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The expressive capacity of physical systems employed for learning is limited by the unavoidable
presence of noise in their extracted outputs. Though present in physical systems across both the classical
and quantum regimes, the precise impact of noise on learning remains poorly understood. Focusing on
supervised learning, we present a mathematical framework for evaluating the resolvable expressive
capacity (REC) of general physical systems under finite sampling noise and provide a methodology for
extracting its extrema, the eigentasks. Eigentasks are a native set of functions that a given physical system
can approximate with minimal error. We show that the REC of a quantum system is limited by the
fundamental theory of quantum measurement and obtain a tight upper bound for the REC of any finitely
sampled physical system. We then provide empirical evidence that extracting low-noise eigentasks can lead
to improved performance for machine learning tasks such as classification, displaying robustness to
overfitting. We present analyses suggesting that correlations in the measured quantum system enhance
learning capacity by reducing noise in eigentasks. The applicability of these results in practice is
demonstrated with experiments on superconducting quantum processors. Our findings have broad
implications for quantum machine learning and sensing applications.
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I. INTRODUCTION

A physical system receiving an input stimulus typically
evolves in response to it, such that its degrees of freedom
become dependent on said input after a certain period of
interaction with it. This everyday observation has a pro-
found implication: any dynamical system can be viewed as
performing a transformation of its input, realizing an input-
output map [1]. This functional map can, in principle, be
optimized, inspiring an emerging approach to learning with
analog physical systems, which we collectively refer to as
physical neural networks (PNNs) [2–4]. PNNs employ a
wide variety of analog physical systems to compute a
trainable transformation on an input signal [5–17]. More
precisely, the role of an idealized (i.e., completely

deterministic, noise-free) physical system in these
approaches is that of a high-dimensional feature generator.
Given inputs u, the measured degrees of freedom xkðuÞ for
k∈ ½K�, generated by the system, act as an input-dependent
vector of features. These features are used to approximate a
function fðuÞ via a learned linear projection with sufficient
accuracy, as dictated by a chosen loss function (see Fig. 1).
Different characteristics of the physical system, described by
a set of hyperparameters θ, may determine its ability to
approximate a particular function.Consequently, the relation-
ship between a specific physical system and the classes of
functions it can express with high accuracy is a fundamental
question in this paradigm of machine learning [17–22].
No physical system, however, exists in isolation and is,

therefore, necessarily subject to noise. Noise can enter at
the input, whereby it evolves under the same dynamical law
governing the evolution of the physical system. There may
also be variability in this very dynamics of the physical
system itself. Finally, there is typically noise associated
with the measurement of output features from the physical
system. As a consequence of these noise sources, the
resulting feature map is stochastic: even under identical
preparations and inputs u, the outcome of a measurement
XðsÞ
k ðuÞ of a feature k can vary between repetitions, each of
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which is referred to as a “shot” s. By empirically averaging
the outcomes of S shots, one can generally reduce this
stochasticity. We refer to the resulting noise as “sampling
noise.” Theoretical analysis and experimental implementa-
tions of PNNs have already demonstrated that sampling
noise can have a substantial role in the ultimate perfor-
mance of a physical learning machine [11,12,15]. However,
it is also known that this role may be more subtle than a
limitation on performance across the board, as evidenced,
for example, in the effective use of noise for regularization
to aid generalizability in learning [23–25].
Often, heuristic descriptions are used to theoretically

model such sampling noise and explain its effects on learning
[8,11,18,26]. However, when considering physical quantum
systems for learning, a fundamental microscopic model for
sampling noise is provided and, in fact, imposed by the
quantum theory of measurement. For a quantum system
prepared in an initial state density matrix ρ̂0 and evolving
under an input-parametrized quantum channel Uðθ; uÞ, the
final state is ρ̂ðuÞ ¼ Uðθ;uÞρ̂0 [27]. Sampling noise in
measured features from this quantum system is constrained
by the choice of measurement projectors M̂k associated with
ρ̂ðuÞ. Unless the physical transformation defined by the
quantum channel is optimized to yield only specific highly
localized ρ̂ðuÞ in the eigenspace of M̂k (as in quantum
algorithms such as Grover’s or Shor’s [28])—a significant
design restriction—or an excessively large number of shotsS
is used—a significant hardware restriction—such quantum
sampling noise is an intrinsic component of learning with
quantum systems.
Therefore, a framework is required that can account for

sampling noise across generic physical systems and pro-
vide tools for learning when sampling noise is unavoidable.
In this paper, we address the following question directly:
what is the resolvable function space of an arbitrary
physical system when regarded as an input-output machine
in the presence of sampling noise? This simple objective

leads us to a general mathematical framework with impor-
tant consequences for statistical learning theory, which we
now overview. Our analysis is centered around a specific
metric, the resolvable expressive capacity (REC), which is
a generalization of the information processing capacity
introduced in Ref. [18] (see also the earlier work in
Ref. [29]) to account for the presence of sampling noise.
Specifically, the REC is a quantitative measure of the
accuracy with which K system-specific orthogonal func-
tions can be constructed from K stochastic features X̄kðuÞ.
Remarkably, this accuracy has a tight, calculable S-depen-
dent upper bound. The special functions, referred to as the
eigentasks yðkÞðuÞ of the physical system, define the
maximally resolvable function space under S shots, which
sets the stage for the introduction of a learning method-
ology in the presence of sampling noise.
Crucially, our framework can be applied to an arbitrary

physical system via the solution of a simple matrix
eigenproblem. The matrices in question are standard
Gram matrix G and covariance matrix V, which can be
estimated using stochastic samples from the system as a
function of inputs u over the domain of interest; the
analysis can therefore be directly implemented in exper-
imental settings without an internal model of the system.
The solution of this linear eigenproblem yields both the
eigentasks fyðkÞðuÞg and associated “noise-to-signal”
eigenvalues fβ2kg, which codify the normalized noise power
in a construction of yðkÞðuÞ from finite-S X̄kðuÞ. The REC
of the system is then only a function of fβ2kg and S.
In the second part of this paper, we develop eigentask

learning, a means of learning in physical systems where
sampling noise dominates, by using the noise-ordered
eigentasks to construct a maximally resolvable basis of
measured features. Our approach affects a systematic
removal of high-noise features during training, which we
demonstrate in experiments. These experimental demonstra-
tions provide empirical evidence of robustness to overfitting
in supervised learning, enhancing generalizability in the
presence of sampling noise. Such a learning scheme built on
avoiding features identified as having large noise may, in
fact, be at play in natural physical systems such as biological
neural circuits [30]. Awell-studied example is that of neural
vision: here, input visual stimuli drive stochastic dynamics of
sensory neurons in the visual cortex, which must together
elicit a target response, such as the brain correctly distin-
guishing two images. Studies have shown that the dynamics
of individual neurons under nominally identical stimuli can
exhibit great variability on a shot-by-shot basis [31]; how-
ever, in spite of the significant noise, the overall driven
behavior remains capable of distinguishing visual stimuli
with high fidelity. Studies analyzing the robust neural code
despite noisy neural activity have found emergent global
coding directions in the population activity that evade
“modes” with maximal noise [26,30]. The eigentask con-
struction introduced here can beviewed as a generalization of

Input

      dimensional
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Output           under 
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Physical system as feature 
generator for learning

Individual function
capacity:
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Target:
Learned Estimate:

Learned linear weights

FIG. 1. Framework of learning with physical systems we
consider in this work: inputs u are transformed to a set of
outputs X̄ðuÞ via a parametrized feature generator, implemented
using an arbitrary physical system. Outputs are combined with
appropriate weights w to approximate a desired function f.
Capacity C½f� quantifies the error in this approximation fw.
We consider normalized functions Eu½f2� ¼ 1, where Eu denotes
the expectation over the input domain with respect to a chosen
measure.
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this idea of noise-ordered modes to function spaces over an
arbitrary input domain and for an arbitrary physical system.
The eigentask learning framework is sensitive to not just

the properties of the noise itself (encoded in V), but also
any dependence between it and the noise-free features via
the Gram matrix G. Such a situation typically prevails
when the dominant source of sampling noise is either part
of or evolves under the same input-output map defined by
the physical system, as opposed to a completely uncorre-
lated noise source downstream. A simple example illus-
trating this, and one we analyze in detail, is that of a
classical optical system, with features measured via photo-
detection. Here, the sampled features—the integrated
photocurrents—are subject to shot noise whose variance
is related to the mean of the photocurrents themselves.
In the quantum regime of operation of a physical system—

our ultimate focus—this relation between sampling noise
and the state of the physical system emerges in the most
general description of quantum measurement as a positive
operator-valued measure (POVM). We formulate the com-
putation of REC and eigentasks for arbitrary quantum
systems in the presence of this fundamental sampling noise
structure; we focus on qubit-based quantum systems (includ-
ing gate-based circuits and quantum annealers) operated as
untrained PNNs under static inputs [so-called extreme
learning machines (ELMs) [8,32] ], but our analysis is
applicable to far more general quantum sensing and learning
platforms. To validate the theoretical findings and emphasize
their ready applicability to experimental scenarios, we
implement an ELM through a parametrized quantum circuit
encoding on an IBMQ superconducting processor, demon-
strating the calculation of REC, the construction of eigen-
tasks, and the application of eigentask learning to a
classification task. In all cases, excellent agreement is seen
with numerical simulation, and direct correlation is observed
between REC and success at the considered classification
task. This invites the exploration of principles to maximize
the finite-sampling REC of a quantum system; for the qubit-
based systems analyzed here, we show that an increase in
measured quantum correlations can aid this goal.
The remainder of this paper is organized as follows.

