

for some c-number coefficient C
(
ωl1 , · · · , ωlk ; k1

)
whose explicit expression can be written as

C
(
ωl1 , · · · , ωlk ; k1

)
=

∑
σ∈Π(k1,k−k1)

(−1)k1+|σ|sum
[
σ
|σ|
↑ (ωl1 , ωl2 , · · · , ωlk)

] |σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(ωl1

,ωl2
,··· ,ωlk

) ω
)

σj
↑(ωl1 , ωl2 , · · · , ωlk)! · σ

j
↓(ωl1 , ωl2 , · · · , ωlk)!

(B13)

where Π(k1, k − k1) is the set of all ordered partitions of the 2-tuple
(

k1
k − k1

)
with the upper component of the last part

being nonzero, σj
↑ and σj

↓ represent the upper and lower elements of the j-th part in the partition respectively 2, and for any
σ ∈ Π(k1, k − k1) we define

σj
↑
(
ωl1 , ωl2 , · · · , ωlk

)
≡
(
ωl

k1−σ1
↑−···−σ

j−1
↑

, ωl
k1−σ1

↑−···−σ
j−1
↑ −1

, · · · , ωl
k1−σ1

↑−···−σ
j
↑+1

)
σj
↓
(
ωl1 , ωl2 , · · · , ωlk

)
≡
(
ωl

k1+1+σ1
↓+···+σ

j−1
↓

, ωl
k1+1+σ1

↓+···+σ
j−1
↓ +1

, · · · , ωl
k1+1+σ1

↓+···+σ
j
↓−1

)
.

(B14)

Noticeably, every operator product in the contraction HIUk1−1ρU
†
k−k1

(t) has single-frequency time dependence, unlike the time

average HIUk1−1ρU
†
k−k1

(t) which is much more cumbersome to work with. More visually, the coefficient C
(
ωl1 , · · · , ωlk ; k1

)
can be associated with and computed according to the sum of diagrams of the form:

2 For example,

Π(2, 2) =
{[(2

2

)]
,
[(1

0

)
,

(
1
2

)]
,
[(0

1

)
,

(
2
1

)]
,
[(1

1

)
,

(
1
1

)]
,
[(0

2

)
,

(
2
0

)]
,
[(1

2

)
,

(
1
0

)]
,
[(1

0

)
,

(
0
1

)
,

(
1
1

)]
,[(1

0

)
,

(
0
2

)
,

(
1
0

)]
,
[(0

1

)
,

(
1
0

)
,

(
1
1

)]
,
[(0

1

)
,

(
1
1

)
,

(
1
0

)]
,
[(0

1

)
,

(
0
1

)
,

(
2
0

)]
,
[(1

1

)
,

(
0
1

)
,

(
1
0

)]
,[(0

2

)
,

(
1
0

)
,

(
1
0

)]
,
[(1

0

)
,

(
0
1

)
,

(
0
1

)
,

(
1
0

)]
,
[(0

1

)
,

(
1
0

)
,

(
0
1

)
,

(
1
0

)]
,
[(0

1

)
,

(
0
1

)
,

(
1
0

)
,

(
1
0

)]}
whereas σ2

↑ = 2 and σ2
↓ = 1 for σ =

[(0
1

)
,

(
2
1

)]
.
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ωlk1

ωlk1+1

ωlk1−1

ωlk1+2

ωlk1+3

ωlk1+4

ωlk1−2
ωlk1−3

ωlk1−4
ωlk1−5

ωlk1+5

. . .

ωlk−2

ωl1

ωlk−1 ωlk

which corresponds to the following ordered partition of
(

k1
k − k1

)
:

[(
1
1

)
,

(
1
0

)
,

(
0
3

)
,

(
2
1

)
, · · · ,

(
0
1

)
,

(
1
2

)]
.

Then, in addition to the overall sign (−1)k1 , every loop in such a diagram will contribute a multiplicative factor according to the
following correspondence:

ω1

ω2 ωn−1

ωn

ω′
1

ω′
2 ω′

m−1

ω′
m

−f̃(ω1+ω2+···+ωn+ω′
1+ω′

2+···+ω′
m)

(ω1,ω2,··· ,ωn)!·(ω′
1,ω

′
2,··· ,ω′

m)! if this is not the rightmost loop

−f̃(ω1+ω2+···+ωn+ω′
1+ω′

2+···+ω′
m)

(ω1,ω2,··· ,ωn−1)!·(ω′
1,ω

′
2,··· ,ω′

m)! if this is the rightmost loop

To prove Eq.(B12) and Eq.(B13), notice first that these two equations are trivially true for k = 1; if Eq.(B12,B13) hold true
up to some k, then the recurrence relation in Eq.(B4) implies that

HIUk(t)

=
∑

l1,··· ,lk+1

(−1)k+1+1f̃(ωl1 + · · ·+ ωlk+1
)(ωl1 + · · ·+ ωlk+1

)

(ωlk+1
, ωlk+1−1

, · · · , ωl1)!
ei(ωl1

+···+ωlk+1
)thl1 · · ·hlk+1

+
∑

l1,··· ,lk+1

|σ|≥2∑
σ∈Π(k+1,0)

(−1)k+1+|σ|sum
[
σ
|σ|
↑ (ωl1 , · · · , ωlk+1

)
] |σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(ωl1

,··· ,ωlk+1
) ω
)

σj
↑(ωl1 , · · · , ωlk+1

)!

· ei(ωl1
+···+ωlk+1

)thl1 · · ·hlk+1

=
∑

l1,··· ,lk+1

∑
σ∈Π(k+1,0)

(−1)k+1+|σ|sum
[
σ
|σ|
↑ (ωl1 , · · · , ωlk+1

)
] |σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(ωl1

,··· ,ωlk+1
) ω
)

σj
↑(ωl1 , · · · , ωlk+1

)!

· ei(ωl1
+···+ωlk+1

)thl1 · · ·hlk+1

(B15)
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if k1 = k + 1; whereas for 1 ≤ k1 ≤ k, we have

HIUk1−1ρU
†
k+1−k1

(t)

=
∑

l1,··· ,lk+1

[ k+1−k1∑
j2=0

(−1)j2+1+k+1e
i(ωl1

+···+ωlk1
+ωlk+2−j2

+···+ωlk+1
)t

·
f̃(ωl1 + · · ·+ ωlk1

+ ωlk+2−j2
+ · · ·+ ωlk+1

) · (ωl1 + · · ·+ ωlk1
)

(ωlk1
, · · · , ωl1)! · (ωlk+2−j2

, · · · , ωlk+1
)! · (ωlk+1−j2

, · · · , ωlk1+1
)!

+

k1−1∑
j1=1

k+1−k1∑
j2=0

(−1)j1+j2+1+k+1−k1e
i(ωl1

+···+ωlj1
+ωlk+2−j2

+···+ωlk+1
)t

·
f̃(ωl1 + · · ·+ ωlj1

+ ωlk+2−j2
+ · · ·+ ωlk+1

) · (ωl1 + · · ·+ ωlj1
)

(ωlj1
, · · · , ωl1)! · (ωlj1+1

, · · · , ωlk1
)! · (ωlk+2−j2

, · · · , ωlk+1
)! · (ωlk+1−j2

, · · · , ωlk1+1
)!

−
k−k1∑
k3=0

(−1)1+k+1−k3e
i(ωl1

+···+ωlk1
+ωlk+2−k3

+···+ωlk+1
)t

·
f̃
(
ωl1 + · · ·+ ωlk1

+ ωlk+2−k3
+ · · ·+ ωlk+1

)
·
(
ωl1 + · · ·+ ωlk1

)
(ωlk1

, · · · , ωl1)! · (ωlk+2−k3
, · · · , ωlk+1

)! · (ωlk+1−k3
, · · · , ωlk1+1

)!

−
k1−1∑
k2=1

k+1−k1∑
k3=0

(−1)k2+1+k+1−k1−k3e
i(ωl1

+···+ωlk2
+ωlk+2−k3

+···+ωlk+1
)t

·
f̃
(
ωl1 + · · ·+ ωlk2

+ ωlk+2−k3
+ · · ·+ ωlk+1

)
·
(
ωl1 + · · ·+ ωlk2

)
(ωlk2

, · · · , ωl1)! · (ωlk2+1
, · · · , ωlk1

)! · (ωlk+2−k3
, · · · , ωlk+1

)! · (ωlk+1−k3
, · · · , ωlk1+1

)!

−
k1∑

k2=1

min(k+1−k1,k−k2)∑
k3=max(0,2−k2)

|σ|≥2∑
σ∈Π(k2,k3)

(−1)k2+k+1−k1−k3+|σ|e
i(ωl1

+···+ωlk2
+ωlk+2−k3

+···+ωlk+1
)t

·
sum

[
σ
|σ|
↑ (ωl1 , · · · , ωlk2

, ωlk+2−k3
, · · · , ωlk+1

)
]

(ωlk2+1
, · · · , ωlk1

)! · (ωlk+1−k3
, · · · , ωlk1+1

)!

·
|σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(ωl1

,··· ,ωlk2
,ωlk+2−k3

,··· ,ωlk+1
) ω
)

σj
↑(ωl1 , · · · , ωlk2

, ωlk+2−k3
, · · · , ωlk+1

)! · σj
↓(ωl1 , · · · , ωlk2

, ωlk+2−k3
, · · · , ωlk+1

)!

+

k1∑
k2=1

k+1−k1∑
k3=max(0,2−k2)

|σ|≥2∑
σ∈Π(k2,k3)

(−1)k2+k+1−k1−k3+|σ|e
i(ωl1

+···+ωlk2
+ωlk+2−k3

+···+ωlk+1
)t

·
|σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(ωl1

,··· ,ωlk2
,ωlk+2−k3

,··· ,ωlk+1
) ω
)

σj
↑(ωl1 , · · · , ωlk2

, ωlk+2−k3
, · · · , ωlk+1

)! · σj
↓(ωl1 , · · · , ωlk2

, ωlk+2−k3
, · · · , ωlk+1

)!

·
sum

[
σ
|σ|
↑ (ωl1 , · · · , ωlk2

, ωlk+2−k3
, · · · , ωlk+1

)
]

(ωlk2+1
, · · · , ωlk1

)! · (ωlk+1−k3
, · · · , ωlk1+1

)!

]
· hl1 · · ·hlk1

ρhlk1+1
· · ·hlk+1

=
∑

l1,··· ,lk+1

[
(−1)k1+1

f̃(ωl1 + · · ·+ ωlk1
+ ωlk1+1

+ · · ·+ ωlk+1
) · (ωl1 + · · ·+ ωlk1

)

(ωlk1
, · · · , ωl1)! · (ωlk1+1

, · · · , ωlk+1
)!

+

|σ|≥2∑
σ∈Π(k1,k+1−k1)

(−1)k1+|σ|sum
[
σ
|σ|
↑ (ωl1 , · · · , ωlk+1

)
] |σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(ωl1

,··· ,ωlk+1
) ω
)

σj
↑(ωl1 , · · · , ωlk+1

)! · σj
↓(ωl1 , · · · , ωlk+1

)!

]
· ei(ωl1

+···+ωlk+1
)thl1 · · ·hlk1

ρhlk1+1
· · ·hlk+1

=
∑

l1,··· ,lk+1

∑
σ∈Π(k1,k+1−k1)

(−1)k1+|σ|sum
[
σ
|σ|
↑ (ωl1 , · · · , ωlk+1

)
] |σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(ωl1

,··· ,ωlk+1
) ω
)

σj
↑(ωl1 , · · · , ωlk+1

; k1)! · σj
↓(ωl1 , · · · , ωlk+1

)!

· ei(ωl1
+···+ωlk+1

)thl1 · · ·hlk1
ρhlk1+1

· · ·hlk+1
.

(B16)
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Therefore we see that Eq.(B12) and Eq.(B13) are also true for k + 1, and by induction we have proven Eq.(B12,B13) for any
positive integer k in general.

In addition, we can rearrange the terms to write the TCG master equation as the sum of Hamiltonian commutators and
Lindblad-type dissipators with possibly negative rates, i.e,

∂tρ(t) = L(t)ρ(t) =
∞∑
k=1

Lk(t)ρ(t) ≡ −i
[ ∞∑
k=1

H
(k)
eff (t), ρ(t)

]
+

∞∑
k=1

D
(k)
eff (t)ρ(t) (B17)

with

iLk(t)ρ =

k∑
k1=1

HIUk1−1ρU
†
k−k1

(t)− h.c.

=

k∑
k1=1

∑
l1···lk

C
(
ωl1 , · · · , ωlk ; k1

)
ei(ωl1

+···+ωlk
)thl1 · · ·hlk1

ρhlk1+1
· · ·hlk

−
k∑

k1=1

∑
l1···lk

C
(
ωl1 , · · · , ωlk ; k1

)
e−i(ωl1

+···+ωlk
)th†

lk
· · ·h†

lk1+1
ρh†

lk1
· · ·h†

l1

=
∑
l1···lk

C
(
ωl1 , · · · , ωlk ; k

)
ei(ωl1

+···+ωlk
)thl1 · · ·hlkρ−

∑
l1···lk

C
(
− ωlk , · · · ,−ωl1 ; k

)
ei(ωl1

+···+ωlk
)tρhl1 · · ·hlk

+

k−1∑
k1=1

∑
l1···lk

[
C
(
ωl1 , · · · , ωlk ; k1

)
− C

(
− ωlk , · · · ,−ωl1 ; k − k1

)]
ei(ωl1

+···+ωlk
)thl1 · · ·hlk1

ρhlk1+1
· · ·hlk

=
∑
l1···lk

C
(
ωl1 , · · · , ωlk ; k

)
ei(ωl1

+···+ωlk
)thl1 · · ·hlkρ−

∑
l1···lk

C
(
− ωlk , · · · ,−ωl1 ; k

)
ei(ωl1

+···+ωlk
)tρhl1 · · ·hlk

+

k−1∑
k1=1

∑
l1···lk

[
C
(
ωl1 , · · · , ωlk ; k1

)
− C

(
− ωlk , · · · ,−ωl1 ; k − k1

)]
ei(ωl1

+···+ωlk
)tDhl1

···hlk1
,hlk1+1

···hlk
ρ

+

k−1∑
k1=1

∑
l1···lk

C
(
ωl1 , · · · , ωlk1

, ωlk1+1
, · · · , ωlk ; k1

)
2

ei(ωl1
+···+ωlk

)t
{
hlk1+1

· · ·hlkhl1 · · ·hlk1
, ρ
}

−
k−1∑
k1=1

∑
l1···lk

C
(
− ωlk , · · · ,−ωlk−k1+1

,−ωlk−k1
, · · · ,−ωl1 ; k1

)
2

ei(ωl1
+···+ωlk

)t
{
hlk−k1+1

· · ·hlkhl1 · · ·hlk−k1
, ρ
}

=
∑
l1···lk

C
(
ωl1 , · · · , ωlk ; k

)
ei(ωl1

+···+ωlk
)thl1 · · ·hlkρ−

∑
l1···lk

C
(
− ωlk , · · · ,−ωl1 ; k

)
ei(ωl1

+···+ωlk
)tρhl1 · · ·hlk

+

k−1∑
k1=1

∑
l1···lk

[
C
(
ωl1 , · · · , ωlk ; k1

)
− C

(
− ωlk , · · · ,−ωl1 ; k − k1

)]
ei(ωl1

+···+ωlk
)tDhl1

···hlk1
,hlk1+1

···hlk
ρ

−
∑
l1···lk

C
(
ωl1 , · · · , ωlk ; k

)
2

ei(ωl1
+···+ωlk

)t
{
hl1 · · ·hlk , ρ

}
+
∑
l1···lk

C
(
− ωlk , · · · ,−ωl1 ; k

)
2

ei(ωl1
+···+ωlk

)t
{
hl1 · · ·hlk , ρ

}

+

k∑
k1=1

∑
l1···lk

C
(
ωlk , ωl1 , · · · , ωlk−1

; k1
)
− C

(
− ωlk , · · · ,−ωl1 ; k − k1 + 1

)
2

ei(ωl1
+···+ωlk

)t
{
hlk1

· · ·hlkhl1 · · ·hlk1−1
, ρ
}

=
[ ∑
l1···lk

C
(
ωl1 , · · · , ωlk ; k

)
+ C

(
− ωlk , · · · ,−ωl1 ; k

)
2

ei(ωl1
+···+ωlk

)thl1 · · ·hlk , ρ
]