Section II provides the general theory of REC and eigentasks
with respect to sampling noise in generic supervised physical
learning systems and presents a calculation for a basic
classical optical PNN. Section III applies REC theory and
eigentask construction to machine learning with quantum
systems, which is then validated and demonstrated with
experiments performed on a seven-qubit IBMQ supercon-
ducting processor in Sec. IV. Finally, conclusions are
presented in Sec. V.

II. THEORETICAL ANALYSIS

A. Sampling noise in learning with physical systems

The most general approach to supervised learning from
classical data using a generic physical system is depicted

schematically in Fig. 1. A table with symbols and abbre-
viations used in the text can be found in Table I of
Appendix A. We consider a scheme that begins with
“embedding” the classical input data u, sampled from a
distribution pðuÞ, into the physical system to be used for
learning. The form of this embedding is unrestricted
beyond the requirement of being physical, and its precise
nature influences the REC and eigentasks; some concrete
examples are provided shortly.
In order to access information from the physical system

after its interaction with the input, measurements must be
performed on its K accessible degrees of freedom. For a
fixed input u, a single measurement or “shot” s yields

single-shot random-valued features fXðsÞ
k ðuÞg for each

k∈ ½K�. We define the measured features X̄k as S-shot

sample means of fXðsÞ
k g:

X̄kðuÞ ¼
1

S

XS
s¼1

XðsÞ
k ðuÞ; ð1Þ

whose expectation (equivalently, via the central limit
theorem, the S-infinite limit) is given by

xkðuÞ≡ EX ½X̄kðuÞ� ¼ lim
S→∞

X̄kðuÞ; ð2Þ

where u is regarded as a free variable. To be more precise,
the expectation is evaluated over the product distribution
of S independent and identically distributed (IID) vectors

XðuÞ≡ fðXðsÞ
0 ðuÞ;XðsÞ

1 ðuÞ;…;XðsÞ
K−1ðuÞÞgs∈ ½S�, conditioned

on a fixed u.
With the definition of their expectation in Eq. (2), the

measured features X̄ðuÞ∈RK , a column vector consisting
of X̄kðuÞ, can be conveniently decomposed by extracting
its deterministic mean value, together with a zero-mean,
input-dependent noise term ζðuÞ:

X̄ðuÞ ¼ xðuÞ þ 1ffiffiffi
S

p ζðuÞ: ð3Þ

Here, ζ encodes the statistics of sampling; it generally has
nontrivial cumulants of all orders, of which the covariances
take the particular S-independent form ΣðuÞ∈RK×K:

ΣjkðuÞ≡ CovX ½ζjðuÞ; ζkðuÞ� ð4Þ

and depend on only input u. We note that Eq. (3) is exact.
The factor of 1=

ffiffiffi
S

p
is merely extracted for convenience of

the analysis to follow and is not meant to suggest an
expansion for large S at this stage; cumulants of ζ beyond
second order inherit a complicated S dependence.
The general input-output relationship u → X̄kðuÞ above

can be made concrete by considering three example
physical systems, depicted in Fig. 2. For an optical system,
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the input u could, for instance, be embedded as a collection
of pixel values on a spatial light modulator (SLM) in the
path of a propagating beam of light. The individual single-

shot features fXðsÞ
k ðuÞg could be generated by integrating

the photocurrent from each pixel of a number-resolving
CCD camera for a certain hold time. For a biological neural
circuit, the input umight be a static-in-time visual stimulus,
representing the electromagnetic (EM) field intensity inci-

dent on photoreceptors in the eye, and fXðsÞ
k ðuÞg can be the

action potential of the kth neuron integrated over a certain
time period, e.g., measured through Ca2þ imaging [33].
Finally, for a superconducting quantum processor, inputs
may be embedded via a suitable quantum channel, imple-
mented, for example, via parametrized quantum gates. The
single-shot features are simply the indicator functions of
the possible outcome labels after quantum measurement. In
all cases, the measured features X̄kðuÞ may be obtained by
repeating each experiment S times with the same u and
constructing the S-shot histogram.
The randomness of the measured features derives from

the quantum mechanical or the thermodynamical nature of
the processes that the physical system is subject to during
its evolution but, more importantly, in the measurement and
detection phase. In the case of neural circuits, for instance,
even when great care is exercised by presenting identical
stimuli, the timing of action potentials of individual
neurons can vary significantly over repeated trials on a
scale that can be physiologically relevant. This noise can be

traced to various sources [31] including dynamical changes
of internal states of neurons between trials and random
processes neurons are subject to. The source of sampling
noise for the optical system discussed in Sec. II D is the
shot noise related to the discrete nature of energy exchange
between the EM field and the photodetector, an electronic
system. For an ideal quantum computing system, the noise
process we consider is due to shot noise in projective
measurement, which we refer to as quantum sampling
noise. We note that in qubit systems there are many other
potential noise sources, but in modern quantum processors
these ought to be subleading at least for shallow circuits.
Indeed, in experiments reported in Sec. IV B, we observe
that sampling noise dominates even at the maximum
available S. Quantum sampling noise is still the limiting
source of noise after the advancement of error-corrected
quantum computers.
A last important source of noise is the noise in the input

signal to be processed. Visual neural circuits, for instance,
involve the absorption of photons that arrive at the photo-
receptors from EM sources that are subject to quantum
mechanical or thermodynamical fluctuations. Here, we are
not concerned with a precise description of the physical
nature of the input stimuli and account for it by assuming an
underlying probability distribution pðuÞ from which the
inputs are sampled. The most complete treatment of such a
process requires a quantum mechanical description of both
the signal generating system and its coherent coupling to
the physical system that processes it, as introduced and
analyzed in Ref. [34].

B. Resolvable expressive capacity and eigentasks

Returning to the situation depicted in Fig. 1, supervised
learning in physical systems can generically be cast as
encoding data in the system and then using measurement
outputs to approximate a desired function fðuÞ (here
assumed to be square-integrable Eu½f2� < ∞), where the
expectation over input data Eu is defined with respect to the
distribution pðuÞ: Eu½f�≡ R dupðuÞfðuÞ. The introduction
of the symbol Eu for expectation over u is necessitated by
the use of two types of averages in the analysis of the loss
function: over the output samples (EX ) and over the input
domain (Eu).
Within the PNN approach considered here, fðuÞ is appro-

ximated for finite S as fWðuÞ ¼ WTX̄ðuÞ ¼Pk WkX̄kðuÞ.
To quantify the fidelity of this approximation, we introduce a
statistical variant of the function capacity [18,22,35], which
is the normalizedmean-squared accuracy of the estimate fW :

C½f� ¼ 1 − min
W ∈RK

Eu½EX ½ðfðuÞ − fWðuÞÞ2��
Eu½fðuÞ2�

: ð5Þ

This quantity differs from that introduced in Refs. [18,22,35]
in that the squared error term ðfðuÞ − fWðuÞÞ2 is stochastic;
thus, both the expectation over the output samplesX and the