+

k−1∑
k1=1

∑
l1···lk

[
C
(
ωl1 , · · · , ωlk ; k1

)
− C

(
− ωlk , · · · ,−ωl1 ; k − k1

)]
ei(ωl1

+···+ωlk
)tDhl1

···hlk1
,hlk1+1

···hlk
ρ

≡
[
H

(k)
eff (t), ρ

]
+ iD

(k)
eff (t)ρ

(B18)
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where we have defined the (generalized) dissipator DL,R as

DL,Rρ ≡ LρR− RLρ+ ρRL

2

for any operators L and R. In the derivation of Eq.(B18) above, we have used the identity

C
(
ωlk , ωl1 , · · · , ωlk−1

; k1
)
= C

(
− ωlk , · · · ,−ωl1 ; k − k1 + 1

)
(B19)

for any k1 ∈
{
1, 2, · · · , k

}
, which can be derived from the explicit expression of C as follows:

C
(
ωlk , ωl1 , · · · , ωlk−1

; k1
)

=
∑

σ∈Π(k1,k−k1)

(−1)k1+|σ|sum
[
σ
|σ|
↑ (ωlk , ωl1 , · · · , ωlk−1

)
] |σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(ωlk

,ωl1
,··· ,ωlk−1

) ω
)

σj
↑(ωlk , ωl1 , · · · , ωlk−1

)! · σj
↓(ωlk , ωl1 , · · · , ωlk−1

)!

=
∑

σ∈Π(k−k1+1,k1−1)

(−1)k1+|σ|sum
[
σ
|σ|
↑ (ωlk , ωlk−1

, · · · , ωl1)
] |σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(ωlk

,ωlk−1
,··· ,ωl1

) ω
)

σj
↑(ωlk , ωlk−1

, · · · , ωl1)! · σ
j
↓(ωlk , ωlk−1

, · · · , ωl1)!

=
∑

σ∈Π(k−k1+1,k1−1)

(−1)k−k1+1+|σ|sum
[
σ
|σ|
↑ (−ωlk , · · · ,−ωl1)

] |σ|∏
j=1

f̃
(∑

ω∈σj
↑↓(−ωlk

,··· ,−ωl1
) ω
)

σj
↑(−ωlk , · · · ,−ωl1)! · σ

j
↓(−ωlk , · · · ,−ωl1)!

=C
(
− ωlk , · · · ,−ωl1 ; k − k1 + 1

)
.

(B20)

Notice that we have employed the following bijection between Π(k1, k−k1) and Π(k−k1+1, k1−1) in obtaining the second
equality: [(σ1

↑
σ1
↓

)
,

(
σ2
↑

σ2
↓

)
, · · · ,

(
σj−1
↑

σj−1
↓

)
,

(
σj
↑

σj
↓

)]
xy[(σ1

↓
σ1
↑

)
,

(
σ2
↓

σ2
↑

)
, · · · ,

(
σj−1
↓

σj−1
↑

)
,

(
σj
↓ + 1

σj
↑ − 1

)]
In conclusion, we have

H
(k)
eff (t) =

∑
l1···lk

C
(
ωl1 , · · · , ωlk ; k

)
+ C

(
− ωlk , · · · ,−ωl1 ; k

)
2

ei(ωl1
+···+ωlk

)thl1 · · ·hlk (B21)

and

D
(k)
eff (t) = −i

k−1∑
k1=1

∑
l1···lk

[
C
(
ωl1 , · · · , ωlk ; k1

)
− C

(
− ωlk , · · · ,−ωl1 ; k − k1

)]
ei(ωl1

+···+ωlk
)tDhl1

···hlk1
,hlk1+1

···hlk
. (B22)

Finally, in situations where individual diagrams contain zero-valued frequency sums in their denominators, we can regularize
the apparent singularities by shifting every operator frequency ωi by an infinitesimal amount dω, summing over all the diagrams,
and taking the dω → 0 limit. In order to obtain an explicit formula for C

(
ω1, · · · , ωl+r; l

)
which is also valid in the presence of

singular diagrams, we can rewrite it as

C
(
ω1, · · · , ωl+r; l

)
=

∑
d∈diagrams

(−1)l+||d|| f̃
(
ω1 +

∑
µ1 +

∑
ν1

)
f̃
(∑

µ2 +
∑

ν2

)
· · · f̃

(∑
µ||d|| +

∑
ν||d||

)
µ1!ν1!µ2!ν2! · · ·µ||d||!ν||d||!

(B23)

where ||d|| is the number of loops in the diagram d, while µi ≡
(
µ1
i , · · · , µ

li
i

)
and νi ≡

(
ν1i , · · · , ν

ri
i

)
are the ordered sets of

upper and lower frequencies in the i-th loop respectively (with ω1 excluded and the rest of the frequencies ordered from left to
right in the diagrams). Here the factorial of an ordered set is defined as

µi! ≡
(
µ1
i + · · ·+ µli

i

)
· · ·
(
µ1
i + µ2

i

)
µ1
i . (B24)
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When some of the factors in µi! are zero, the corresponding diagram will contain an apparent divergence which can be canceled
by other diagrams. Therefore, we are only interested in the finite part of the diagram. To get the finite part, suppose that the
following factors in µi! and νi! are zero:(

µ1
i + · · ·+ µ

s1i
i

)
,

(
µ1
i + · · ·+ µ

s2i
i

)
, · · · ,

(
µ1
i + · · ·+ µ

sni
i

)
(
ν1i + · · ·+ ν

s′1i
i

)
,

(
ν1i + · · ·+ ν

s′2i
i

)
, · · · ,

(
ν1i + · · ·+ ν

s′ni
i

) (B25)

where s1i > s2i > · · · > sni and s′1i > s′2i > · · · > s′ni (also, we define si :=
(
s1i , s

2
i , · · · , sni

)
and s′i :=

(
s′1i , s

′2
i , · · · , s′ni

)
); in

addition, we denote the product of nonzero factors in the factorials by

µi! :=

li∏
j=1,j /∈si

(
µ1
i + · · ·+ µj

i

)
(B26)

and

νi! :=

ri∏
j=1,j /∈s′i

(
ν1i + · · ·+ νji

)
, (B27)

while defining the total frequency in each loop to be

µ̃i := µ
s1i+1
i + µ

s1i+2
i + · · ·+ µli

i + ω1δi,1; ν̃i := ν
s′1i +1
i + ν

s′1i +2
i + · · ·+ νrii . (B28)

Then the finite contribution of the diagram can be obtained from Taylor expansion (sending each frequency ωi to ωi + dω and
expanding in powers of dω) to be:

(−1)l
||d||∏
i=1

f̃
(
µ̃i + ν̃i

)
−µi!νi!

·

∑
i(ni+ui+li)=

∑
i(|si|+|s′i|)∑

ni≥0,ui≥0,li≥0

⌊ni
2 ⌋∑

ki=0

c
(
ni, ki

)(
ni

)
!

τ2(ni−ki)
(
µ̃i + ν̃i

)ni−2ki
(
|µi|+ |νi|

)ni

∑
∑

mJu=ui,
∑

m′
Jl

=li

∏
Ju /∈si,Jl /∈s′i

( −Ju

µ1
i+···+µJu

i

)mJu
( −Jl

ν1
i +···+ν

Jl
i

)m′
Jl∏

s
j1
i ∈si,s

′j2
i ∈s′i

(
sj1i s′j2i

) ,

(B29)

where ⌊•⌋ is the floor function, and the function c
(
n, k

)
can be defined recursively by the relations:

c
(
n+ 1, k

)
= −c

(
n, k

)
+
(
n− 2k + 2

)
c
(
n, k − 1

)
(B30)

together with the conditions

c
(
0, 0
)
= 1, c

(
n,−1

)
≡ 0 for any n, c

(
n, k

)
≡ 0 for n < 2k. (B31)

Appendix C: Explicit formula for the TCG master equation of open quantum systems

As discussed in Section III, when the coarse-graining time scale τ is much greater than the bath correlation time, the leading-
order (in the system-bath coupling) dynamical equation for the reduced TCG system density matrix ρ(t) ≡ TrB

(
ρtot(t)

)
takes

the form of a Markovian master equation:

∂tρ(t) ≈L(0)(t)ρ(t) + TrB
[
L(2)(t)

[
ρ(t)⊗ ρB(0)

]]
+

∫ ∞

0

dt1G(2)(t, t− t1)ρ(t). (C1)

More explicitly, if we assume the type of system-bath couplings in Eq.(9), then, according to Eq.(B21) and Eq.(B22), iL(1)(t)
can in general be written as

iL(1)(t)ρ =

∫ ∞

0

dω

2π
Dω

[∑
k

g̃lk(ω)e
i(ωl

k−ω)tDLl
kBω,Rl

k
ρ+

∑
k

g̃rk(ω)e
i(ωr

k−ω)tDLr
k,BωRr

k
− h.c.

]
(C2)
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for some set of operators Lr
k, Ll

k, Rr
k, Rl

k acting on the system Hilbert space together with their corresponding frequencies ωl(r)
k

and coefficients gl(r)k . With this expression and the identity∫ ∞

0

dt1e
i(ω−ω0) = πδ(ω − ω0) + iP 1

ω − ω0
(C3)

where P denotes the Cauchy principal value, we can rewrite the time integral of G(2)(t, t− t1) in Eq.(C1) as∫ ∞

0

dt1G(2)(t, t− t1)ρ(t) =− i
[
H(2)

corr(t), ρ(t)
]
+D(2)

corr(t)ρ(t)

≡− i
[
Hll(t) +Hlr(t) +Hrl(t) +Hrr(t), ρ(t)

]
+
(
Dll(t) +Dlr(t) +Drl(t) +Drr(t)

)
ρ(t),

(C4)

and the explicit expressions for Hll, Hlr, Hrl, Hrr, Dll, Dlr, Drl, Drr will be given by the formulas below:

Hll =
∑
k1,k2

ei(ω
l
k1

−ωl
k2

)t
[
i
Dωl

k1

g̃lk1
(ωl

k1
)g̃l∗k2

(ωl
k1
)

2
n(ωl

k1
)− P

Dω g̃
l
k1
(ω)g̃l∗k2

(ω)

2π

n(ω)

ω − ωl
k1

][Ll†
k2
Rl†

k2
, Rl

k1
Ll
k1

]
8

+ h.c. (C5)

Hlr =
∑
k1,k2

ei(ω
r
k1

−ωl
k2

)t
[
i
Dωr

k1
g̃rk1

(ωr
k1
)g̃l∗k2

(ωr
k1
)

2
n(ωr

k1
)− P

Dω g̃
r
k1
(ω)g̃l∗k2

(ω)

2π

n(ω)

ω − ωr
k1

][Ll†
k2
Rl†

k2
, Rr

k1
Lr
k1

]
8

+ h.c. (C6)

Hrl =
∑
k1,k2

ei(ω
l
k1

−ωr
k2

)t
[
i
Dωl

k1

g̃lk1
(ωl

k1
)g̃r∗k2

(ωl
k1
)

2
n(ωl

k1
)− P

Dω g̃
l
k1
(ω)g̃r∗k2

(ω)

2π

n(ω)

ω − ωl
k1

][Lr†
k2
Rr†

k2
, Rl

k1
Ll
k1

]
8

+ h.c. (C7)

Hrr =
∑
k1,k2

ei(ω
r
k1

−ωr
k2

)t
[
i
Dωr

k1
g̃rk1

(ωr
k1
)g̃r∗k2

(ωr
k1
)

2
n(ωr

k1
)− P

Dω g̃
r
k1
(ω)g̃r∗k2

(ω)

2π

n(ω)

ω − ωr
k1

][Lr†
k2
Rr†

k2
, Rr

k1
Lr
k1

]
8

+ h.c. (C8)

Dllρ(t)

=
∑
k1,k2

ei(ω
l
k1

−ωl
k2

)t
[Dωl

k1

g̃lk1
(ωl

k1
)g̃l∗k2

(ωl
k1
)

2
n(ωl

k1
) + iP

Dω g̃
l
k1
(ω)g̃l∗k2

(ω)

2π

n(ω)

ω − ωl
k1

]
·
(
DRl†

k2
Ll

k1
,Rl

k1
Ll†

k2

− 1

2
DRl†

k2
Rl

k1
Ll

k1
,Ll†

k2

− 1

2
DLl†

k2
Rl†

k2
Ll

k1
,Rl

k1

− 1

2
DRl†

k2
,Rl

k1
Ll

k1
Ll†

k2

− 1

2
DLl

k1
,Rl

k1
Ll†

k2
Rl†

k2

+
1

4
DRl

k1
Ll

k1
,Ll†

k2
Rl†

k2

)
ρ(t)

+
∑
k1,k2

ei(ω
l
k1

−ωl
k2

)t
[Dωl

k1

g̃lk1
(ωl

k1
)g̃l∗k2

(ωl
k1
)

2

(
n(ωl

k1
) + 1

)
+ iP

Dω g̃
l
k1
(ω)g̃l∗k2

(ω)

2π

n(ω) + 1

ω − ωl
k1

]
· 1
4
DLl†

k2
Rl†

k2
,Rl

k1
Ll

k1

ρ(t)

+ h.c.

(C9)

Dlrρ(t)

=
∑
k1,k2

ei(ω
r
k1

−ωl
k2

)t
[Dωr

k1
g̃rk1

(ωr
k1
)g̃l∗k2

(ωr
k1
)

2
n(ωr

k1
) + iP

Dω g̃
r
k1
(ω)g̃l∗k2

(ω)

2π

n(ω)

ω − ωr
k1

]
·
(
DRl†

k2
Lr

k1
,Rr

k1
Ll†

k2

− 1

2
DRl†

k2
Rr

k1
Lr

k1
,Ll†

k2

− 1

2
DRl†

k2
,Rr

k1
Lr

k1
Ll†

k2

− 1

2
DLr

k1
,Rr

k1
Ll†

k2
Rl†

k2

+
1

4
DRr

k1
Lr

k1
,Ll†

k2
Rl†

k2

)
ρ(t)

+
∑
k1,k2

ei(ω
r
k1

−ωl
k2

)t
[Dωr

k1
g̃rk1

(ωr
k1
)g̃l∗k2

(ωr
k1
)

2

(
n(ωr

k1
) + 1

)
+ iP

Dω g̃
r
k1
(ω)g̃l∗k2

(ω)

2π

n(ω) + 1

ω − ωr
k1

]
·
(
− 1

2
DLl†

k2
Rl†

k2
Lr

k1
,Rr

k1

+
1

4
DLl†

k2
Rl†

k2
,Rr

k1
Lr

k1

)
ρ(t)

+ h.c.

(C10)
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Drlρ(t)

=
∑
k1,k2

ei(ω
l
k1

−ωr
k2

)t
[Dωl

k1

g̃lk1
(ωl

k1
)g̃r∗k2

(ωl
k1
)

2
n(ωl

k1
) + iP

Dω g̃
l
k1
(ω)g̃r∗k2

(ω)

2π

n(ω)

ω − ωl
k1

]
·
(
DRr†

k2
Ll

k1
,Rl

k1
Lr†

k2

− 1

2
DRr†

k2
Rl

k1
Ll

k1
,Lr†

k2

− 1

2
DLr†

k2
Rr†

k2
Ll

k1
,Rl

k1

− 1

2
DLl

k1
,Rl

k1
Lr†

k2
Rr†

k2

+
1

4
DRl

k1
Ll

k1
,Lr†

k2
Rr†

k2

)
ρ(t)

+
∑
k1,k2

ei(ω
l
k1

−ωr
k2

)t
[Dωl

k1

g̃lk1
(ωl

k1
)g̃r∗k2

(ωl
k1
)

2

(
n(ωl

k1
) + 1

)
+ iP

Dω g̃
l
k1
(ω)g̃r∗k2

(ω)

2π

n(ω) + 1

ω − ωl
k1

]
·
(
− 1

2
DRr†

k2
,Rl

k1
Ll

k1
Lr†

k2

+
1

4
DLr†

k2
Rr†

k2
,Rl

k1
Ll

k1

)
ρ(t)

+ h.c.

(C11)

Drrρ(t)

=
∑
k1,k2

ei(ω
r
k1

−ωr
k2

)t
[Dωr

k1
g̃rk1

(ωr
k1
)g̃r∗k2

(ωr
k1
)

2
n(ωr

k1
) + iP

Dω g̃
r
k1
(ω)g̃r∗k2

(ω)

2π

n(ω)

ω − ωr
k1

]
·
(
− 1

2
DLr

k1
,Rr

k1
Lr†

k2
Rr†

k2

− 1

2
DRr†

k2
Rr

k1
Lr

k1
,Lr†

k2

+
1

4
DRr

k1
Lr

k1
,Lr†

k2
Rr†

k2

)
ρ(t)

+
∑
k1,k2

ei(ω
r
k1

−ωr
k2

)t
[Dωr

k1
g̃rk1

(ωr
k1
)g̃r∗k2

(ωr
k1
)

2

(
n(ωr

k1
) + 1

)
+ iP

Dω g̃
r
k1
(ω)g̃r∗k2

(ω)

2π

n(ω) + 1

ω − ωr
k1

]
·
(
DRr†

k2
Lr

k1
,Rr

k1
Lr†

k2

− 1

2
DLr†

k2
Rr†

k2
Lr

k1
,Rr

k1

− 1

2
DRr†

k2
,Rr

k1
Lr

k1
Lr†

k2

+
1

4
DLr†

k2
Rr†

k2
,Rr

k1
Lr

k1

)
ρ(t)

+ h.c.

(C12)

With these explicit formulas, it is straightforward to derive the time-coarse grained effective master equation for the system
density matrix. In fact, all open quantum systems discussed in this work are modeled in this approach. And despite the seemingly
complicated form of the expressions above, our calculations suggest that cancellation is often prevalent among the terms in
Eq.(C5-C12), leading to only a few dissipators with distinctive physical interpretations (e.g. the Purcell decay or the Lamb shift)
at low orders.

Appendix D: Positivity of the TCG master equation

As noted in Subsection IV A, the TCG dissipators (and therefore the TCG master equation) are not positive-definite in general
if ρ(t) is allowed to represent an arbitrary mixed state. For the spin-cavity model discussed in the main text, it is straightforward
to show that we can write the drive-induced dissipator Dϵdg2

ac
as

Dϵdg2
ac

=

4∑
k=1

κkDXk,X
†
k

(D1)

where

κ1 =κ2 = −κ3 = −κ4 = ϵdg
2
ac

√
(ωd − ωa)4 + (ωd + ωa)4

(ωd − ωa)2(ωd + ωa)2
(D2)

and

X1 =
σ+√
2

(
1 + i

(ωd + ωa)
2√

(ωd − ωa)4 + (ωd + ωa)4
c− i

(ωd − ωa)
2√

(ωd − ωa)4 + (ωd + ωa)4
c†
)

(D3)

X2 =
σ−√
2

(
1 + i

(ωd − ωa)
2√

(ωd − ωa)4 + (ωd + ωa)4
c− i

(ωd + ωa)
2√

(ωd − ωa)4 + (ωd + ωa)4
c†
)

(D4)
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X3 =
σ+√
2

(
1− i

(ωd + ωa)
2√

(ωd − ωa)4 + (ωd + ωa)4
c+ i

(ωd − ωa)
2√

(ωd − ωa)4 + (ωd + ωa)4
c†
)

(D5)

X4 =
σ−√
2

(
1− i

(ωd − ωa)
2√

(ωd − ωa)4 + (ωd + ωa)4
c+ i

(ωd + ωa)
2√

(ωd − ωa)4 + (ωd + ωa)4
c†
)
. (D6)

These dissipators cannot appear in a master equation with infinite time-resolution, since two of the four κ’s are negative. How-
ever, they are legitimate in a TCG master equation with sufficiently large coarse-graining time scale τ since the domain of
time-averaged density matrices ρ(t) are smaller than that of the exact ρ(t) in the τ = 0 limit.

For example, with the readout model analyzed here, one cannot have Tr
(
|1⟩⟨1|ρ(t)

)
= 0 since Tr

(
|1⟩⟨1|ρ(t′)

)
≥ 0 for any t′,

and the pure ground of the spin is not stable under the interaction-picture Hamiltonian HI(t). If one forces the imaginary part
of Tr

(
c|l⟩⟨l|ρ(0)

)
to be positive at the initial time t = 0 for any spin level l, then the drive and cavity dissipation will evolve

Tr
(
c|l⟩⟨l|ρ(t)

)
to have negative imaginary part before the population nz

l ≡ Tr
(
|l⟩⟨l|ρ

)
reaches zero.

To test one of the most extreme cases, consider starting with the pure initial state |1⟩ ⊗ |α⟩ for some cavity coherent state
|α⟩ with Im(α) > 0. As a leading-order semi-classical approximation, we can approximate the almost coherently occupied
cavity by a classical drive whose frequency is detuned from that of the spin by δac ≡ ωd − ωa = 2π · 2GHz. The amplitude
of the effective classical drive is then 2gac|α|, and therefore we expect the spin to undergo approximate Rabi oscillations with
frequency

√
(2gac|α|)2 + δ2ac ≫ 1GHz, and therefore the initial coarse-grained ground state population is on the order of

nz
0(0) ≈

1

2
·

(
2gac|α|

)2(
2gac|α|

)2
+ δ2ac

. (D7)

Assuming that |α| ≪ 2|ωd−ωa|
2gac

, we focus on the cases where nz
0(0) ≪ 1 and nz

1(0) ≈ 1 in order to find out whether the initially
negative spin decay rate K in the TCG master equation will lead to unphysical states with nz

0 < 0. At the leading order, ⟨c(t)⟩0
rotates in the clockwise direction at the rate ∆ ≈ δω

(2)
c (0) around its steady-state value

⟨c(∞)⟩0 ≈ ϵd
−∆+ κc

2 i
. (D8)

Therefore, before Im(⟨α⟩0) becomes negative, the ground state population will reduce by less than

θ(ϵd;α) · ϵd
∆

· 2g2ac
(ωd − ωa)2

Im(α) ≈ θ(ϵd;α)ϵd
∆

Im(α)

|α|2
nz
1(0) (D9)

where

θ(ϵd;α) := arcsin

Im(α)− −ϵd
κc
2

∆2+
κ2
c
4√(

Im(α)− −ϵd
κc
2

∆2+
κ2
c
4

)2
+
(
Re(α)− −∆

∆2+
κ2
c
4

)2 − arcsin

− −ϵd
κc
2

∆2+
κ2
c
4√(

− −ϵd
κc
2

∆2+
κ2
c
4

)2
+
(
− −∆

∆2+
κ2
c
4

)2 . (D10)

It is straightforward to verify that

θ
(
ϵd;α

)
ϵd

∆

Im(α)

|α|2
≤

θ
(
ϵd; Im(α)i

)
ϵd

∆

1

Im(α)
< lim

ϵd→∞

θ
(
ϵd; Im(α)i

)
ϵd

∆

1

Im(α)
= 1, (D11)

which, according to Eq.(D9), implies that the coarse-grained ground state population will not drop below zero before the drive-
induced spin transition rates become positive. In fact, we expect Dϵdg2

ac
to be a well-behaving dissipator for ρ(t) as long as the

conditions stated in the beginning of this subsection are satisfied, and that the initial ρ(0) is allowed by the dynamics of ρ(t).
For example, with α =

√
2i, the time evolution of the coarse-grained excited state population nz

1(t) is given in Fig.17:
Remarkably, nz

1(t) increases until about t = 90ns, despite the fact that nz
1(t) is already close to 1 while nz

0(t) is close to 0. And
similar phenomenon can also be observed for nz

0(t) if the initial state is chosen to be |0⟩ ⊗ |α⟩ instead. This behavior of the spin
population cannot be phenomenologically explained by any positive and spin state-independent effective transition rates between
the ground and excited levels. However, as shown in Fig.17, the dynamics of nz

0(t) and nz
1(t) can be quite accurately predicted

by state-independent spin transition rates if we allow them to be negative for certain states of the cavity mode. Therefore, the
possibly negative effective transition rates predicted by the TCG master equation are not due to any failure of the perturbation
theory, but rather a faithful representation of physical phenomena that cannot be explained by Lindblad master equations with
positive rates of quantum jumps.
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Figure 17: The simulated time evolution of the coarse-grained excited spin state population nz
1(t). The inset compares the result obtained from the fourth-order

TCG master equation with that obtained by directly coarse-graining the exact dynamics. In particular, both results confirm that the excited state population
immediately increases after t = 0, even though nz

1(t) is close to 1 and nz
0(t) is close to 0. This phenomena can be explained by a (temporarily) negative decay

rate from |1⟩ to |0⟩.

Appendix E: The effective master equation for the reduced spin density matrix

For the spin-cavity system discussed in Section IV, we can trace out the cavity degrees of freedom and obtain an effective
master equation for the reduced spin density matrix ρS(t) = TrCρ(t). In particular, we are interested in the situation where
the cavity is approximately in coherent states with amplitudes αg and αe when the spin is in the ground and excited states
respectively. In [13], this is done by applying a polaron-type transformation to the rotating-frame system. In this work, we
accept the same set of basic assumptions as in [13], which allows us to take a shortcut by making the following equivalent
approximations:

TrC

[
C⟨0|ρ|0⟩

]
≈ C|c→αg,c†→α∗

g
and TrC

[
C⟨1|ρ|1⟩

]
≈ C|c→αe,c†→α∗

e
(E1)

for C an arbitrary product of c and c†, whereas

TrC

[
c⟨0|ρ|1⟩

]
≈ αgTrC

[
⟨0|ρ|1⟩

]
; TrC

[
c⟨1|ρ|0⟩

]
≈ αeTrC

[
⟨1|ρ|0⟩

]
;

TrC

[
c†⟨0|ρ|1⟩

]
≈ α∗

eTrC

[
⟨0|ρ|1⟩

]
; TrC

[
c†⟨1|ρ|0⟩

]
≈ α∗

gTrC

[
⟨1|ρ|0⟩

]
;

TrC

[
c†c⟨0|ρ|1⟩

]
≈ αgα

∗
eTrC

[
⟨0|ρ|1⟩

]
; TrC

[
c†c⟨1|ρ|0⟩

]
≈ αeα

∗
gTrC

[
⟨1|ρ|0⟩

]
;

TrC

[(
c†c
)2⟨0|ρ|1⟩] ≈ ((1 + |αe|2 + |αg|2)αgα

∗
e −

1

2
|αg|4 −

1

2
|αe|4

)
TrC

[
⟨0|ρ|1⟩

]
;

TrC

[(
c†c
)2⟨1|ρ|0⟩] ≈ ((1 + |αe|2 + |αg|2)αeα

∗
g −

1

2
|αg|4 −

1

2
|αe|4

)
TrC

[
⟨1|ρ|0⟩

]
.