FIG. 2. Three distinct examples of physical systems for learn-
ing. Extracted information takes the form of K stochastic features
X̄ obtained under S shots. For quantum systems, the geometric
structure of distributions of these measured features (bottom) is
fundamentally determined by quantum sampling noise, which
depends on the quantum state ρ̂ðu; θÞ and, hence, on the nature of
the mapping from input u to this state. We show four calculated
distributions differing only in the values of inputs u to highlight
this dependence.
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expectation over the inputsu are needed to ensure that Eq. (5)
is a deterministic value. Minimizing the error in the approxi-
mation of fðuÞ by fWðuÞ over the input domain to determine
capacity therefore requires finding

w ¼ argmin
W ∈RK

Eu½EX ½ðf −WTX̄Þ2��: ð6Þ

Thisminimization can always be expressed analytically via a
pseudoinverse operation (see Appendix C 1). This function
capacity is constructed such that 0 ≤ C½f� ≤ 1, with the
upper limit indicating a perfect approximation.
The choice of a linear estimator and a mean-squared

error loss function may appear restrictive at first glance, but
the generality of our formalism averts such limitations. The
use of a linear estimator applied directly to readout features
appears to preclude nonlinear postprocessing of measure-
ments; this is intentional and simply meant to ensure the
calculated function capacity is a measure of the ability of
the physical system itself and not of a nonlinear processing
layer. Furthermore, the mean-squared loss effectively des-
cribes the first term in a Taylor expansion of a wide range of
arbitrary nonlinear postprocessing and nonquadratic loss
functions. The most well-known example is that of logistic
regression for supervised classification problems, where the
sigmoid function σðWTX̄Þ [i.e., σðzÞ ¼ 1=ð1þ expð−zÞÞ] is
used for postprocessing, while the cross-entropy loss func-
tion is used for optimization (for further details and analysis
of nonlinear postprocessing, see Appendix C 5).
To extend the notion of capacity to a task-independent

metric representing how much classical information about
an input can be extracted from a system in the presence of
sampling noise, we sum the function capacity over a basis
of functions fflgl∈N which are complete and orthonormal
with respect to the input distribution, i.e., equipped with the
inner product hfl; fl0 ip ¼ R flðuÞfl0 ðuÞpðuÞdu ¼ δll0 .
The total REC is then CT ≡P∞

l¼0 C½fl�, which effectively
quantifies how many linearly independent functions can be
expressed from a linear combination of fX̄kðuÞg. Our main
result—proven in detail in Appendix C 4—is that, given
any S∈Nþ, the REC for a physical system whose measured
features are stochastic variables of the form of Eq. (3) is
given by

CTðθÞ ¼ Tr

 �
Gþ 1

S
V

�
−1
G

!
¼
XK−1
k¼0

1

1þ β2kðθÞ=S
: ð7Þ

Here, we make explicit the dependence on θ, the hyper-
parameters of the input embedding to indicate the important
dependence of the S-shot REC on the input encoding.
The first equality, arrived at through straightforward

algebraic manipulation, is written in terms of the expected
feature Gram and covariance matrices G≡ Eu½xxT � and
V ≡ Eu½Σ�, respectively. First, we are able to conclude
that limS→∞ CT ¼ RankfGg ≤ K, recovering the bound in

Ref. [18]. Importantly, the rank of the Gram matrix is
always equal to the maximal number of linearly indepen-
dent functions in the set fxkðuÞg (see Appendix C 2). In this
article, we consider only the case where G is full rank,
which is the most interesting case: maximizing the rank of
G maximizes the highest achievable (i.e., infinite-S) REC
for a physical system. Furthermore, this condition is
typically met unless the physical system is constrained
by special symmetries; in such cases where some features
fxkðuÞg are linearly dependent, the matrix inverse in
Eq. (7) should be modified to a pseudoinverse. We also
later demonstrate that both G and V can be estimated
efficiently and accurately in experiment and, consequently,
under finite S (see Appendix D). The second equality in
Eq. (7) remarkably provides a closed-form expression for
CT at any S, which is independent of the specific choice of
the generally infinite set fflgl∈N (and, thus, not subject to
numerical challenges associated with its evaluation over
such a set [18]). Instead, the REC is entirely captured by the
function capacity of K distinct functions and for a given
physical system is fully characterized by the spectrum of
eigenvalues fβ2kgk∈ ½K� satisfying the generalized eigenvalue
problem

VrðkÞ ¼ β2kGrðkÞ: ð8Þ

In the above, all quantities depend on θ and, therefore, on
the specific physical system and input embedding via the
Gram (G) and covariance (V) matrices. Associated with
each β2k is an eigenvector rðkÞ living in the space of
measured features, defining a set of K orthogonal functions
via the linear transformation

yðkÞðuÞ ¼
X
j

rðkÞj xjðuÞ: ð9Þ

We refer to fyðkÞg as eigentasks, as they form the minimal
set of orthonormal functions (Eu½yðjÞyðkÞ� ¼ δjk) which
saturates the available REC of a physical system and, thus,
the accessible information content present in its measured
features. Specifically, the capacity to approximate a given
yðkÞ with S shots is C½yðkÞ� ¼ 1=ð1þ β2k=SÞ: the REC in
Eq. (7) is simply a sum of eigentask capacities. This further
highlights that a given parametrized system can only
approximate a target function to the degree that this
function can be written as a linear combination of
fyðkÞg. The eigentasks therefore serve as a powerful basis
for learning, as explored in Sec. IV C.

C. Resolvable expressive capacity and eigentasks
in practice: Measured eigentasks

Our use of the expectation over distributions of the input,
Eu½·�, and finitely sampled measured features, EX ½·�, in
principle implies the availability of an infinite number of
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input and measured samples, respectively. Of course, for
the practical implementation of any PNN, both these values
are finite. However, as we demonstrate via calculations of
the REC and eigentasks using both theoretical and exper-
imental systems, our framework can be applied when these
values are constrained to be finite.
More precisely, we note that, in practice, only a finite

number of values N can be IID sampled from the input
distribution; namely, uðnÞ ∼ pðuÞ for any n∈ ½N�. For each
discrete input, one set of measured output features con-
structed from finite S is obtained, a single sample from the
distribution XðuðnÞÞ. The collection of both input and
output samples constitutes the complete dataset, which
we denote as D≡ fðuðnÞ;XðuðnÞÞÞgn∈ ½N�. Our calculation
of REC and eigentasks has some dependence on D via N
and S.
In particular, the practically computed optimal weights in

the capacity calculation are not the deterministic weights w
but w� computed on a given set of input samples and
measured features and, hence, depend on the dataset D:

w�ðDÞ≡ argmin
W ∈RK

1

N

XN
n¼1

ðfðuðnÞÞ −WTX̄ðuðnÞÞÞ2: ð10Þ

Weights w�ðDÞ vary due to changes in D. Generally, when
N and S are simultaneously finite and S is fixed, a study of
the N-scaling behavior of the difference between w in
Eq. (6) and the average optimized weight ED½w�ðDÞ�, as
well as the variation of w�ðDÞ for different D, falls in the
realm of training and generalization errors over the input
domain, an important area of research in theoretical
machine learning [36,37]. We leave this problem for future
work; for all calculations and experiments in this paper, we
consider the case—always realized in practice (and of
particular relevance where sampling, and, thus, the time
and resource cost of processing with physical systems, is
concerned)—where the dataset consists of a finite number
N of input samples.
We do address the important problem of REC and

eigentask calculation when this fixed value of N is finite
and using only a given set of measured features constructed
under finite samplingS. As alluded to earlier, inAppendixD,
we demonstrate how the eigenproblem Eq. (8) can be
constructed for finite N and S and present corrections to
the eigenvalues and eigenvectors due to the finiteness
of S. Numerical examples presented in Appendix D dem-
onstrate a favorable match between this correction method
and numerical simulations of eigenvalues and eigenvectors
(see Figs. 8 and 9).
Importantly, we define a set of measured eigentasks

ȳðkÞðuÞ ¼Pj r
ðkÞ
j X̄jðuÞ constructed from a given set of

measured features. For these measured eigentasks, we find
(see Appendix C 3) that frðkÞg specify a unique linear
transformation that simultaneously orthogonalizes not only

the signal, but also the associated noise: Eu½EX ½ȳðjÞȳðkÞ�� ¼
δjkð1þ β2k=SÞ. The term β2k=S is therefore the mean-
squared error, or noise power, associated with the approxi-
mation of eigentask yðkÞ; equivalently, ȳðkÞ has a signal-to-
noise ratio of S=β2k. This leads to a natural interpretation of
fβ2kg as noise-to-signal (NSR) eigenvalues. The eigentasks,
ordered in increasing noise strength 0 ≤ β20 ≤ β21 ≤ � � � ≤
β2K−1 < ∞, are the orthogonal set of functions maximally
robust to sampling noise.