(E2)

With these approximations, it is straightforward to derive the following approximate expressions:

− iTrC

[[
(c+ c†)σz, ρ

]]
≈ −iTrC

[
− 2
(
αg + α∗

e

)
⟨0|ρ|1⟩ · |0⟩⟨1|+ 2

(
αe + α∗

g

)
⟨1|ρ|0⟩ · |1⟩⟨0|

]
=− i

[αe + α∗
e + αg + α∗

g

2
σz, ρS

]
+

i

2

(
αe − α∗

e − αg + α∗
g

)
Dσz,σz

ρS

=− i
[
Re(αe + αg)σz, ρS

]
+ Im(α∗

e − α∗
g)Dσz,σz

ρS

(E3)
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− iTrC

[[
c†cσz, ρ

]]
≈ −iTrC

[
− 2αgα

∗
e⟨0|ρ|1⟩ · |0⟩⟨1|+ 2αeα

∗
g⟨1|ρ|0⟩ · |1⟩⟨0|

]
=− i

[αeα
∗
g + αgα

∗
e

2
σz, ρS

]
+

i

2

(
αeα

∗
g − αgα

∗
e

)
Dσz,σz

ρS

=− i
[
Re(αgα

∗
e)σz, ρS

]
+ Im(αgα

∗
e)Dσz,σz

ρS

(E4)

− iTrC

[[
(c†c)2σz, ρ

]]
≈ −iTrC

[
− 2
(
(|αg|2 + |αe|2)αgα

∗
e −

1

2
|αg|4 −

1

2
|αe|4

)
⟨0|ρ|1⟩ · |0⟩⟨1|

+ 2
(
(|αg|2 + |αe|2)αeα

∗
g −

1

2
|αg|4 −

1

2
|αe|4

)
⟨1|ρ|0⟩ · |1⟩⟨0|

]
=− i

[(
(1 + |αe|2 + |αg|2)

αeα
∗
g + αgα

∗
e

2
− |αe|4 + |αg|4

2

)
σz, ρS

]
+

i

2
(1 + |αe|2 + |αg|2)

(
αeα

∗
g − αgα

∗
e

)
Dσz,σzρS

=− i
[(

(1 + |αe|2 + |αg|2)Re(αgα
∗
e)−

|αe|4 + |αg|4

2

)
σz, ρS

]
+ (1 + |αe|2 + |αg|2)Im(αgα

∗
e)Dσz,σzρS

(E5)

TrC

[
Dcσz,c†σz

ρ
]
≈ −iTrC

[
− 2iαgα

∗
e⟨0|ρ|1⟩ · |0⟩⟨1| − 2iαeα

∗
g⟨1|ρ|0⟩ · |1⟩⟨0|

]
=− i

[−iαeα
∗
g + iαgα

∗
e

2
σz, ρS

]
+

1

2

(
αeα

∗
g + αgα

∗
e

)
Dσz,σz

ρS

=− i
[
− Im(αgα

∗
e)σz, ρS

]
+ Re(αgα

∗
e)Dσz,σz

ρS

(E6)

TrC

[
κd
−Dσ−,cσ+

ρ+ h.c.
]

≈− iTrC

[
i(κd

−αe + κd∗
− α∗

e)Dσ−,σ+
ρ+ iκd

−
αe − αg

2
⟨0|ρ|1⟩ · |0⟩⟨1|+ iκd∗

−
α∗
e − α∗

g

2
⟨1|ρ|0⟩ · |1⟩⟨0|

]
=− i

[−i
(
κd
−(αe − αg)− κd∗

− (α∗
e − α∗

g)
)

8
σz, ρS

]
+ 2Re(κd

−αe)Dσ−,σ+ρS −
1

8

(
κd
−(αe − αg) + κd∗

− (α∗
e − α∗

g)
)
Dσz,σzρS

=− i
[ Im(κd

−)Re(αe − αg)

4
σz, ρS

]
− 2Im(κd

−)Im(αe)Dσ−,σ+ρS +
1

4
Im(κd

−)Im(αe − αg)Dσz,σzρS

(E7)

TrC

[
κd
−Dcσ+,σ−ρ+ h.c.

]
≈− iTrC

[
i(κd

−αg + κd∗
− α∗

g)Dσ+,σ−ρ− iκd∗
−
α∗
e − α∗

g

2
⟨0|ρ|1⟩ · |0⟩⟨1| − iκd

−
αe − αg

2
⟨1|ρ|0⟩ · |1⟩⟨0|

]
=− i

[−i
(
κd
−(αe − αg)− κd∗

− (α∗
e − α∗

g)
)

8
σz, ρS

]
+ 2Re(κd

−αg)Dσ+,σ−ρS +
1

8

(
κd
−(αe − αg) + κd∗

− (α∗
e − α∗

g)
)
Dσz,σzρS

=− i
[ Im(κd

−)Re((αe − αg))

4
σz, ρS

]
− 2Im(κd

−)Im(αg)Dσ+,σ−ρS −
1

4
Im(κd

−)Im((αe − αg))Dσz,σz
ρS

(E8)

TrC

[
γ̃Dσ−c†c,σ+

ρ+ h.c.
]

≈− iTrC

[
iγ̃|αe|2Dσ−,σ+

ρ+ iγ̃
|αe|2 − αgα

∗
e

2
⟨0|ρ|1⟩ · |0⟩⟨1|+ iγ̃

|αe|2 − αeα
∗
g

2
⟨1|ρ|0⟩ · |1⟩⟨0|

]
+ h.c. = 0

(E9)

TrC

[
γ̃Dσ+c†c,σ−ρ+ h.c.

]
≈− iTrC

[
iγ̃|αg|2Dσ+,σ−ρ+ iγ̃

|αg|2 − αeα
∗
g

2
⟨1|ρ|0⟩ · |1⟩⟨0|+ iγ̃

|αg|2 − αgα
∗
e

2
⟨0|ρ|1⟩ · |0⟩⟨1|

]
+ h.c. = 0

(E10)

TrC

[
κ̃±Dσ−(c†c)2,σ+

ρ+ h.c.
]
≈ 0; TrC

[
κ̃±Dσ+(c†c)2,σ−ρ+ h.c.

]
≈ 0 (E11)

TrC

[
Dcσz,c†ρ+ h.c.

]
≈ −iTrC

[
− iαgα

∗
e⟨0|ρ|1⟩ · |0⟩⟨1|+ iαeα

∗
g⟨1|ρ|0⟩ · |1⟩⟨0|

]
+ h.c.

=− i
[ iRe(αgα

∗
e)

2
σz, ρS

]
+

i

2
Im(αgα

∗
e)Dσz,σz

ρS + h.c. = 0
(E12)
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TrC

[
Dc†σz,cρ+ h.c.

]
≈ −iTrC

[
− iαeα

∗
g⟨1|ρ|0⟩ · |1⟩⟨0|+ iαgα

∗
e⟨0|ρ|1⟩ · |0⟩⟨1|

]
+ h.c.

=− i
[ iRe(αeα

∗
g)

2
σz, ρS

]
+

i

2
Im(αeα

∗
g)Dσz,σz

ρS + h.c. = 0

(E13)

At the fourth order, the TCG master equation can be written as

∂tρ =Lρ

=− i
[
χ(c†c+

1

2
)σz + ϵd

(
1 +

λ2

2
σz

)
(c+ c†) + (ζ ′ − ξ)c†c+ µσz + ζ(c†c)2σz, ρ

]
+ κcDc(1+λ2σz/2), c†(1+λ2σz/2)ρ+ κsDσ−,σ+

ρ

+
[
κd
−
(
Dσ−,σ+c +Dσ+c,σ−

)
ρ+ κd

+

(
Dσ−c,σ+ +Dσ+,σ−c

)
ρ+ κ̃+

(
Dσ−c†c2,σ+c† −Dσ+c†2c,σ−c

)
ρ

+ κ̃−
(
Dσ−c†2c,σ+c −Dσ+c†c2,σ−c†

)
ρ+ γ̃

(
Dσ−c†c,σ+

+Dσ+c†c,σ−

)
ρ+ γ̃z

(
Dσzc,c† −Dσzc†,c

)
ρ+ h.c.

]
(E14)

where

χ = −g2ac
( 1

ωd − ωa
− 1

ωd + ωa

)
+ ζ and κd

± = i
ϵdg

2
ac

(ωd ± ωa)2
(E15)

while the other parameters are defined in Section IV. It then follows that we can trace out the cavity degrees of freedom and
obtain

∂tρS =TrC

[
Lρ
]
≈ −i

ωS

2

[
σz, ρS

]
+

γφeff

2
Dσz,σzρS + γ↓Dσ−,σ+ρS + γ↑Dσ+,σ−ρS (E16)

where

ωS =χ+ 2µ+ 2
[
χ+ ζ(1 + |αe|2 + |αg|2) +

λ4κc

4

]
Re(αgα

∗
e)− ζ(|αg|4 + |αe|4)

+ λ2Re
(
ϵd(α

∗
e + α∗

g)
)
+ Im(κd

− + κd
+)Re(αe − αg)

(E17)

γφeff = 2
[
χ+ (1 + |αe|2 + |αg|2)−

λ4κc

4

]
Im(αgα

∗
e) + λ2Im

(
ϵd(α

∗
e − α∗

g)
)

(E18)

γ↓ = κs − 2Im(κd
− + κd

+)Im(αe) = κs +K(t) (E19)

γ↑ = −2Im(κd
− + κd

+)Im(αg) = Γ(t). (E20)

Approximation:

∂tρ =Lρ

=− i
[
χ(c†c+

1

2
)σz + ϵd

(
1 +

λ2

2
σz

)
(c+ c†), ρ

]
+ κcDc(1+λ2σz/2), c†(1+λ2σz/2)ρ+ κsDσ−,σ+

ρ

+
[
κd
−
(
Dσ−,σ+c +Dσ+c,σ−

)
ρ+ κd

+

(
Dσ−c,σ+

+Dσ+,σ−c

)
ρ+ h.c.

] (E21)

Appendix F: Representation of the spin-cavity state by conditional Husimi functions

To solve the fourth-order TCG master equation (E14) for the spin-cavity system, one may adopt the following Wigner repre-
sentation of the time-coarse grained density matrix ρ:

W
ab

µ (ϕ, n) :=
1

π

∫ ∞

−∞
dϕ′ · ⟨a;ϕ− ϕ′|µρ|b;ϕ+ ϕ′⟩µe2inϕ

′
(F1)
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for µ ∈ x, y, z and a, b ∈ 0, 1, where the state |a;ϕ⟩µ is the simultaneous eigenstate of σµ and Φ ≡ c+c†√
2

with eigenvalues 2a−1

and ϕ respectively (when the subscript µ is omitted, it is assumed to be z which refers to the energy basis). The TCG effective
master equation for ρ(t) can then be translated into a PDE for the Wigner function W

ab

z (ϕ, n) by replacing operator products
with Moyal products of the corresponding functions of the phase space variables ϕ and n for different spin states.

The Wigner function can also be related to physical observables in a heterodyne measurement of the cavity quadrature vari-
ables. In fact, the joint probability density of obtaining the heterodyne measurement result (ϕ, n) when the spin is in state |a⟩µ
can be written as the following conditional Husimi functions [43–45]:

Q
aa

µ (ϕ, n) =

∫
dϕ′dn′ · e

−(ϕ′2+n′2)

π
W

aa

µ (ϕ+ ϕ′, n+ n′). (F2)

More generally, we can define

Q
ab

µ (ϕ, n) :=

∫
dϕ′dn′ · e

−(ϕ′2+n′2)

π
W

ab

µ (ϕ+ ϕ′, n+ n′) ≡ 1

2π
⟨a;α =

ϕ+ ni√
2

|µρ|α =
ϕ+ ni√

2
; b⟩µ (F3)

where |a;α = ζ⟩µ is the simultaneous eigenstate of σµ and c with eigenvalues 2a − 1 and ζ respectively, and the PDE for the

conditional Wigner functions W
ab

z (ϕ, n) can be straightforwardly translated into a set of equations of motion for Q
ab

µ (ϕ, n) if
we make the following replacements:

∂k
ϕ∂

j
nW

ab

z −→ ∂k
ϕ∂

j
nQ

ab

z

ϕ∂k
ϕ∂

j
nW

ab

z −→ ϕ∂k
ϕ∂

j
nQ

ab

z +
1

2
∂k+1
ϕ ∂j

nQ
ab

z

n∂k
ϕ∂

j
nW

ab

z −→ n∂k
ϕ∂

j
nQ

ab

z +
1

2
∂k
ϕ∂

j+1
n Q

ab

z

ϕ2∂k
ϕ∂

j
nW

ab

z −→
(
ϕ2 +

1

2

)
∂k
ϕ∂

j
nQ

ab

z + ϕ∂k+1
ϕ ∂j

nQ
ab

z +
1

4
∂k+2
ϕ ∂j

nQ
ab

z

n2∂k
ϕ∂

j
nW

ab

z −→
(
n2 +

1

2

)
∂k
ϕ∂

j
nQ

ab

z + n∂k
ϕ∂

j+1
n Q

ab

z +
1

4
∂k
ϕ∂

j+2
n Q

ab

z

· · ·

which can be derived from the definition of Q
ab

z in Eq.(F2). In terms of the Husimi Q functions in the z-basis of the spin, the
third-order TCG master equation at zero temperature can be written as

∂tQ
00
z (ϕ, n) =

(
κc +

√
2g2acϵd

(ωd − ωa)2
n
)
Q00

z (ϕ, n) + g2ac

(
κc

ωa

1 + (ωa

Λ )2
4ωd

(ω2
d − ω2

a)
2
−

√
2ϵd

(ωd − ωa)2
n
)
Q11

z (ϕ, n)

+
(κc

2
ϕ− 2g2acωa

ω2
d − ω2

a

n
)
∂ϕQ

00
z (ϕ, n) +

(√
2ϵd −

√
2g2acϵd

ω2
d − ω2

a

+
2g2acωa

ω2
d − ω2

a

ϕ+
κc

2
n
)
∂nQ

00
z (ϕ, n)

+
κc

2
∂2
ϕQ

00
z (ϕ, n) +

κc

2
∂2
nQ

00
z (ϕ, n)

(F4)

∂tQ
11
z (ϕ, n) =−

√
2g2acϵd

(ωd − ωa)2
nQ00

z (ϕ, n) +
(
κc

[
1− ωa

1 + (ωa

Λ )2
4g2acωd

(ω2
d − ω2

a)
2

]
+

√
2g2acϵd

(ωd − ωa)2
n
)
Q11

z (ϕ, n)

+
(√

2ϵd +

√
2ϵdg

2
ac(2ωaωd + ω2

d − ω2
a)

ωd(ωd + ωa)(ωd − ωa)2
− 2g2acωa

ω2
d − ω2

a

ϕ+
κc

2
n
)
∂nQ

11
z (ϕ, n)

−
√
2g2acϵd

(ωd − ωa)2
∂nQ

00
z (ϕ, n) +

(κc

2
ϕ+

2g2acωa

ω2
d − ω2

a

n
)
∂ϕQ

11
z (ϕ, n)

+
κc

2
∂2
ϕQ

11
z (ϕ, n) +

κc

2
∂2
nQ

11
z (ϕ, n)