D. Example: Resolvable expressive capacity and
eigentasks for a classical optical learning system

Before presenting more involved examples of physical
quantum systems, we discuss an example of the presented
framework for noisy classical dynamical systems, within
the popular PNN platform of photonic ELM [8,38] and
reservoir computing (RC) [5,39]. The specific setup we
consider is illustrated in Fig. 3(a), where computation of
inputs u is performed via the encoding, propagation, and
measurement of propagating EM waves in a medium. Here,
the entire 3Dspace is definedby coordinates ðq1; q2; q3Þ, and
EM fields of wavelength λ propagate in the q3 direction. The
electric field distribution is then completely defined by the

position vector d⃗ defined in the plane orthogonal to the

propagation direction, so that d⃗ ¼ ðq1; q2Þ [40].
The input embedding of u is performed using a spatial

light modulator that modulates the amplitude and/or phase
of the electric field of the radiation as it passes through.
We restrict this example to 1D inputs u that are uni-
formly distributed: pðuÞ ¼ Unif½−1; 1�. The scalar u is then
mapped to all the pixels of the SLM through a specific
mapping discussed in Appendix H 1. We consider this
rather artificial input encoding for two reasons: for ease of
visualization of the computed eigentasks (see Fig. 3) and to
ensure the distribution is sufficiently sampled. In the
simulation of the classical optical system we consider
here, we choose N ¼ 300. This is also the number of
input samples used in our analysis of qubit-based quantum
systems in Sec. IV.
The spatial profile of the electric field E0ðu; d⃗Þ following

the SLM can be written generally in the form E0ðu; d⃗Þ ¼
A0 cosðφ1ðu; d⃗Þ=2Þexpfiðφ1ðu; d⃗Þþ 2φ2ðu; d⃗Þ=2Þg, where
A0 is the initial electric field amplitude and φlðu; d⃗Þ are
input encoding functions [41] [cf. Eqs. (H2a) and (H2b)].
Following the input encoding, the radiation propagates
through free space and then past a thin lens. The electric
field in the focal plane of the lens, Eðu; d⃗Þ, can be shown to
be related to the initial field E0ðu; d⃗Þ via a Fourier trans-
form [42,43]: Eðu; d⃗Þ ¼ R R d2d⃗0E0ðu; d⃗0Þ exp fði2π=λfÞ×
ðd⃗ · d⃗0Þg, where f is the focal length of the lens. The choice
of the optical propagation medium as a lens is again for
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convenience of analysis, not a limitation. More complex
optical systems can be analyzed using the same techniques
outlined here.
Finally, output features are extracted via photodetection

(using a CCD camera) in the focal plane of this lens.
Modeling this effectively requires us to address the impor-
tant question of the measurement noise associated with
photodetection. First, we consider the camera plane as
being comprised of a discrete set of K ¼ P2 photodetectors
(here, P ¼ 8), arranged in a P-by-P square spatial grid,
such that the kth photodetector is identified with coordi-
nates d⃗k ¼ ðq1k; q2kÞ and k∈ ½K� [see Fig. 3(a)]. This spatial
grid ultimately defines the coarse-graining level at which
the propagating fields can be probed and is set by the spatial
resolution of the photodetection apparatus, as expected.
Then the differential, stochastic photocurrent generated
in a given photodetector in a single measurement—namely,
the increment in photodetector counts in the time window
½t; tþ dt�, which we denote as dNðd⃗k; tÞ, follows a Poisson
point process (commonly referred to as shot noise) [44].
This instantaneous photocurrentdNðd⃗k; tÞ is often integrated
over a finite time T int in so-called integrate-and-dump

photodetectors. This defines the single-shot features of this
RC scheme:

XðsÞ
k ¼

Z
T int

0

dNðsÞðd⃗k; tÞ∈N: ð11Þ

Note that XðsÞ
k are stochastic, integer quantities, simply

counting the total number of photogenerated carriers in a
time window T int of a single measurement.
We now make the important physical connection

between the measured photocurrents and the propagating
fields reaching the photodetector. The power incident on
the kth photodetector is simply set by the Poynting flux
of the propagating fields and is proportional to the electric
field intensity αjEðu; d⃗kÞj2, where α is a dimensionful
constant that depends, for example, on the speed of light
through the medium of traversal. Then, the expected value
of the photocurrent in a time interval dt is simply propor-
tional to the incident power, up to a factor η that encap-
sulates the efficiency of photodetection: E½dNðd⃗k; tÞ� ¼
ηαjEðu; d⃗kÞj2dt.
The complete input-output map defined above fits

within our very general framework. In particular, we define

measured features X̄kðuÞ as S-shot sample means of fXðsÞ
k g,

as in Eq. (1). Note that in most classical PNN schemes
S ¼ 1; here, we consider the shot number S ≥ 1. We then
express the measured features in terms of the decomposi-
tion in Eq. (3). First, using Eq. (11) and the definition of
xkðuÞ in Eq. (2), we find

xkðuÞ ¼ ηαjEðu; d⃗kÞj2T int: ð12Þ

Then, the remaining term in Eq. (3), ð1= ffiffiffi
S

p ÞζkðuÞ, is a
stochastic process with zero mean, and its second-order
moment encodes the variance of the Poisson point process
in one shot of the experiment, namely, that its variance is
equal to its mean (see Appendix H for details):

ΣjkðuÞ ¼ δjkxkðuÞ: ð13Þ

The form of the covariance matrix here is specific to the
Poisson nature of the noise process inherited from the
classical nature of the source (e.g., a coherent light source
such as a laser) generating the beam of light. Other types of
noise processes yield distinct covariance matrices, as we
see in examples of quantum systems.
This is an appropriate place to remark that, for such a

classical description of a physical system for learning, the
stochastic photocurrent dN for any shot is specified by the
deterministic electric field incident on the camera plane. In
a fully quantum description, on the other hand, the power
incident on the photodetectors in a given shot is determined
by the expectation value of the field excitation number
operator Ψ̂†Ψ̂ (in second-quantized notation) with respect

SLM

Lens CCD
Camera

Input
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Input
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FIG. 3. (a) A photonic learning system we consider to dem-
onstrate the REC analysis and eigentask construction in a
classical optics setup. Inputs u are encoded into the amplitudes
and/or phases of propagating light fields of wavelength λ via an
SLM. The propagating fields are brought to focus via a
converging lens of focal length f, and the fields are then imaged
in the focal plane of the lens using a camera consisting of an array
of photodetectors. Output features are given by the integrated
stochastic photocurrents measured via these photodetectors.
(b) Left: noise-to-signal spectrum β2k as a function of k. Right:
CT vs S calculated from the left. (c) Eigentasks under infinite
sampling (S → ∞) and measured eigentasks constructed from
features under finite sampling (S ¼ 100).
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to the conditional density matrix ρ̂ðcÞ, describing the
measurement-conditioned state of the propagating radia-
tion field for that shot. We are compelled to consider a
description of this sort when describing physical quantum
systems in Sec. III.
Equations (12) and (13) are sufficient to calculate the

feature Gram and covariance matrices G and V, respec-
tively, as per the discussion following Eq. (7). Therefore,
we are set up to solve the eigenproblem of Eq. (8) and
obtain the NSR spectrum and eigentasks for this toy model
of a classical optical PNN. We first present the spectrum of
NSR eigenvalues β2k in Fig. 3(b). The NSR spectrum allows
calculation of the REC as a function of S using Eq. (7); this
is shown in Fig. 3(c). At finite S, we clearly observe that the
REC remains below its upper bound of K ¼ 64, approach-
ing it only when S is increased, reducing the impact of
sampling noise on measured features.
Finally, we discuss eigentask construction, also obtained

by solving the eigenproblem of Eq. (8). In Fig. 3(c), we
visualize as a function of u a selection of both the S → ∞
eigentasks yðkÞðuÞ defined in Eq. (9) and the measured
eigentasks ȳðkÞðuÞ obtained from S ¼ 100 sampled features
(i.e., single-shot). We note that the sampled features are
obtained by numerically integrating the stochastic differ-
ential equation defining independent measurements of
the stochastic photocurrents in Eq. (11). These measured
eigentasks exhibit sampling noise, which is evident
when compared against the infinite shot eigentasks. We
clearly see that eigentasks which are higher order in k are
increasingly noisy across the input domain, as also encap-
sulated by the larger associated NSR eigenvalues. The
ordered eigentasks, therefore, represent the functions that
are optimally resolvable using this classical optical setup in
the presence of the sampling noise that it is naturally, and
unavoidably, subject to for finite S.

III. LEARNING WITH QUANTUM SYSTEMS

A. Sampling noise in quantum systems

Having developed our framework for REC in the most
general context, in the remainder of this paper, we use it to
analyze quantum systems in greater depth. The same quan-
titative metrics—REC, eigentasks, and NSR eigenvalues—
now carry the significance of being determined by a
parametrized quantum state. To be more specific, the
classical data u are now encoded through a quantum
channel parametrized by θ acting on a known initial state:

ρ̂ðu; θÞ ¼ Uðu; θÞρ̂0; ð14Þ

whose data dependence may be hard to model classically.
The quantum channel U includes all quantum operations
applied to the input data; to obtain the computational
output or perform further classical processing, one must
extract information from the quantum system via a set of

measurements described most generally as a POVM.
Specifically, we define a set of K POVM elements
fM̂kg, each associated with a distinct measurement out-
come indexed k, and constrained only by the normalization
condition

P
K−1
k¼0 M̂k ¼ Î (and, hence, not necessarily

commuting).
Each shot then yields a discrete index kðsÞðuÞ specifying

the observedoutcome: for inputu, if outcomek is observed in
shot s, then kðsÞðuÞ ← k. In this case, the single-shot random-

valued featureXðsÞ
k ðuÞ is exactly the indicator δðkðsÞðuÞ; kÞ of

index k, so that the measured features are given by

X̄kðuÞ ¼
1

S

X
s

δðkðsÞðuÞ; kÞ: ð15Þ

Hence, X̄kðuÞ in this case is the empirical frequency of
occurrence of the outcome k in S repetitions of the experi-
ment with the same input u. These measured features are
formally random variables that are unbiased estimators of the
expected value of the corresponding element M̂k as com-
puted from ρ̂ðuÞ. Explicitly,

xkðuÞ ¼ TrfM̂kρ̂ðu; θÞg; ð16Þ

so that xk is the probability of occurrence of the kth outcome
as specified by the quantum state. These probability ampli-
tudes encompass the accessible information in ρ̂ðu; θÞ: any
observable under this set can be written as a linear combi-
nation of POVM elements ÔW ¼Pk WkM̂k, such that
hÔWi ¼ WTx.
In quantum machine learning (QML) theory, it is

standard to consider the limit S → ∞ and to therefore
use expected features fxkðuÞg for learning. In any actual
implementation, however, measured features fX̄kðuÞgmust
be constructed under finite S, in which case their funda-
mentally quantum-stochastic nature can no longer be
ignored. The decomposition Eq. (3) is still applicable
X̄ðuÞ ¼ xðuÞ þ ζðuÞ= ffiffiffi

S
p

, where now x are the quantum-
mechanical event probabilities and ζ encodes the
multinomial statistics of quantum sampling noise, whose
covariance is explicitly

ΣjkðuÞ ¼ δjkxkðuÞ − xjðuÞxkðuÞ: ð17Þ
This is simply the expression for the covariance of multi-
nomial distribution with S trials and K mutually exclusive
outcomes with probabilities pk ¼ xk. For arbitrary orders
of cumulants of multinomial statistics, we refer to Ref. [45].
For the quadratic loss function considered here, only the
cumulants up to second order turn out to be sufficient.
One may wonder what specifically distinguishes a

quantum system from a classical stochastic system that
can generate a multinomial distribution in its output. First,
certain fpkðuÞg combinations can be generated efficiently
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by only a quantum system. That is to say, given equal
resources, a quantum system can access some fpkg that
may be inaccessible to any classical stochastic system and
hence, as discussed later, the accessible space of functions
is far richer. However, we also find that resolvability of that
function space in S measurements is the key determinant in
learning. Note that all statistical properties of stochastic
readout features X̄ðuÞ—namely, first-order cumulants xðuÞ,
second-order cumulants ΣðuÞ, and all higher-order cumu-
lants—are determined fully by the quantum state ρ̂ðuÞ,
which itself may be hard to generate classically.
To proceed with our REC analysis in quantum systems,

we write down the generalized eigenproblem Eq. (8) by
computing G ¼ Eu½xxT � and V ¼ Eu½Σ�. Equation (17)
enables us to simplify the exact form of V, namely,
V ¼ D −G, where D∈RK×K is a diagonal matrix with
elements Dkk ¼ Eu½xk�. Alternatively, for any encoding
state ensemble fpðuÞdu; ρ̂ðuÞg, the matrices D and G
can be compactly expressed as (see Appendix C 1)

Dkk ¼ TrfM̂kρ̂
ð1Þg; ð18Þ

Gjk ¼ TrfðM̂j ⊗ M̂kÞρ̂ð2Þg ð19Þ

by defining the tth-order quantum ensemble moment
ρ̂ðtÞ ¼ R ρ̂ðuÞ⊗tpðuÞdu in the t-copy space of the quantum
state [46].
From Eq. (7), we have limS→∞ CT ¼ RankfGg, where

RankfGg ¼ K, the number of measured features, provided
no special symmetries exist. This important result reveals
that, in the absenceof sampling noise, all quantumsystems—
independent of parametrization—have a capacity which is
simply the number of independent accessible degrees of
freedom [18,47]. The generic exponential scaling of mea-
sured degrees of freedomwith the size of the quantum system
(e.g.,K ¼ 2L forL-qubit systems subject to a computational
basis measurement) is often cited as a motivator for studying
ML with quantum systems [22,35,48]. However, as demon-
strated shortly, the REC of quantum systems can be signifi-
cantly reduced from this limit for finite S in a way that
strongly depends on the encoding. By evaluating the ability
of quantum systems to accurately express functions in the
presence of quantum sampling noise, the capacity analysis
above provides an important metric to assess the utility of
quantum platforms for learning in practice.

B. Resolvable expressive capacity
of quantum two-designs

We first consider the REC of quantum two-designs:
systems with fixed θ that map inputs to a unitary ensemble
fpðuÞdu; Ûðu; θÞg whose first and second moments
agree with those from a uniform (Haar) distribution of
unitaries. Quantum two-designs are important to recent
QML studies [7,49] due to their role in defining and

studying “expressibility” [21,50]: a metric quantifying
how close a parametrized quantum system is to such a
two-design. The capacity eigenproblem Eq. (8) for any
quantum two-design over K dimensions can be solved
analytically (see Appendix F), yielding a flat spectrum of
NSR eigenvalues β2k ¼ Kð1 − δk0Þ. This results in an REC:

CT ¼ K ·
Sþ 1

Sþ K
; ð20Þ

which at finite S can be significantly lower than K. For
quantum systems with K ¼ 2L, all k ≠ 0 eigentasks have a
noise strength 2L=S, requiring S to grow exponentially with
qubit number L in order to extract useful features.
A quantum two-design is thought of as having maximal

“expressibility”; however, we see that its REC always
vanishes exponentially with system size for a fixed finite S.
To emphasize the distinction with expressibility, we note
that REC reflects how much classical information can be
extracted from the entire “quantum computational stack” in
practice: from an abstract algorithm, to the quantum
hardware on which its implemented, and the classical
electronics used for control and readout. REC requires
only noisy computational outputs fX̄kðuÞg and is therefore
efficiently computable in experiment—unlike more
abstract metrics [21,50,51]—yielding a directly relevant
metric for learning with quantum hardware.

IV. EXPERIMENTAL RESULTS
IN QUANTUM SYSTEMS

In this section, we discuss the implementation of the
eigentask construction in experiments we carry out on a
seven-qubit IBMQ superconducting quantum processor
ibmq_perth.

A. The quantum circuit Ansatz implemented
in experiments

To demonstrate the practical utility of our framework, we
now show how the spectrum fβ2kg, the REC, and eigentasks
can all be computed for real quantum devices in the
presence of parameter fluctuations and device noise. We
reiterate at the outset that our approach for quantifying
the REC of a quantum system is very general and can be
applied to a variety of quantum system models. For
practical reasons, we perform experiments on L-qubit
IBM Quantum (IBMQ) processors, whose dynamics is
described by a parametrized quantum circuit containing
single- and two-qubit gates. However, as an example of the
broad applicability of our approach, in Appendix E, we
compute the REC for L-qubit quantum annealers via
numerical simulations, governed by the markedly different
model of continuous-time Hamiltonian dynamics.
On IBMQ devices, each input u generates a quantum

circuit; hence, the maximal number of distinct circuits
places a resource constraint on input size. Especially, our
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experiment and computation is limited toN ¼ 300 1D inputs
u that are also uniformly distributed, pðuÞ ¼ Unif½−1; 1�;
see Fig. 4(a). A 1D distribution then ensures features
fX̄kðuÞg are sufficiently densely sampled to approach the
continuum limit and are also easy to visualize, as in the
classical optical RC in Sec. II D. We emphasize that this
analysis can be straightforwardly extended to multidimen-
sional and arbitrarily distributed inputs given suitable hard-
ware resources, without modifying the form of the Gram and
covariance matrices.
We are finally required to specify the model of the

quantum system and choose anAnsatz tailored to be natively
implementable on IBMQ processors (see Appendix B). We
fix ρ̂0 ¼ j0ih0j⊗L; note, however, that any other initial state
may be implemented via an additional unitary and absorbed