(F5)
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∂tReQ01
z (ϕ, n) =g2ac

( 2ωa

ω2
d − ω2

a

(
2 + ∂2

n

)
−

√
2ϵd(2ω

2
d + ωaωd − ω2

a)

ωd(ωd + ωa)(ωd − ωa)2
∂ϕ +

2ωa

ω2
d − ω2

a

∂2
ϕ

)
ImQ01

z (ϕ, n)

+
(
κc +

√
2g2acϵd

(ωd − ωa)2
∂n

)
ReQ01

z (ϕ, n) +
2g2acωa

ω2
d − ω2

a

n∂nImQ01
z (ϕ, n)

+
(√

2ϵd +
g2acϵd(3ωd − ωa)ωa√

2ωd(ωd + ωa)(ωd − ωa)2
+

κc

2
n
)
∂nReQ01

z (ϕ, n)

−
( g2acϵd(2ωd − ωa)√

2ωd(ωd − ωa)2
− 2g2acωa

ω2
d − ω2

a

ϕ
)
∂ϕImQ01

z (ϕ, n)

+
κc

2
ϕ∂ϕReQ01

z (ϕ, n) +
κc

2
∂2
ϕReQ01

z (ϕ, n) +
κc

2
∂2
nReQ01

z (ϕ, n)

(F6)

∂tImQ01
z (ϕ, n) =− g2ac

( 2ωa

ω2
d − ω2

a

ϕ2 +
2ωa

ω2
d − ω2

a

(2 + n2)−
√
2ϵd(2ωd − ωa)

ωd(ωd − ωa)2
ϕ
)

ReQ01
z (ϕ, n)

+
(
κc +

√
2g2acϵd

(ωd − ωa)2
n
)

ImQ01
z (ϕ, n)− 2g2acωa

ω2
d − ω2

a

n∂nReQ01
z (ϕ, n)

+
(√

2ϵd +
g2acϵdωa(3ωd − ωa)√

2ωd(ωd − ωa)2(ωd + ωa)
+

κc

2
n
)
∂nImQ01

z (ϕ, n)

+
( g2acϵd(2ωd − ωa)√

2(ωd − ωa)2ωd

− 2g2acωa

ω2
d − ω2

a

ϕ
)
∂ϕReQ01

z (ϕ, n)

+
κc

2
ϕ∂ϕImQ01

z (ϕ, n) +
κc

2
∂2
ϕImQ01

z (ϕ, n) +
κc

2
∂2
nImQ01

z (ϕ, n)

(F7)

The equations of motion for Q
ab

z can then be solved numerically to obtain the time evolution of the joint probability densities
Q

00

z (ϕ, n) and Q
11

z (ϕ, n) for z-component spin values 0 and 1 respectively, whereas Q
aa

x (ϕ, n) and Q
aa

y (ϕ, n) are related to

Q
ab

z (ϕ, n) by the relations

Q
00

x =
Q

00

z +Q
11

z

2
− ReQ

01

z ; Q
11

x =
Q

00

z +Q
11

z

2
+ ReQ

01

z

Q
00

y =
Q

00

z +Q
11

z

2
− ImQ

01

z ; Q
11

y =
Q

00

z +Q
11

z

2
+ ImQ

01

z .

(F8)

The conditional Husimi functions Q
aa

µ with a ∈ {0, 1} and µ ∈ {x, y, z} can be interpreted as the probability distribution of
single-shot heterodyne measurement results with a particular spin state a [43, 44]. And for the transient spin-cavity dynamics,
solving the differential equations for Q

aa

µ provide the most detailed information about the physically observable system dynam-
ics. Our dynamical simulation of the spin-cavity model in Section IV C is based on numerical solutions of those conditional
Husimi functions.

Appendix G: The transmon readout model and the corresponding TCG master equation up to the fourth order

Following [6, 7], we model the system of a transmon coupled to a driven dissipative linear resonator by the following
Schrödinger picture Hamiltonian:

Ĥ = Ĥs + Ĥd(t) + Ĥsb + Ĥb (G1)

where

Ĥs =ωcc
†c− gac

(
c− c†

)(
a− a†

)
+ ωaa

†a− ϵωa

48

(
a+ a†

)4
(G2)

is the system Hamiltonian describing the transmon, the linear resonator, as well as their mutual coupling;

Ĥd(t) = −
(
c− c†

)(
ϵde

−iωdt − ϵ∗de
iωdt
)

(G3)
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is the drive Hamiltonian representing the readout drive on the linear resonator;

Ĥb =

∫ ∞

0

dω

2π
· DωωB

†
ωBω (G4)

is the bath Hamiltonian modeling the bosonic bath modes supported by a transmission line through which we drive and monitor
the system; finally,

Ĥsb = −
(
c− c†

) ∫ ∞

0

dω

2π
· Dωgω

(
Bω −B†

ω

)
(G5)

is the system-bath coupling Hamiltonian modeling the coupling between the resonator and the bath modes. Instead of the
coupling strengths gω , a more experimentally relevant characterization of the resonator-bath coupling is the spectral density
J(ω) := Dωg

2
ω which incorporates in it the density of states Dω .

We assume for the rest of this paper that the transmon-resonator coupling is in the dispersive limit, i.e., the TCG perturbative
expansion has a small parameter gac

|ωc−ω′
a(na)| ≪ 1. As motivated in the Appendix(A), we suppose that the physically measured

signal is the output signal from the system, down-converted by some local oscillator (LO) in a heterodyne detector at frequency
ωLO, and then time-averaged over some window with finite time resolution. Therefore, we first need to go to the LO-frequency
rotating frame by transforming to the interaction picture with the free Hamiltonian being

Ĥ0 :=ωLOc
†c+ ωaa

†a− ϵωa
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(
a+ a†

)4
+

∫ ∞

0

dω

2π
· DωωB

†
ωBω. (G6)

For the sake of simplicity, we further assume that the local oscillator has the same frequency as the readout drive, so that
ωLO = ωd, and we have the following interaction-picture Hamiltonian to linear order in ϵ:

HI(t) = HAC(t) +HA3C(t) +HD(t) +Hδ +HCB(t) (G7)

with

HAC(t) = gace
i(ω′

a(na)−ωd)t
(
1− ϵna

8

)
ca† − gacca

(
1− ϵna

8

)
e−i(ω′

a(na)+ωd)t + h.c.;

HA3C(t) = −ϵgac
16

ei(3ω
′
a(na−1)−ωd)tca†3 +

ϵgac
16

ca3e−i(3ω′
a(na−1)+ωd)t + h.c.;

HD(t) =
(
ϵ∗dc− ϵde

−2iωdtc
)
+ h.c.; Hδ = −(ωd − ωc)c

†c;

HCB(t) =

∫
dω

2π
Dωgω

(
ei(ω−ωd)tcB†

ω − e−i(ω+ωd)tcBω

)
+ h.c.

(G8)

where the operator-valued function

ω′
a(na) := ωa

(
1− ϵ

4
na

)
(G9)

gives us the phase frequency of the transmon quadrature variable a depending on the energy level na, with the dependence being
a consequence of transmon anharmonicity. In addition to variation in the transmon transition energies, a nonzero anharmonicity
ϵ also gives rise to the nonlinear atom-resonator couplings in HAC and HA3C . Furthermore, when we obtain a superoperator
whose coefficient depends on na, we adopt the convention that the operator-valued coefficient acts on the diagonal elements of
ρ before any action of the dissipator, i.e.,

κ(na)DA,Bρ ≡ Aκ(na)ρB − BAκ(na)ρ+ κ(na)ρBA

2
(G10)

with the coefficient κ(na) being any function of na.

1. Ranges of parameters and first-order TCG

At the lowest order (the first order), TCG simply replaces the Hamiltonian HI(t) with its time-average. To explicitly calculate
the TCG superoperators, we assume that the coarse graining time scale τ is much greater than 1

ωc
, 1

ω′
a(na)

, and 1
|ωc−ω′

a(na)|
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(which are typically below the nanosecond range) while allowing τ to be comparable or smaller than 1
|ωd−ωc| (since the near-

resonance situation is most relevant to experimental implementations). As stated in Eq.(100) of the main text, we make the
following assumptions of the model parameters:

1

ωc
,

1

ω′
a(na)

,
1

|ωc − ω′
a(na)|

≪ τ ≲
1

|ωd − ωc|
,

1

J(ωc)
;

g

|ωc − ω′
a(na)|

≪ 1; ϵ < 1; ωd ∼ ωc.

With these conditions, we calculate the TCG master equation up to the fourth order and ignore superoperators that are exponen-

tially suppressed by factors smaller than or equal to e−
ω2
cτ2

2 , e−
ω′2
a (na)τ2

2 , or e−
(ωc−ω′

a(na))2τ2

2 .
At the first order, TCG simply functions as a band-pass filter around the local oscillator frequency ωLO = ωd, replacing the

interaction-picture Hamiltonian H(t) with its slowly varying time average H(t), which gives us

H
(1)
TCG(t) := HI(t) =

[
ϵ∗dc+

∫
dω

2π
Dωgωe

− (ω−ωd)2τ2

2 ei(ω−ωd)tcB†
ω + h.c.

]
− (ωd − ωc)c

†c (G11)

Thus we see that, at the lowest order, time-coarse grained dynamics consists of Hamiltonian-generated coherent transitions with
transition frequencies that are not much greater 1

τ in the rotating frame of the local oscillator used to probe the system. In
particular, the high-frequency transverse coupling −gac

(
c − c†

)(
a − a†

)
between the transmon and the resonator is “filtered

out” from the first-order effective Hamiltonian H
(1)
TCG, whereas the slow dynamics induced by this coupling (e.g., dispersive shift,

Purcell decay, and drive-induced transitions) show up in higher-order effective Hamiltonian terms. A very convenient feature
which gets preserved to high orders in TCG is that the density matrix elements diagonal in the transmon Hilbert space will be
decoupled from the off-diagonal elements, which makes it much easier, both conceptually and numerically, to keep track of the
time evolution of the pointer states.

As we will show in Subsection G 2, second-order TCG is sufficient for revealing the following phenomena in the slow dy-
namics, including:

• shifts in the transmon and resonator transition frequencies due to the capacitive coupling between them;

• effective dispersive coupling between the transmon and the resonator;

• effective direct coupling between the transmon and the bath modes, which is responsible for the Purcell decay of the
transmon.

In particular, the emergent transmon-bath coupling gives rise to a Purcell decay rate of the transmon on the order of
g2acJ(ωa)|ωa − ωc|−2, which is on the same order in the coupling constants as the fourth-order TCG superoperators. There-
fore, to account for the system dynamics on the time scale of transmon Purcell decay, we perform perturbative time-coarse
graining to the fourth order. As will be shown in Subsection G 3, the third-order TCG gives rise to drive-induced inter-level
transitions of the transmon, with transition rates proportional to ϵ2d once the resonator has stabilized to its steady state. Finally,
we discuss the induced resonator anharmonicity from the fourth-order TCG in Subsection G 4.

In the following sections, we calculate the TCG master equation order by order, and emphasize on the emergent dynamics
revealed at each order. We also obtain numerical solutions of the TCG master equation using the following set of parameters:

ϵ = 0.2 κc = 0.48MHz
ωc

2π
= 7GHz

ω01 ≡
ωa

(
1− ϵ

4

)
2π

= 5GHz gac = 0.3016GHz

where ω01 is the (approximate) transition energy between the ground state and the first excited state of the transmon.

2. Second-order TCG, dispersive transmon-resonator coupling, and emergent transmon-bath decay channel

At the second order in perturbative TCG, we obtain the following corrections to the system effective Hamiltonian:

H
(2)
TCG =δ(2)h0(na) + δ(2)h1(na)c

†c+HAB +HA3B (G12)

with the coefficients

δ(2)h0(na) = g2ac

(
1− ϵ(na+1)

4

)
ω′
a(na)−

(
1 + 2na − ϵ(2n2

a+2na+1)
4

)
ωd(

ωd + ω′
a(na + 1)

)(
ωd − ω′

a(na)
) (G13)
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and

δ(2)h1(na) =2g2ac

(
1− ϵ(1+2na)

2 +
ϵ2(1+3na+3n2

a)
16

)
ω2
d(

ω2
d − ω′

a(na)2
)(
ω2
d − ω′

a(na + 1)2
)ωa − 2g2ac

ω′
a(na)

2ω′
a(na + 1)2(

ω2
d − ω′

a(na)2
)(
ω2
d − ω′

a(na + 1)2
)
ωa

(G14)

giving us the leading-order energy shifts due to the transmon-resonator coupling, whereas HAB and HA3B are effective
transmon-bath couplings that we would discuss later in this subsection. Here the symbol δ(i) indicates the i-th order contri-
bution to the corresponding coefficient. In particular, the dispersive shift of the cavity frequency is found to be

χ(2)
ac ≡δ(2)h1(0)− δ(2)h1(1) =

ϵg2ac
(
ω′
a(1) + ω′

a(2)
)
ω2
d(

ω2
d − ω′

a(1)
2
)(
ω2
d − ω′

a(2)
2
) (G15)

at the second order in coupling constants.
On the other hand, the effective transmon-bath couplings terms

HAB =

∫
dωDω

2π
g̃ω[a]aB

†(ω)ei(ω−ω′
a(na))t + h.c. (G16)

and

HA3B =

∫
dωDω

2π
g̃ω[a

3]a3B†(ω)ei(ω−3ω′
a(na−1))t + h.c. (G17)

represent single- and three-photon creation/annihilation processes which probe bath modes near the frequencies ω′
a(na) and

3ω′
a(na − 1) respectively, where the operator-valued effective transmon-bath coupling strengths g̃ω[a] and g̃ω[a

3] are given by

g̃ω[a] =− gωgac
(
1− ϵna

8

)
ωd

[e− (ω−ω′
a(na))2

2 τ2

ω2
d − ω′

a(na)2
+

e−
(ω−ω′

a(na))2

2 τ2 − e−
(ω−ωd)2+(ωd−ω′

a(na))2

2 τ2

ω2
d − ω2

]
≈− gωgac

(
1− ϵna

8

)2ωde
− (ω−ω′

a(na))2

2 τ2

ω2
d − ω′

a(na)2

(G18)

and

g̃ω[a
3] =− ϵgωgacωd

16

[ e− (ω−3ω′
a(na−1))2τ2

2

9ω′
a(na − 1)2 − ω2

d

+
e−

(ω−3ω′
a(na−1))2τ2

2 − e−
(ω−ωd)2+(ωd−3ω′

a(na−1))2

2 τ2

ω2 − ω2
d

]
≈− ϵgωgac

8

ωde
− (ω−3ω′

a(na−1))2τ2

2

9ω′
a(na − 1)2 − ω2

d

.

(G19)

We see that g̃ω[a] and g̃ω[a
3] are approximately gaussian functions centered around the one-photon and three-photon transition

frequencies respectively. Tracing out the bath degrees of freedom under the standard Born-Markov approximation at zero
temperature, we obtain the Purcell decay superoperators κa(na)Da,a† and κa3(na)Da3,a†3 with the decay rates

κa(na) = J
(
ω′
a(na)

)[2gac(1− ϵna

8

)
ωd

ω2
d − ω′

a(na)2

]2
κa3(na) =

ϵ2J
(
3ω′

a(na − 1)
)

64

[ gacωd

9ω′
a(na − 1)2 − ω2

d

]2 (G20)

where J(ω) := Dωg
2
ω is the power spectral density of the bosonic bath. Notice that the rates of the two Purcell decay processes

are independent of the state of the cavity, so the second-order TCG does not explain the drive dependence of the lifetime of the
transmon’s first-excited state, but rather gives rise to the drive-independent part of it. As would be discussed in Subsection G 3,
the drive-induced transmon level transitions kick in at the third-order TCG, where they become the most prominent processes
over the transmon T1 time scale for moderately strong drive strength (⟨nc⟩ >∼ 1). On the other hand, the effective transmon-bath
couplings would also give rise to Hamiltonian corrections proportional to c†c, nac

†c, c†2c2, and nac
†2c2, in the same way that

the resonator-bath couplings give rise to Lamb shift in the resonator frequency. However, for realistic parameters, the coefficients
of those Lamb-like corrections are orders of magnitudes smaller than 1/T1 (which is the smallest energy scale we are interested
in), and will therefore be ignored in subsequent calculations. Finally, as for the resonator-bath couplings, we obtain from them
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the same Lamb shift and resonator dissipator whether we apply TCG before or after the Born-Markov bath tracing procedure.
In summary, for our purposes in this model, the bath gives rise to the Lamb shift term

∆Lambc
†c := −

∫ ∞

0

dω

2π
J(ω)

( 1

ω − ωc
+

1

ω + ωc

)
c†c (G21)

in the Hamiltonian, as well as the drive-independent dissipators

κcDc,c† + κa(na)Da,a† (G22)

with the resonator decay rate κc ≡ J(ωd). Here we have dropped the three-photon dissipator κa3(na)Da3,a†3 since it is of
higher order in ϵ than the transmon potential, and with a drive-independent coefficient that is too small compared with κa(na).

In order to explicitly calculate the Lamb shift, we assume an Ohmic power spectral density with a soft frequency cutoff at
Λ ≫ ωa, ωd:

J(ω) =
αω

1 + ω2

Λ2

. (G23)

The particular functional form of J(ω) we use here is inspired by the asymptotic behavior of the power spectral density studied
in [57] where the bath is modeled by the modes of a transmission-line resonator coupled to semi-infinite waveguides at both
ends. And for numerical simulations presented in subsections G 3 and G 4, we use the value Λ = 2π · 100GHz.

It should also be emphasized that in using the effective transmon-bath coupling to calculate the Purcell decay rate, we have
implicitly assumed that bath relaxation takes place over a longer time scale than that of the (virtual) transitions between the
transmon and the resonator. This condition is reasonably well satisfied by the dispersive couplings we consider here. However,
the treatment of couplings to the bath in TCG has to be analyzed on a case-by-case basis in general, depending on the relative
scale of the coarse-graining time τ in comparison with the bath relaxation time as well as the time scales of relevant coherent
processes.

3. Third-order TCG and drive-induced incoherent transitions

Assuming the conditions in Eq.(100), we find that the third-order TCG gives rise to two types of corrections to the EME:
transmon-level dependent modulation of the drive terms in the Hamiltonian, and drive-induced dissipators acting on the trans-
mon. In fact, we can write the action of the third-order Liouvillian superoperator as

L3(t)ρ = −i
[
H

(3)
TCG, ρ

]
+D

(3)
TCGρ (G24)

where the third-order TCG Hamiltonian H
(3)
TCG(t) and dissipator D(3)

TCG(t) can be written as

H
(3)
TCG =δ(3)h0(na) + δ(3)h1(na)c

†c+
(
δ(3)h

(−1)
0 (na)c+ h.c.

)
(G25)

and

D
(3)
TCG =δ(3)κ

(−1,0)
0,0 (na)Dac,a† + δ(3)κ

(0,1)
0,0 (na)Da,a†c + δ(3)γ

(−1,0)
0,0 (na)Da†c,a + δ(3)γ

(0,1)
0,0 (na)Da†,ac + h.c. (G26)

respectively. The third-order corrections in H
(3)
TCG all provide small quantitative modifications to the Hamiltonian terms already

existing at lower orders in the perturbation, and does not introduce any qualitatively new features to the dynamics. We therefore
do not show explicit formulas for δ(3)h0(na), δ(3)h1(na), and δ(3)h

(−1)
0 (na). The dissipators in D

(3)
TCG, on the other hand, are

emergent non-Hamiltonian generators of the time evolution of ρ(t). More explicitly, we have

δ(3)κ
(−1,0)
0,0 (na) = ig2acϵ

∗
d

1− ϵna

4(
ω′
a(na) + ωd

)2
δ(3)κ

(0,1)
0,0 (na) = ig2acϵ

∗
d

1− ϵna

4(
ω′
a(na)− ωd

)2
δ(3)γ

(−1,0)
0,0 (na) = ig2acϵ

∗
d

1− ϵ(na+1)
4(

ω′
a(na + 1)− ωd

)2
δ(3)γ

(0,1)
0,0 (na) = ig2acϵ

∗
d

1− ϵ(na+1)
4(

ω′
a(na + 1) + ωd

)2 .

(G27)
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For a wide range of realistic parameters, the dissipators in D
(3)
TCG significantly modify the dynamical behavior of the population of

the n-th transmon energy level, here defined as pn(t) ≡ Tr
(
|n⟩a⟨n|aρ(t)

)
. In fact, tracing out the resonator degrees of freedom,

we find the following drive-induced transition rate from level n to level (n− 1):

K(n) =2Re
[(
δ(3)κ

(−1,0)
0,0 (n) + δ(3)κ

(0,1)
0,0 (n)

)
· ⟨c⟩n

]
(G28)

with ⟨c⟩n ≡ Tr
(
c|n⟩a⟨n|aρ

)
/Tr
(
|n⟩a⟨n|aρ

)
being the conditional expectation value of the resonator quadrature variable c when

the transmon is at energy level n. Similarly, the drive-induced transition rate from level n to level (n+ 1) is found to be

Γ(n) =2Re
[(
δ(3)γ

(−1,0)
0,0 (n) + δ(3)γ

(0,1)
0,0 (n)

)
· ⟨c⟩n

]
. (G29)

In practical applications of dispersive readout, the lifetime of the resonator is much shorter than that of the transmon, and the
quasi-steady state of the resonator will be close to a coherent state with

⟨c⟩n ≈ ϵd

−
(
ω̃c(n)− ωd

)
+ κc

2 i
(G30)

during all but the very initial period of the transmon time evolution, where ω̃c(n) ≡ ωc + h1(n) is the modified resonator fre-
quency when the transmon is at level n. Therefore, we find the drive-induced relaxation and excitation rates to be approximately

K(n) ≈|ϵd|2g2ac
κc

(
1− ϵn

4

)(
ω̃c(n)− ωd

)2
+

κ2
c

4

·
( 1(

ω′
a(n)− ωd

)2 +
1(

ω′
a(n) + ωd

)2)
Γ(n) ≈|ϵd|2g2ac

κc

(
1− ϵ(n+1)

4

)(
ω̃c(n)− ωd

)2
+

κ2
c

4

·
( 1(

ω′
a(n+ 1)− ωd

)2 +
1(

ω′
a(n+ 1) + ωd

)2).
(G31)

Notice in particular that K(n) (for n ≥ 1) and Γ(n) are always positive regardless of the phase of ϵd and the sign of ω′
a(n +

1) − ωd. This is necessary for the stability of the master equation since negative relaxation/excitation rates would make the
greatest pn blow up exponentially while pushing pn−1 and pn+1 down below zero. In fact, the positivity of K(n) and Γ(n) for
arbitrary choices of ϵd and ω′

a(n+1)−ωd demonstrates that perturbative TCG is consistent with the assumption that the steady
state of the readout resonator is close to a coherent state depending on the state of the transmon, which is the basis for using the
resonator states as pointer states in readout experiments.

Also, from Eq.(G31) we know that K(n) and Γ(n) are on the same order of magnitude. Therefore, we can compare the
drive-induced relaxation rate with the Purcell decay rate to estimate their impact on the transmon dynamics:

K(n)

κa(n)
=

|ϵd|2
(
1− ϵn

4

)(
ω̃c(n)− ωd

)2
+

κ2
c

4

ω2
d + ω′

a(n)
2

2ωdω′
a(n)

(
1− ϵn

8

)2 ≈ n(n)
c

ω2
d + ω′

a(n)
2

2ωdω′
a(n)

(G32)

where n
(n)
c ≈ |ϵd|2(

ω̃c(n)−ωd

)2
+

κ2
c
4

is the conditional expectation value of nc ≡ c†c when the transmon is at level n. Since ωd and

ω′
a(n) are both in the GHz range, the ratios between the drive-induced transition rates and the Purcell decay rate are on the same

order of magnitude as ⟨nc⟩n. If Purcell decay is the dominate decay channel of the transmon, then we expect the readout drive
to significantly decrease the T1 lifetime of the transmon qubit initially prepared in its first excited state as soon as the drive is
strong enough to maintain a few photons in the readout resonator. This is consistent with observations from recent experimental
studies. In fact, our analysis here show that the ratio between drive-induced transition rates and the Purcell decay rate cannot
be easily reduced by tuning the transmon and resonator frequencies or adjusting the transmon-resonator coupling strengths. To
minimize the relative strength of drive-induced transitions, one has to fundamentally change the type of atom-resonator couplings
(employing longitudinal couplings for example) or engineer the functional form of the spectral density (which works at the price
of increasing the resonator relaxation time).

As far as the time-coarse grained dynamics of the transmon is concerned, carrying out the perturbation to the third order is
sufficient for capturing all the salient features that one typically observes in a readout experiment. Using the cumulant expansion
method introduced in the Appendix(H), we can solve for numerical solutions of the 3rd-order TCG master equation for different
drive strengths measured in the steady-state resonator photon number n(0)

c := ⟨c†c⟩na=0 when the transmon is in the ground
state. As shown in panel (a) of Fig.14, the T1 lifetime decreases by more than a factor of two for relatively small resonator
photon occupancy (n(0)

c ∼ 1) if the intrinsic dissipation of the transmon is negligible in comparison with the Purcell decay rate.
In addition, the steady-state population pn(∞) is nonzero for any transmon level n due to the drive-induced transitions, as shown
in panel (b) of Fig.14. Moreover, for sufficiently large drive strength, the steady-state population of a higher transmon level will
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exceed that of a lower level, making it impossible to assign a positive effective temperature to the transmon in its steady-state.
And even for smaller drive strengths, an effective-temperature description of the steady state is only possible if we combine all
the excited states of the transmon into a single level for statistical purposes.

Finally, we may also obtain detailed information about the resonator dynamics from the TCG master equation (see the upper
panels in Fig.16), but we leave the discussion for Subsection G 4.

4. Fourth-order TCG and numerical solutions of the effective master equation (EME)

Similar to the third-order TCG superoperators, the superoperators obtained from the fourth-order TCG can be grouped into
Hamiltonian commutators and dissipators:

L4(t)ρ = −i
[
H

(4)
TCG, ρ

]
+D

(4)
TCGρ. (G33)

Ignoring superoperators with coefficients below the 1Hz level, we can write H
(4)
TCG and D

(4)
TCG as

H
(4)
TCG =δ(4)h0(na) + δ(4)h1(na)c

†c+ δ(4)h2(na)c
†2c2

+
(
δ(4)h

(−1)
0 (na)c+ δ(4)h

(−1)
1 (na)c

†c2

+ δ(4)h
(−2)
0 (na)c

2 + h.c.
) (G34)

and

D
(4)
TCG

=δ(4)d
(−2,−1)
0,0 (na)Dc2,c† + δ(4)d

(1,2)
0,0 (na)Dc†,c2

+ δ(4)κ
(−1,−1)
1,0 (na)Dac†c2,a†c† + δ(4)κ

(1,1)
1,0 (na)Dac†2c,a†c

+ δ(4)κ
(0,0)
0,1 (na)Da,a†c†c + δ(4)κ

(−1,0)
0,0 (na)Dac,a†

+ δ(4)κ
(−1,0)
0,1 (na)Dac,a†c†c + δ(4)κ

(0,1)
0,0 (na)Da,a†c

+ δ(4)κ
(0,1)
1,0 (na)Dac†c,a†c + δ(4)γ

(−1,−1)
1,0 (na)Da†c†c2,ac†

+ δ(4)γ
(1,1)
1,0 (na)Da†c†2c,ac + δ(4)γ

(0,0)
0,1 (na)Da†,ac†c

+ δ(4)γ
(−1,0)
0,0 (na)Da†c,a + δ(4)γ

(−1,0)
0,1 (na)Da†c,ac†c

+ δ(4)γ
(0,1)
0,0 (na)Da†,ac + δ(4)γ

(0,1)
1,0 (na)Da†c†c,ac + h.c.

(G35)

respectively, where we see that the fourth-order TCG provides some modifications to the coefficients of existing superoperators,
while at the same time introducing a few new ones. Noticeably, starting at this order in perturbation theory, we begin to see
that the transmon anharmonicity induces the anharmonic self-Kerr potential h2(na)c

†2c2 in the resonator3; also, we begin to see
transmon-assisted bi-photon absorption and emission processes emerging from the drive terms in the Hamiltonian4. Similarly,
more complicated dissipators are also introduced at this order, but they only generate small and more subtle dependence of the
drive-induced transition rates on the resonator state.

Appendix H: Equations of motion for the conditional cumulants

In general, the TCG master equation can be written as

∂tρac(t) = −i
[
Heff, ρac(t)

]
+Deffρac(t). (H1)

As discussed in subsections G 1-G 4, up to the fourth order in coupling constants and with the local oscillator set at the drive
frequency (ωLO = ωd), the effective Hamiltonian can be written as

Heff =h0(na) + h1(na)nc + h2(na)n
2
c +

[
h
(−1)
0 (na)c+ h

(−1)
1 (na)c

†c2 + h
(−2)
0 (na)c

2 + h.c.
]

(H2)

3 The resonator anharmonicity is induced by the transmon anharmonicity in
the sense that it vanishes in the ϵ → 0 limit.

4 Such processes are transmon-assisted in the sense that the effective bi-
photon drive strengths are proportional to g2ac|ϵd|

2.
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while the effective jump superoperators can be written as

Deff =D
(0)
eff +D

(−)
eff +D

(+)
eff (H3)

where D
(0)
eff , D(−)

eff , and D
(+)
eff are defined as follows:

D
(0)
eff =d

(−1,−1)
0,0 (na)Dc,c† +

[
d
(−2,−1)
0,0 (na)Dc2,c† + d

(1,2)
0,0 (na)Dc†,c2 + h.c.