into the encoding, i.e., the quantum channel Uðu; θÞ in
Eq. (14). In this way, the dependence of REC on initial states
could be explored in future studies.
The circuit we choose consists of τ∈N repetitions of

the same input-dependent circuit block depicted in
Fig. 4(a). The block itself is of the form Rxðθx=2ÞWðJÞ×
Rzðθzþ θIuÞRxðθx=2Þ, where Rx=z are Pauli rotations
applied qubitwise, e.g.,Rz ¼⊗l R̂zðθzl þ θIluÞ. A two-qubit
coupling gate acts between physically connected qubits in
the device and can be written as WðJÞ ¼Qhl;l0i Wl;l0 ðJÞ ¼Q

hl;l0i expf−iðJ=2Þσ̂zl σ̂zl0g. Within the structure of this
Ansatz, we choose all single-qubit rotation parameters
randomly: θx=zl ∼ Unif½0; 2π� and θIl ∼ Unif½0; 10π�, gener-
ally representing an untrained circuit. Each instance of
random parameters, along with associated dissipative proc-
esses, specifies the quantum channel Uðu; θÞwhich we refer
to as an encoding. We study the performance of an overall
Ansatz by looking at the behavior averaged across encodings
as hyperparameters such as J are varied. In thiswork, we also
choose τ ¼ 3, which limits circuit depth and associated
prevalence of gate errors while still generating a complex
state with correlation generally distributed throughout all
qubits.
Finally, we consider feature extraction via a computa-

tional basis measurement as is standard in quantum
information processing: the POVM elements are the K ¼
2L projectors M̂k ¼ jbkihbkj, where bk is the L-bit binary
representation of the integer k. However, as with state
preparation, measurements in any other basis can be (and,
in practice, are) realized using an additional unitary prior to
computational basis readout, whose effect can similarly be
analyzed as part of the general encoding Uðu; θÞ.
Note that, for this Ansatz, the choice J ¼ 0ðmod πÞ

yields eitherWl;l0 ðJÞ ¼ Î or σ̂z ⊗ σ̂z, both of which ensure
ρ̂ðuÞ is a product state and measured features are simply
products of uncorrelated individual qubit observables—
equivalent to a noisy classical system. Starting from this
product system (PS), tuning the coupling J ≠ 0ðmod πÞ
provides a controllable parameter to realize a quantum
correlated system (CS), for which the 2L-dimensional
multinomial distribution xðuÞ cannot be represented as a
tensor product of Lmarginal binomial distributions on each
qubit. In general, such nonproduct systems are intuitively
expected to result in u-dependent quantum states which
exhibit entanglement and can potentially be more difficult
to describe classically. This control enables us to address a
natural question regarding REC of quantum systems under
finite S: what is the dependence of REC and realizable
eigentasks on J and, hence, on quantum correlations?

B. Resolvable expressive capacity of quantum circuits

To perform the capacity analysis, one must extract
measured features from the quantum system as the input
u is varied, as exemplified in Fig. 4(a) for the IBMQ
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FIG. 4. (a) A representation of the REC analysis, featuring the
IBMQ Perth device and a schematic of the quantum circuit
considered in this section. On the right, the specific feature
plotted is X̄1ðuÞ (b1 ¼ 000 001) with S ¼ 214 shots. (b) Left:
device noise-to-signal spectrum β2k for a specific encoding as a
correlated system (CS), J ¼ π=2 (blue crosses) and product
system (PS), J ¼ 0 (brown diamonds). Ideal (solid line) and
device noise (dashed line) simulations are also shown. Note the
agreement between device and simulation, along with distortion
from more direct exponential growth in β2k with k in the ideal
case, due to device errors. Right: CT vs S calculated from the left.
At a given S, the CT can be approximated by performing the
indicated sum over all β̄2k < S, where β̄2k denotes the estimate of
β2k computed from noisy data. (c) Resolvable expressive capacity
CT (top) and expected total correlation T̄ (bottom) for the chosen
encoding under S ¼ 214 from the IBM device and device noise
simulations (dashed peach line). Average metrics over eight
random encodings for device noise (solid peach line) and ideal
(solid gray line) simulations are also shown. The S → ∞
resolvable expressive capacity of these encodings always attains
the maxfCTg ¼ 64, indicated in dashed red.
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ibmq_perth device. For comparison, we also show ideal-
device simulations (unitary evolution, no device noise),
where slight deviations are observed. The agreement with
experimental results is improved when the effects of gate
errors, readout errors, and qubit relaxation are included,
hereafter referred to as “device noise” simulations, high-
lighting both the non-negligible role of device nonidealities
and that our analysis incorporates them.
The measured features under finite S are used to estimate

the Gram and covariance matrices and to, therefore, solve
the eigenproblem Eq. (8) for NSR eigenvalues fβ̄2kg and
eigenvectors fr̄ðkÞg, as estimators of fβ2kg and frðkÞg [see
Eqs. (D17) and (D18) in Appendix D 1 for detailed
techniques]. Typical NSR spectra computed for a random
encoding (i.e., set of rotation parameters) on the device are
shown in Fig. 4(b), for J ¼ 0 (PS) and J ¼ π=2 (CS),
together with corresponding spectra from device noise
simulations, with which they agree well. We note that at
lower k the device NSR eigenvalues are larger than those
from ideal simulations and at larger k deviate from the
direct exponential increase (with order) seen in ideal simu-
lations. Both these effects are captured by device noise
simulations as well and can, therefore, be attributed to
device errors and dissipation. The NSR spectra, therefore,
can serve as an effective diagnostic tool for quantum
processors and encoding schemes.
The NSR spectra can be used to directly compute the

REC of the corresponding quantum device for finite S, via
Eq. (7). Practically, at a given S, only NSR eigenvalues
β̄2k ≲ S contribute substantially to the REC. An NSR
spectrum with a flatter slope, therefore, has more NSR
eigenvalues below S, which gives rise to a higher capacity.
Figure 4(b) shows that the CS generally exhibits an NSR
spectrum with a flatter slope than the PS, yielding a larger
capacity for function approximation across all sampled S.
To more precisely quantify the role of quantum corre-

lations in REC, we introduce the expected total correla-
tion (ETC) of the measured state over the input domain
of u [52,53]:

T̄ ¼ Eu

"XL
l¼1

Sðρ̂Ml ðuÞÞ − Sðρ̂MðuÞÞ
#
; ð21Þ

where ρ̂MðuÞ≡Pk ρ̂kkðuÞjbkihbkj is the postmeasured
state, Sð·Þ is the von Neumann entropy (see Appendix G),
and ρ̂l ¼ Tr½L�nflgfρ̂g is the reduced density matrix obtained
by tracing over all qubits except qubit l. Therefore, nonzero
ETC indicates the generation of quantum states over the
input domain u that on average have nontrivial correlations
amongst their constituents, including, for example, pure
many-body states that are entangled.
We now compute REC and ETC using S ¼ 214 in

Fig. 4(c) as a function of J, for the same random encoding
considered above on the device. We note that the

experimental results show excellent agreement in both
cases with the corresponding device noise simulation.
We also show average REC at S ¼ 214 and ETC across
eight random encodings in both ideal and device noise
simulations. We find that the influence of individual
encodings, i.e., random rotation parameters, leads only
to small deviations from the overall REC trend when global
hyperparameters are held fixed. This implies that no crucial
features of the REC are missed by us foregoing fine-tuning
(e.g., via gradient descent) of individual rotation parameters
in lieu of sampling them from a given uniform probability
distribution.
We note that product states by definition have T̄ ¼ 0

[28]; this is seen in ideal simulations for J ¼ 0ðmod πÞ.
However, the actual device retains a small amount of
correlation at this operating point, which is reproduced
by device noise simulations. This can be attributed to gate
or measurement errors as well as crosstalk, the latter being
especially relevant for the transmon-based IBMQ platform
with a parasitic always-on ZZ coupling [54]. With increas-
ing J, T̄ increases and peaks around J ≈ π=2ðmod πÞ;
interestingly, CT also peaks for the same coupling range.
From the analogous plot of REC, we clearly see that,
at finite S, increased ETC appears directly correlated
with higher REC. We observe very similar behavior using
completely different quantum system models (see Fig. 10
[55,56]). This indicates the utility of enhancing quantum
correlations as a means of improving the general expressive
capability of quantum systems.
We raise two notes of caution here. First, our analysis

across different quantum system implementations often
(though not always) finds that a certain threshold number of
shots S is required before the finite-S capacity of a CS
overtakes that of the corresponding PS (see Appendix E).
This higher resolvability of functions using a PS under
restricted shots may be due to the comparative ease of
estimating probabilities from an effectively product dis-
tribution and merits further exploration. At a sufficiently
large S, the increased complexity of the u dependence
imposed by the input-output map of a CS results in an REC
that eventually surpasses that of the PS.
Second, we caution that the connection between meas-

urement correlations and REC is an observed trend rather
than a law derived from first principles. One can come up
with contrived situations where increasing correlation has
no effect on REC: for example, appending a layer of CNOT
gates directly prior to measurement generally increases the
ideal ETC of any Ansatz. For measured features, however,
this amounts to a simple shuffling of labels xkðuÞ ↔ xk0 ðuÞ,
thus yielding the same NSR spectrum and REC. The input,
quantum state, and feature mapping ultimately governs
REC: only increases in correlation that also increase the
complexity of the measured features’ u dependence (as
achieved via the intermediate W gates here) are beneficial
from the perspective of information processing.
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As a final important point, note that at finite S, even with
increased quantum correlations, the maximum REC is still
substantially lower than the upper bound of K ¼ 64. This
remains true even for ideal simulations and over several
random encodings, so the underperformance cannot be
attributed to device noise or poor Ansatz choice, respec-
tively. It is worth emphasizing that the impact of device
noise is captured in the small REC gap between the ideal
and noisy simulation curves, with the remainder of the
reduction from K ¼ 64 attributable to quantum sampling
noise alone. These results clearly indicate that the resulting
sampling noise at finite S is the fundamental limitation for
QML applications on this particular IBM device rather than
other types of noise sources and errors.

C. A robust approach to learning

While we demonstrate the REC as an efficiently com-
putable metric of general expressive capability of a noisy
quantum system, some important practical questions arise.
First, does the general REC metric have implications for
practical performance on specificML tasks? Second, given
the limiting—and unavoidable—nature of correlated sam-
pling noise, does the REC provide any insights on optimal
learning using a particular noisy quantum system and the
associated encoding?
Our formulation addresses both these important ques-

tions naturally, as we now discuss. Recall that, beyond
being a simple figure of merit, the REC is precisely the sum
of capacities to approximate a particular set of orthogonal
functions native to the given noisy quantum system: the
eigentasks. Furthermore, these eigentasks ȳðkÞðuÞ can be
directly estimated from a noisy quantum system via the
generalized eigenvectors fr̄ðkÞg and are ordered by their
associated NSR eigenvalues fβ̄2kg. Figure 5(a) shows a
selection of estimated eigentasks from the device for the CS
ðJ ¼ π=2Þ and PS (J ¼ 0) encodings in Fig. 4(b). For both
systems, the increase in noise with eigentask order is
apparent when comparing two sampling values S ¼ 210

and S ¼ 214. Furthermore, for any order k, eigentasks for
the PS are visibly noisier than the CS; this is consistent with
NSR eigenvalues for PS being larger than those for CS
[Fig. 4(b)]. The higher resolvable expressive capacity of the
CS can be interpreted as the ability to accurately resolve
more eigentasks at fixed S.
The resolvable eigentasks of a finitely sampled quantum

system are intimately related to its performance at specific
QML applications. To demonstrate this result, we consider
a concrete application: a binary classification task that is
not linearly separable. The domain u∈ ½−1; 1� over which
REC is evaluated is separated into two classes, as depicted
in Fig. 5(b). A selection of Ntrain ¼ 150 total samples—
with equal numbers from each class—are input to the
IBMQ device, and eigentasks fȳðkÞðuðnÞÞg are estimated
using S ¼ 214 shots. A linear estimator applied to this set of

eigentasks is then trained using logistic regression to learn
the class label associated with each input. Finally, the
trained IBMQ device is used to predict class labels of
Ntest ¼ 150 distinct input samples for testing. Note that we
use the random circuits of the previous section to draw more
direct comparisons between REC and task performance. By
training only external weights instead of internal parameters
θ, we are employing the framework of quantum ELMs
[6,10,22,57], which allows one to avoid the computational
overhead and difficulty associated with training quantum
systems while still achieving comparable performance.
This task can equivalently be cast as one of learning

the likelihood function that discriminates the two input
distributions, shown in Fig. 5(c), with minimum error. The
set of up to KL eigentasks fȳðkÞðuÞgk∈ ½KL�, where KL ≤ K,
serves as the native orthonormal basis of readout features
used to approximate any target function using the quantum
system. Importantly, the basis is ordered, with eigentasks at
higher k contributing more noise, as dictated by the NSR
eigenvalues β̄2k. In particular, at any level of sampling S,
there exists an eigentask order KcðSÞ after which the
NSR eigenvalues β̄2k=S first drops below unity: KcðSÞ≡
maxkfβ̄2k < Sg. Heuristically, including eigentasks k >
KcðSÞ should contribute more “noise” to the function
approximation task than “signal.” In Fig. 5(c), we plot
the learned estimates of the likelihood function using KL ¼
KcðSÞ eigentasks for both the CS and PS. First, we note that
Kc is lower for the PS than the CS; the former has fewer
resolvable eigentasks at a given S. This limitation on
resolvable features limits function approximation capacity:
the learned estimate of the likelihood function using Kc
eigentasks is visibly worse for the PS than the CS.
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FIG. 5. (a) Device eigentasks for correlated system (CS, left)
and product system (PS, right), constructed from noisy features at
S ¼ 210 and S ¼ 214. (b) Classification demonstration on IBMQ
Perth. Binary distributions to be classified over the input domain
are shown. (c) The classification task can be cast as learning the
likelihood function separating the two distributions; this target
function is shown in the upper panel. Lower panels show the
learned estimate of this target based on the Ntrain ¼ 150 points
shown in (b), using only KcðSÞ eigentasks for S ¼ 214; this cutoff
is indicated by the dashed red lines. For the correlated system
KcðSÞ ¼ 40, while for the product system KcðSÞ ¼ 29.
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In this way, higher REC allows noisy quantum systems
to better approximate more functions, which translates to
improved learning performance—this result is explored
systemically in Fig. 6(b). Of course, it is natural to ask
whether using KcðSÞ ≤ K eigentasks is optimal: exactly
this question is investigated in Fig. 6(a), where we plot the
training and test accuracy of both device encodings as a
function of the number of measured eigentasks KL. The
performance on the specific training and test set shown in
Fig. 5(b) is indicated with markers, and solid lines indicate
the average performance over ten distinct divisions of the
data into training and test sets. This permutation of the
learning task is a standard technique to optimize hyper-
parameters in ML and is done here to eliminate the
sensitivity of these results to the choice of training set.
First note that, in all cases, using all eigentasks (KL ¼ K)—
or, equivalently, all measured features fX̄g—leads to far
lower test accuracy than is found in training. The observed
deviation is a distinct signature of overfitting: the optimized
estimator learns noise in the training set [comprised of
noisy eigentask estimates ȳðkÞðuðnÞÞ] and, thus, loses gen-
eralizability to unseen samples in testing.

Improvements in model training performance with added
features are meaningful only insofar as they also lead to
better performance on new data: in both encodings, we see
test set classification accuracy peaks near KcðSÞ. This is
particularly clear for the averaged results, but even for
individual datasets the test accuracy at KcðSÞ is within
approximately 2% of its maximum, thus confirming our
heuristic reasoning that eigentasks beyond this order, with
NSR eigenvalues < 1, hinder learning. The eigentask-
learning approach naturally allows one to decompose the
outputs from quantum measurements into a compressed
basis with known noise properties and then select the set of
these which exactly captures the resolvable information at a
given S. This robust approach to learning enabled by the
capacity analysis maximizes the ability of a noisy quantum
system to approximate functions without overfitting to
noise, in this case fundamental quantum sampling noise.
Finally, Fig. 6(b) shows the classification accuracy for

this device encoding as J is varied, where, following the
above approach, the optimalKcðSÞ set of eigentasks is used
for each encoding. We also show the performance of a
similar-scale (KL ¼ 64 node) software neural network and
ideal simulations in the S → ∞ limit [Kcð∞Þ ¼ 64] for
comparison. Note that only these infinite-shot results
approach the classical neural network, with quantum samp-
ling noise imposing a significant performance penalty even
for J ≈ π=2ðmod πÞ. We highlight the striking similarity
with Fig. 4(c): encodings with larger quantum correlations
and, thus, higher resolvable expressive capacity perform
generically better on learning tasks in the presence of noise,
because they generate a larger set of eigentasks that can
be resolved at a given sampling S. Resolvable expressive
capacity is a priori unaware of the specific problem con-
sidered here; this example therefore emphasizes its power as
a general metric predictive of performance on arbitrary tasks.