]
(H4)

D
(−)
eff =κ

(0,0)
0,0 (na)Da,a† +

[
κ
(−1,−1)
(1,0) (na)Dac†c2,a†c† + κ

(1,1)
(1,0)(na)Dac†2c,a†c + κ

(0,0)
0,1 (na)Da,a†c†c + h.c.

]
+
[
κ
(−1,0)
0,0 (na)Dac,a† + κ

(−1,0)
0,1 (na)Dac,a†c†c + κ

(0,1)
0,0 (na)Da,a†c + κ

(0,1)
1,0 (na)Dac†c,a†c + h.c.

] (H5)

D
(+)
eff (t) =γ

(−1,−1)
(1,0) (na)Da†c†c2,ac† + γ

(1,1)
(1,0)(na)Da†c†2c,ac + γ

(0,0)
0,1 (na)Da†,ac†c + γ

(−1,0)
0,0 (na)Da†c,a

+ γ
(−1,0)
0,1 (na)Da†c,ac†c + γ

(0,1)
0,0 (na)Da†,ac + γ

(0,1)
1,0 (na)Da†c†c,ac + h.c.

(H6)

Here the coefficients may receive contributions from different orders in the TCG perturbative expansion:

h0 = δ(2)h0 + δ(3)h0 + δ(4)h0 + . . . ; h1 = −(ωd − ωc) + δ(2)h1 + δ(3)h1 + δ(4)h1 + . . . ;

h2 = δ(4)h2 + . . . ; h
(−1)
0 = ϵ∗d + δ(3)h

(−1)
0 + δ(4)h

(−1)
0 + . . . ;

h
(−1)
1 = δ(4)h

(−1)
1 + . . . ; h

(−2)
0 = δ(4) + h

(−2)
0 . . . ;

d
(−1,−1)
0,0 = κc + . . . ; d

(−2,−1)
0,0 = δ(4)d

(−2,−1)
0,0 + . . . ; d

(1,2)
0,0 = δ(4)d

(1,2)
0,0 + . . . ;

κ
(0,0)
0,0 = κa + . . . ; κ

(−1,−1)
1,0 = δ(4)κ

(−1,−1)
1,0 + . . . ; κ

(1,1)
1,0 = δ(4)κ

(1,1)
1,0 + . . . ;

κ
(0,0)
0,1 = δ(4)κ

(0,0)
0,1 + . . . ; κ

(−1,0)
0,1 = δ(4)κ

(−1,0)
0,1 + . . . ; κ

(0,1)
1,0 = δ(4)κ

(0,1)
1,0 + . . . ;

κ
(0,1)
0,0 = δ(3)κ

(0,1)
0,0 + δ(4)κ

(0,1)
0,0 + . . . ; κ

(−1,0)
0,0 = δ(3)κ

(−1,0)
0,0 + δ(4)κ

(−1,0)
0,0 . . . ;

γ
(0,1)
1,0 = δ(4)γ

(0,1)
1,0 + . . . ; γ

(1,1)
1,0 = δ(4)γ

(1,1)
1,0 + . . . ; γ

(0,0)
0,1 = δ(4)γ

(0,0)
0,1 + . . . ;

γ
(−1,0)
0,0 = δ(3)γ

(−1,0)
0,0 + δ(4)γ

(−1,0)
0,0 . . . ; γ

(−1,0)
0,1 = δ(4)γ

(−1,0)
0,1 + . . . ;

γ
(0,1)
0,0 = δ(3)γ

(0,1)
0,0 + δ(4)γ

(0,1)
0,0 + . . . ; γ

(−1,−1)
1,0 = δ(4)γ

(−1,−1)
1,0 + . . . ;

(H7)

We denote the probability of finding the transmon at energy level n by pn(t) := Tr
(
ρ(t)|n⟩a⟨n|a

)
, and define the correspond-

ing reduced density matrix of the resonator to be ρc;n(t) := 1
pn

Tra
(
ρ(t)|n⟩a⟨n|a

)
. Notice that after time-coarse graining, pn

can be very small, but in general remains nonzero. The TCG master equation then implies that
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∂t
(
pnρc;n

)
=− ipn

[
h1(n)nc + h2(n)n

2
c +

(
h
(−1)
0 (n)c+ h

(−1)
1 (n)c†c2 + h

(−2)
0 (n)c2 + h.c.

)
, ρc;n

]
+ pnd

(−1,−1)
0,0 (n)Dc,c†ρc;n + pn

[
d
(−2,−1)
0,0 (n)Dc2,c† + d

(−2,−1)
0,0 (n)∗Dc,c†2 + d

(1,2)
0,0 (n)Dc†,c2 + d

(1,2)
0,0 (n)∗Dc†2,c

]
ρc;n

− pn

(
κ
(0,0)
0,0 (n) + γ

(0,0)
0,0 (n)

)
ρc;n − pn

(
2Re

(
κ
(0,0)
0,1 (n) + 2κ

(1,1)
(1,0)(n)

)
+ 2Re

(
γ
(0,0)
0,1 (n) + 2γ

(1,1)
(1,0)(n)

))
·
c†cρc;n + ρc;nc

†c

2

− pn

(
κ
(−1,0)
0,0 (n) + κ

(0,1)
0,0 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,0 (n) + γ

(0,1)
0,0 (n) + γ

(0,1)
1,0 (n)

)cρc;n + ρc;nc

2

− pn

(
κ
(−1,0)
0,0 (n)∗ + κ

(0,1)
0,0 (n)∗ + κ

(0,1)
1,0 (n)∗ + γ

(−1,0)
0,0 (n)∗ + γ

(0,1)
0,0 (n)∗ + γ

(0,1)
1,0 (n)∗

)c†ρc;n + ρc;nc
†

2

− pn

(
κ
(−1,0)
0,1 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,1 (n) + γ

(0,1)
1,0 (n)

)c†c2ρc;n + ρc;nc
†c2

2

− pn

(
κ
(−1,0)
0,1 (n)∗ + κ

(0,1)
1,0 (n)∗ + γ

(−1,0)
0,1 (n)∗ + γ

(0,1)
1,0 (n)∗

)c†2cρc;n + ρc;nc
†2c

2

+ pn+1

[
κ
(0,0)
0,0 (n+ 1)ρc;n+1

]
+ pn+1

[
κ
(−1,0)
0,0 (n+ 1)cρc;n+1 + κ

(0,1)
0,0 (n+ 1)ρc;n+1c

]
+ pn+1

[
κ
(−1,0)
0,0 (n+ 1)∗ρc;n+1c

† + κ
(0,1)
0,0 (n+ 1)∗c†ρc;n+1

]
+ pn+1

[
κ
(−1,0)
0,1 (n+ 1)cρc;n+1c

†c+ κ
(0,1)
1,0 (n+ 1)c†cρc;n+1c+ κ

(−1,0)
0,1 (n+ 1)∗c†cρc;n+1c

† + κ
(0,1)
1,0 (n+ 1)∗c†ρc;n+1c

†c
]

+ pn+1

[
κ
(−1,−1)
(1,0) (n+ 1)c†c2ρc;n+1c

† + κ
(1,1)
(1,0)(n+ 1)c†2cρc;n+1c+ κ

(0,0)
0,1 (n+ 1)ρc;n+1c

†c

+ κ
(−1,−1)
(1,0) (n+ 1)∗cρc;n+1c

†2c+ κ
(1,1)
(1,0)(n+ 1)∗c†ρc;n+1c

†c2 + κ
(0,0)
0,1 (n+ 1)∗c†cρc;n+1

]
+ pn−1

[
γ
(0,0)
0,0 (n− 1)ρc;n−1

]
+ pn−1

[
γ
(−1,0)
0,0 (n− 1)cρc;n−1 + γ

(0,1)
0,0 (n− 1)ρc;n−1c

]
+ pn−1

[
γ
(−1,0)
0,0 (n− 1)∗ρc;n−1c

† + γ
(0,1)
0,0 (n− 1)∗c†ρc;n−1

]
+ pn−1

[
γ
(−1,0)
0,1 (n− 1)cρc;n−1c

†c+ γ
(0,1)
1,0 (n− 1)c†cρc;n−1c+ γ

(−1,0)
0,1 (n− 1)∗c†cρc;n−1c

† + γ
(0,1)
1,0 (n− 1)∗c†ρc;n−1c

†c
]

+ pn−1

[
γ
(−1,−1)
(1,0) (n− 1)c†c2ρc;n−1c

† + γ
(1,1)
(1,0)(n− 1)c†2cρc;n−1c+ γ

(0,0)
0,1 (n− 1)ρc;n−1c

†c

+ γ
(−1,−1)
(1,0) (n− 1)∗cρc;n−1c

†2c+ γ
(1,1)
(1,0)(n− 1)∗c†ρc;n−1c

†c2 + γ
(0,0)
0,1 (n− 1)∗c†cρc;n−1

]
.

(H8)

And this equation for the conditional reduced density matrix ρc;n gives rise to the following equations of motion for pn and the
central moments EOc(n) := Tr

(
ρ(t)Oc|n⟩a⟨n|a

)
for any resonator operators Oc:

∂tpn =− pn

(
κ
(0,0)
0,0 (n) + γ

(0,0)
0,0 (n)

)
− 2pn

(
Re
(
2κ

(1,1)
1,0 (n) + κ

(0,0)
0,1 (n)

)
+ Re

(
2γ

(1,1)
1,0 (n) + γ

(0,0)
0,1 (n)

))
· Ec†c(n)

− 2pnRe
[(
κ
(−1,0)
0,0 (n) + κ

(0,1)
0,0 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,0 (n) + γ

(0,1)
0,0 (n) + γ

(0,1)
1,0 (n)

)
Cc(n)

]
− 2pnRe

[(
κ
(−1,0)
0,1 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,1 (n) + γ

(0,1)
1,0 (n)

)
Ec†c2(n)

]
+ pn+1κ

(0,0)
0,0 (n+ 1) + 2pn+1Re

[
κ
(0,0)
0,1 (n+ 1) + 2κ

(1,1)
1,0 (n+ 1)

]
Ec†c(n+ 1)

+ 2pn+1Re
[(
κ
(−1,0)
0,0 (n+ 1) + κ

(0,1)
0,0 (n+ 1) + κ

(0,1)
1,0 (n+ 1)

)
Cc(n+ 1)

]
+ 2pn+1Re

[(
κ
(−1,0)
0,1 (n+ 1) + κ

(0,1)
1,0 (n+ 1)

)
Ec†c2(n+ 1)

]
+ pn−1γ

(0,0)
0,0 (n− 1) + 2pn−1Re

[
γ
(0,0)
0,1 (n− 1) + 2γ

(1,1)
1,0 (n− 1)

]
Ec†c(n− 1)

+ 2pn−1Re
[(
γ
(−1,0)
0,0 (n− 1) + γ

(0,1)
0,0 (n− 1) + γ

(0,1)
1,0 (n− 1)

)
Cc(n− 1)

]
+ 2pn−1Re

[(
γ
(−1,0)
0,1 (n− 1) + γ

(0,1)
1,0 (n− 1)

)
Ec†c2(n− 1)

]

(H9)
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∂t
(
pnCc(n)

)
=− 1

2
pnd

(−1,−1)
0,0 (n)Cc(n)− ipn

((
h1(n) + h2(n)

)
Cc(n) + 2h2(n)Ec†c2(n) + 2h

(−2)
0 (n)∗Cc(n)

∗
)

+
1

2
pn
(
d
(1,2)
0,0 (n)− d

(−2,−1)
0,0 (n)

)
Ec2(n)− ipn

(
h
(−1)
0 (n)∗ + h

(−1)
1 (n)Ec2(n) + 2h

(−1)
1 (n)∗Ec†c(n)

)
+ pn

(
d
(1,2)
0,0 (n)∗ − d

(−2,−1)
0,0 (n)∗

)
Ec†c(n) + pnd

(1,2)
0,0 (n)∗ − pn

(
κ
(0,0)
0,0 (n) + γ

(0,0)
0,0 (n)

)
Cc(n)

− pn

(
2Re

(
κ
(0,0)
0,1 (n) + 2κ

(1,1)
(1,0)(n)

)
+ 2Re

(
γ
(0,0)
0,1 (n) + 2γ

(1,1)
(1,0)(n)

))(1
2
Cc(n) + Ec†c2(n)

)
− pn

(
κ
(−1,0)
0,0 (n) + κ

(0,1)
0,0 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,0 (n) + γ

(0,1)
0,0 (n) + γ

(0,1)
1,0 (n)

)
Ec2(n)

− pn
(
κ
(−1,0)
0,0 (n)∗ + κ

(0,1)
0,0 (n)∗ + κ

(0,1)
1,0 (n)∗ + γ

(−1,0)
0,0 (n)∗ + γ

(0,1)
0,0 (n)∗ + γ

(0,1)
1,0 (n)∗

)(1
2
+ Ec†c(n)

)
− pn

(
κ
(−1,0)
0,1 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,1 (n) + γ

(0,1)
1,0 (n)

)(1
2
Ec2(n) + Ec†c3

)
− pn

(
κ
(−1,0)
0,1 (n)∗ + κ

(0,1)
1,0 (n)∗ + γ

(−1,0)
0,1 (n)∗ + γ

(0,1)
1,0 (n)∗

)(
Ec†c(n) + Ec†2c2

)
+ pn+1

(
κ
(0,0)
0,0 (n+ 1) + κ

(0,0)
0,1 (n+ 1)∗ + 2κ

(1,1)
(1,0)(n+ 1)

)
Cc(n+ 1) + pn+1

(
κ
(−1,0)
0,0 (n+ 1) + κ

(0,1)
0,0 (n+ 1)

)
Ec2(n+ 1)

+ pn+1

(
κ
(−1,−1)
(1,0) (n+ 1) + κ

(1,1)
(1,0)(n+ 1) + 2Re

(
κ
(0,0)
0,1 (n+ 1)

))
Ec†c2(n+ 1)

+ pn+1

((
κ
(−1,0)
0,0 (n+ 1)∗ + κ

(0,1)
0,0 (n+ 1)∗

)
Ec†c(n+ 1) + κ

(0,1)
0,0 (n+ 1)∗

)
+ pn+1

(
2κ

(0,1)
1,0 (n+ 1)Ec2(n+ 1) +

(
κ
(−1,0)
0,1 (n+ 1) + κ

(0,1)
1,0 (n+ 1)

)
Ec†c3(n+ 1)

)
+ pn+1

((
κ
(−1,0)
0,1 (n+ 1)∗ + 2κ

(0,1)
1,0 (n+ 1)∗

)
Ec†c(n+ 1) +

(
κ
(−1,0)
0,1 (n+ 1)∗ + κ

(0,1)
1,0 (n+ 1)∗

)
Ec†2c2(n+ 1)

)
+ pn−1

(
γ
(0,0)
0,0 (n− 1) + γ

(0,0)
0,1 (n− 1)∗ + 2γ

(1,1)
(1,0)(n− 1)

)
Cc(n− 1) + pn−1

(
γ
(−1,0)
0,0 (n− 1) + γ

(0,1)
0,0 (n− 1)

)
Ec2(n− 1)

+ pn−1

(
γ
(−1,−1)
(1,0) (n− 1) + γ

(1,1)
(1,0)(n− 1) + 2Re

(
γ
(0,0)
0,1 (n− 1)

))
Ec†c2(n− 1)

+ pn−1

((
γ
(−1,0)
0,0 (n− 1)∗ + γ

(0,1)
0,0 (n− 1)∗

)
Ec†c(n− 1) + γ

(0,1)
0,0 (n− 1)∗

)
+ pn−1

(
2γ

(0,1)
1,0 (n− 1)Ec2(n− 1) +

(
γ
(−1,0)
0,1 (n− 1) + γ

(0,1)
1,0 (n− 1)

)
Ec†c3(n− 1)

)
+ pn−1

((
γ
(−1,0)
0,1 (n− 1)∗ + 2γ

(0,1)
1,0 (n− 1)∗

)
Ec†c(n− 1) +

(
γ
(−1,0)
0,1 (n− 1)∗ + γ

(0,1)
1,0 (n− 1)∗

)
Ec†2c2(n− 1)

)
(H10)
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∂t

(
pnEc2(n)

)
=− 2ipn

((
h1(n) + 2h2(n)

)
Ec2(n) + 2h2(n)Ec†c3(n) + h

(−1)
1 (n)Ec3(n) + h

(−2)
0 (n)∗

(
1 + 2Ec†c(n)

))
− 2ipn

((
h
(−1)
0 (n)∗ + h

(−1)
1 (n)∗

)
Cc(n) + 2h

(−1)
1 (n)∗Ec†c2(n)

)
− pn

((
d
(−1,−1)
0,0 (n) + κ

(0,0)
0,0 (n) + γ

(0,0)
0,0 (n)

)
Ec2(n) +

(
d
(−2,−1)
0,0 (n) + d

(1,2)
0,0 (n)

)
Ec3(n)

)
− pn

((
d
(−2,−1)
0,0 (n)∗ + 3d

(1,2)
0,0 (n)∗

)
Cc(n) + 2

(
d
(−2,−1)
0,0 (n)∗ + d

(1,2)
0,0 (n)∗

)
Ec†c2(n)

)
− pn

(
2Re

[
κ
(0,0)
0,1 (n) + 2κ

(1,1)
(1,0)(n)

]
+ 2Re

[
γ
(0,0)
0,1 (n) + 2γ

(1,1)
(1,0)(n)

])(
Ec2(n) + Ec†c3(n)

)
− pn

(
κ
(−1,0)
0,0 (n) + κ

(0,1)
0,0 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,0 (n) + γ

(0,1)
0,0 (n) + γ

(0,1)
1,0 (n)

)
Ec3(n)

− pn
(
κ
(−1,0)
0,0 (n)∗ + κ

(0,1)
0,0 (n)∗ + κ

(0,1)
1,0 (n)∗ + γ

(−1,0)
0,0 (n)∗ + γ

(0,1)
0,0 (n)∗ + γ

(0,1)
1,0 (n)∗

)(
Cc(n) + Ec†c2(n)

)
− pn

(
κ
(−1,0)
0,1 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,1 (n) + γ

(0,1)
1,0 (n)

)(
Ec3(n) + Ec†c4

)
− pn

(
κ
(−1,0)
0,1 (n)∗ + κ

(0,1)
1,0 (n)∗ + γ

(−1,0)
0,1 (n)∗ + γ

(0,1)
1,0 (n)∗

)(
Cc(n) + 2Ec†c2(n) + Ec†2c3

)
+ pn+1

(
κ
(0,0)
0,0 (n+ 1)

)
Ec2(n+ 1) + 2pn+1

(
κ
(0,0)
0,1 (n+ 1)∗ + 3κ

(1,1)
(1,0)(n+ 1)

)
Ec2(n+ 1)

+ 2pn+1

(
Re
[
κ
(0,0)
0,1 (n+ 1)

]
+ κ

(−1,−1)
(1,0) (n+ 1) + κ

(1,1)
(1,0)(n+ 1)

)
Ec†c3(n+ 1)

+ pn+1

(
κ
(−1,0)
0,0 (n+ 1) + κ

(0,1)
0,0 (n+ 1)

)
Ec3(n+ 1) + 2pn+1κ

(0,1)
0,0 (n+ 1)∗Cc(n+ 1)

+ pn+1

(
κ
(−1,0)
0,0 (n+ 1)∗ + κ

(0,1)
0,0 (n+ 1)∗

)
Ec†c2(n+ 1)

+ pn+1

((
κ
(−1,0)
0,1 (n+ 1) + κ

(0,1)
1,0 (n+ 1)

)
Ec†c4(n+ 1) + 3κ

(0,1)
1,0 (n+ 1)Ec3(n+ 1)

)
+ pn+1

((
2κ

(−1,0)
0,1 (n+ 1)∗ + 3κ

(0,1)
1,0 (n+ 1)∗

)
Ec†c2(n+ 1) +

(
κ
(−1,0)
0,1 (n+ 1)∗ + κ

(0,1)
1,0 (n+ 1)∗

)
Ec†2c3(n+ 1)

)
+ pn−1

(
γ
(0,0)
0,0 (n− 1)

)
Ec2(n− 1) + 2pn−1

(
γ
(0,0)
0,1 (n− 1)∗ + 3γ

(1,1)
(1,0)(n− 1)

)
Ec2(n− 1)

+ 2pn−1

(
Re
[
γ
(0,0)
0,1 (n− 1)

]
+ γ

(−1,−1)
(1,0) (n− 1) + γ

(1,1)
(1,0)(n− 1)

)
Ec†c3(n− 1)

+ pn−1

(
γ
(−1,0)
0,0 (n− 1) + γ

(0,1)
0,0 (n− 1)

)
Ec3(n− 1) + 2pn−1γ

(0,1)
0,0 (n− 1)∗Cc(n− 1)

+ pn−1

(
γ
(−1,0)
0,0 (n− 1)∗ + γ

(0,1)
0,0 (n− 1)∗

)
Ec†c2(n− 1)

+ pn−1

((
γ
(−1,0)
0,1 (n− 1) + γ

(0,1)
1,0 (n− 1)

)
Ec†c4(n− 1) + 3γ

(0,1)
1,0 (n− 1)Ec3(n− 1)

)
+ pn−1

((
2γ

(−1,0)
0,1 (n− 1)∗ + 3γ

(0,1)
1,0 (n− 1)∗

)
Ec†c2(n− 1) +

(
γ
(−1,0)
0,1 (n− 1)∗ + γ

(0,1)
1,0 (n− 1)∗

)
Ec†2c3(n− 1)

)

(H11)
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∂t

(
pnEc†c(n)

)
=− 2pnIm

[
h
(−1)
0 (n)Cc(n) + h

(−1)
1 (n)Ec†c2(n) + 2h

(−2)
0 Ec2(n)

]
− pnd

(−1,−1)
0,0 (n)Ec†c(n)

+ 3pnRe
[
2d

(1,2)
0,0 (n)Cc(n) +

(
d
(1,2)
0,0 (n)− d

(−2,−1)
0,0 (n)

)
Ec†c2(n)

]
− pn

(
κ
(0,0)
0,0 (n) + γ

(0,0)
0,0 (n)

)
Ec†c(n)

− 2pnRe
[
κ
(0,0)
0,1 (n) + 2κ

(1,1)
(1,0)(n) + γ

(0,0)
0,1 (n) + 2γ

(1,1)
(1,0)(n)

](
Ec†c(n) + Ec†2c2(n)

)
− pnRe

[(
κ
(−1,0)
0,0 (n) + κ

(0,1)
0,0 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,0 (n) + γ

(0,1)
0,0 (n) + γ

(0,1)
1,0 (n)

)(
Cc(n) + 2Ec†c2(n)

)]
− pnRe

[(
κ
(−1,0)
0,1 (n) + κ

(0,1)
1,0 (n) + γ

(−1,0)
0,1 (n) + γ

(0,1)
1,0 (n)

)(
3Ec†c2 + 2Ec†2c3

)]
+ pn+1

(
κ
(0,0)
0,0 (n+ 1) + 2Re

[
κ
(0,0)
0,1 (n+ 1)

])
Ec†c(n+ 1) + 2pn+1Re

[
κ
(0,0)
0,1 (n+ 1)

]
Ec†2c2(n+ 1)

+ 2pn+1Re
[
κ
(0,1)
0,0 (n+ 1)Cc(n+ 1)

]
+ 2pn+1Re

[(
κ
(−1,0)
0,0 (n+ 1) + κ

(0,1)
0,0 (n+ 1)

)
Ec†c2(n+ 1)

]
+ 2pn+1Re

[
κ
(0,1)
1,0 (n+ 1)Cc(n+ 1) +

(
κ
(−1,0)
0,1 (n+ 1) + 3κ

(0,1)
1,0 (n+ 1)

)
Ec†c2(n+ 1)

]
+ 2pn+1Re

[(
κ
(−1,0)
0,1 (n+ 1) + κ

(0,1)
1,0 (n+ 1)

)
Ec†2c3(n+ 1)

]
+ pn−1

(
γ
(0,0)
0,0 (n− 1) + 2Re

[
γ
(0,0)
0,1 (n− 1)

])
Ec†c(n− 1) + 2pn−1Re

[
γ
(0,0)
0,1 (n− 1)

]
Ec†2c2(n− 1)

+ 2pn−1Re
[
γ
(0,1)
0,0 (n− 1)Cc(n− 1)

]
+ 2pn−1Re

[(
γ
(−1,0)
0,0 (n− 1) + γ

(0,1)
0,0 (n− 1)

)
Ec†c2(n− 1)

]
+ 2pn−1Re

[
γ
(0,1)
1,0 (n− 1)Cc(n− 1) +

(
γ
(−1,0)
0,1 (n− 1) + 3γ

(0,1)
1,0 (n− 1)

)
Ec†c2(n− 1)

]
+ 2pn−1Re

[(
γ
(−1,0)
0,1 (n− 1) + γ

(0,1)
1,0 (n− 1)

)
Ec†2c3(n− 1)

]

(H12)

However, the equations of motion (EOM) above are not closed with a finite number of central moment variables. In order
to obtain a closed set of EOM, we assume that the conditional resonator states do not deviate very significantly from coherent
states so that we can perform a cumulant expansion to central moments and truncate at a certain order in the cumulant variables.
For the numerical simulations in this paper, we make the following truncation at the second-order cumulants to close the EOM
with the variables pn, Cc(n), Cc2(n) and Cc†c(n):

Cc(n) :=
1

pn
Tr
(
|n⟩a⟨n|acρ(t)

)
Ec2(n) :=

1

pn
Tr
(
|n⟩a⟨n|ac2ρ(t)

)
= Cc(n)

2 + Cc2(n)

Ec†c(n) :=
1

pn
Tr
(
|n⟩a⟨n|ac†cρ(t)

)
= |Cc(n)|2 + Cc†c(n)

Ec†c2(n) :=
1

pn
Tr
(
|n⟩a⟨n|ac†c2ρ(t)

)
≈ |Cc(n)|2Cc(n) + Cc(n)

∗Cc2(n) + 2Cc†c(n)Cc(n)

Ec3(n) :=
1

pn
Tr
(
|n⟩a⟨n|ac3ρ(t)

)
≈ Cc(n)

3 + 3Cc2(n)Cc(n)

Ec†c3(n) :=
1

pn
Tr
(
|n⟩a⟨n|ac†c3ρ(t)

)
≈ |Cc(n)|2Cc(n)

2 + 3Cc†c(n)Cc(n)
2 + 3Cc2(n)|Cc(n)|2 + 3Cc†c(n)Cc2(n)

Ec†2c2(n) :=
1

pn
Tr
(
|n⟩a⟨n|ac†2c2ρ(t)

)
≈ |Cc(n)|4 + Cc2(n)

∗Cc(n)
2 + Cc(n)

∗2Cc2(n) + 4Cc†c(n)|Cc(n)|2 + |Cc2(n)|2 + 2Cc†c(n)
2

Ec†c4(n) :=
1

pn
Tr
(
|n⟩a⟨n|ac†c3ρ(t)

)
≈ |Cc(n)|2Cc(n)

3 + 4Cc†c(n)Cc(n)
3 + 6Cc2(n)|Cc(n)|2Cc(n) + 12Cc†c(n)Cc2(n)Cc(n) + 3Cc2(n)

2Cc(n)
∗

Ec†2c3(n) :=
1

pn
Tr
(
|n⟩a⟨n|ac†2c2ρ(t)

)
≈ |Cc(n)|4Cc(n) + Cc2(n)

∗Cc(n)
3 + 6Cc†c(n)|Cc(n)|2Cc(n) + 3Cc2(n)|Cc(n)|2Cc(n)

∗ + 3|Cc2(n)|2Cc(n)

+ 6Cc†c(n)
2Cc(n) + 6Cc†c(n)Cc2(n)Cc(n)

∗

(H13)

In addition, the EOM are fully closed by truncating the transmon Hilbert space at a certain energy level. In this paper, we
make the approximation that pn = 0 for all n > 6, which is sufficient for simulating the dynamics corresponding to the first six
energy levels of the transmon.
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Finally, to calculate the numerical values of the coefficients in the EME, we assume the following experimentally relevant
parameters:

ϵ = 0.2; ωc = 2π × 7GHz; ω01 ≡ ωa

(
1− ϵ

4

)
= 2π × 5GHz;

gac = 9.6× 10−3ω01 = 0.3016GHz; κc = 0.48MHz,
(H14)

whereas the spectral density of the bath takes the form

J(ω) = 1.09× 10−5 · ω

1 + (ωΛ )
2

(H15)

with a soft cut-off scale set at Λ = 100 · 2πGHz. We emphasize that the dynamics of the system is very insensitive to the exact
value of Λ which depends on the physical details of the resonator-bath coupling.
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