V. DISCUSSION

We have developed a straightforward approach to
quantify the resolvable expressive capacity of any physical
system in the presence of fundamental sampling noise.
Crucially, this analysis extends to physical quantum sys-
tems where sampling noise is fundamentally imposed by
quantum measurement theory. Our analysis is built upon an
underlying framework that determines the native function
set that can be most robustly realized by a finitely sampled
physical system: its eigentasks. We use this framework to
introduce a methodology for optimal learning that we
demonstrate using noisy quantum systems, which centers
around identifying the minimal number of eigentasks
required for a given learning task. The resulting learning
methodology is resource efficient, and the empirical evi-
dence we provide indicates that it is also robust to over-
fitting. We demonstrate that eigentasks can be efficiently
estimated from experiments on real devices using a limited
number of training points and finite shots. We also
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FIG. 6. (a) Training (light and upward trending curve) and
testing (dark, peaking, then declining curve) accuracy for the
device encodings in Fig. 5(a), as a function of the number of
eigentasks used to approximate the target function. Markers
indicate performance on the dataset shown in Fig. 5(b), and solid
lines are the average over ten random selections of training and
test sets. The shaded region denotes the maximum and minimum
test accuracy observed. The optimal test set performance is found
near the noise-to-signal cutoff KcðS ¼ 214Þ (dash-dotted lines)
informed by the quantum system’s noise-to-signal spectra.
(b) Testing set classification accuracy as a function of J for
our optimal learning method. In all cases, the average perfor-
mance over the ten task permutations is reported, using
KcðS ¼ 214Þ. Cross markers indicate device results for the chosen
encoding, and the simulation result for this encoding is shown in
solid peach. We further perform device noise simulations for a
total of eight random encodings under finite S. The dashed peach
line shows the average testing accuracy over these eight encod-
ings. The dashed gray line, in contrast, is the average testing
accuracy for ideal simulations and in the S → ∞ limit, where all
K ¼ 64 features are used. The horizontal line denotes the
performance of a software feed-forward neural network (FNN)
with KL ¼ 64 nodes (and 1153 ≫ Kc trained parameters) for
comparison.
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demonstrate across two distinct qubit-based Ansätze that
the presence of measured quantum correlations enhances
resolvable expressive capacity.
We believe our work opens up several avenues of

exploration in the field of learning with physical quantum
systems in particular. First, our approach provides the tools
to understand the limitations of sampling noise in noisy
reservoir computing schemes (e.g., quantum reservoir
computing [11,18,22,48,58,59]). In fact, during the final
review of the present manuscript, work was posted to the
arXiv [60] exploring limits to noisy reservoir computers
using an approach closely aligned with our methods here.
Second, our work has direct application to the design of
circuits for learning with qubit-based systems. In particular,
we propose the optimization of resolvable expressive
capacity as a meaningful goal for the design of quantum
circuits with finite measurement resources. This impor-
tantly includes the utilization of the eigentask formulation
and eigentask learning as a useful tool for understanding
the performance of physical quantum systems in practical
learning tasks. Finally, the practical demonstration of our
scheme under restrictions of finite input and output samples
means that it can prove useful for studies on generalization

and training. For example, any difference in REC and
eigentasks computed with optimal weights estimated using
only a finite number of input samples—as opposed to the
ideal but impractical infinite input sampling limit—would
constitute a generalization error over the input domain,
which one can seek to minimize for optimal learning in
future work.
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APPENDIX A: TABLE OF MAIN NOTATIONS

TABLE I. Table of abbreviations and symbols used in main text and appendixes.

Abbreviations
REC Resolvable expressive capacity, CT
(Q)ML (Quantum) machine learning
PNN Physical neural network
POVM Positive operator-valued measure
ELM Extreme learning machine
RC Reservoir computing
SLM Spatial light modulator
NSR Noise-to-signal ratio
PS Product system
CS Correlated system
ETC Expected total correlation, T̄

Symbols and notation
S Number of shots
N Number of inputs; for each input, we obtain S output samples or shots
L Number of qubits
K Number of measured features; K ¼ 2L for computational-basis projective measurement
u Input
p Input distribution

XðsÞ
k

Single-shot random-valued features in any physical system

XðuÞ Collection of k random-valued features for S shots, ≡fðXðsÞ
0 ðuÞ; XðsÞ

1 ðuÞ;…; XðsÞ
K−1ðuÞÞgs∈ ½S�

D Complete dataset, ≡fðuðnÞ;XðuðnÞÞÞgn∈ ½N�
EX Expectation over the output samples, conditioned on some fixed u
Eu Expectation over the input, with underlying prior distribution pðuÞ, Eu½f�≡

R
dupðuÞfðuÞ

(Table continued)
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APPENDIX B: FEATURE MAPS GENERATED BY
QUANTUM SYSTEMS

In the main text, we introduce the idea of encoding inputs
into the state of a quantum system via a parametrized
quantum channel, reproduced below:

ρ̂ðu; θÞ ¼ Uðu; θÞρ̂0; ðB1Þ

one then measures this state to approximate desired
functions of the input. Figure 7 gives a simple example
of this mapping from classical inputs u (here, in a 2D
compact domain) to a quantum state generated by a u-
dependent encoding and finally to the measured features in
a two-qubit system undergoing commuting local measure-
ments in the computational basis. The measurement out-
comes are therefore bit strings, of which there are
K ¼ 2L ¼ 4, namely, bk ∈ f00; 01; 10; 11g. A given shot
yields one of these possible bit strings.
On the right, we plot samples of S-shot features fX̄kg

constructed for different numbers of shots S ¼ 100, 1000,
10 000 (here, we enumerate the feature k with the asso-
ciated bit string bk). The feature-space for a two-qubit
system is four-dimensional. Owing to the normalization
condition

P
k X̄k ¼ 1, only three of these dimensions are

independent. For ease of visualization, we plot only a two-
dimensional projection in the X̄00 − X̄11 plane. Each dot in
this plot is an average [cf. Eq. (1)] over the associated S

shots holding the input u ¼ ðu1; u2Þ identical over those
experiments.
As expressed in Eq. (3), the structure of the noise and,

thus, the correlations in the distribution is determined by
the associated quantum state, subject to an overall scaling
with S. It is important to notice here that as S → ∞ this
distribution collapses to a single deterministic point, the
corresponding quantum probability xðuÞ. It is also evident
from this plot that the shape and orientation of these
clusters depend on the underlying quantum state ρ̂ðu; θÞ
and associated probabilities xðuÞ via Eq. (17). In the
remainder of this section, we consider more complex
quantum models, such that they generate mappings which
can be useful for learning. A descriptive pseudoalgorithm
for learning scheme-based circuit Ansatz can be found in
Algorithm 1.
To describe these models, we begin by first limiting to

1D inputs u as analyzed in the main text; generalizations to
multidimensional inputs u are straightforward. Then, we
write Eq. (B1) in the form

ρ̂ðu; θÞ ¼ Ûðu; θÞρ̂0Û†ðu; θÞ: ðB2Þ

In the main text, we consider a model for dynamics of an
L-qubit quantum system that is natively implementable on
modern quantum computing platforms: namely, an Ansatz
of quantum circuits with single- and two-qubit gates. We
refer to this encoding as the circuit Ansatz (or C Ansatz for

TABLE I. (Continued)

X̄k Empirical observed features, ð1=SÞPs X
ðsÞ
k

xk Expected features, EX ½X̄k�
ζk Noise component of X̄k
W General output weights
w Learned optimal output weights for finite-S features fX̄kg
L Loss function
G Gram matrix of expected features fxkg
V Expected covariance matrix of random variables XðsÞ

k ðuÞ over input distribution
D Expected second-order-moment matrix of random variable XðsÞ

k ðuÞ over input distribution;
it is diagonal if XðsÞ

k ðuÞ obeys multinomial distribution
yðkÞ Eigentasks,

P
k0 r

ðkÞ
k0 xk0

β2k NSR eigenvalue associated with eigentask yðkÞ

rðkÞ Linear combination coefficients of expected features fxk0 g forming yðkÞ

β̄2k Finite-S estimate of β2k
r̄ðkÞ Finite-S estimate of rðkÞ

ȳðkÞ Finite-S estimate of eigentasks,
P

k0 r
ðkÞ
k0 X̄k0

θ Quantum system parameters
ρ̂ Generated quantum state
U Quantum channel
M̂k POVM elements, ≡jbkihbkj for computational-basis projective measurement
bk Computational basis eigenstate labels
kðsÞ Measurement outcome for shot s
ρ̂M Diagonal post-measurement state,

P
k ρ̂kkðuÞjbkihbkj

KcðSÞ Cutoff index where β2k approaches S, maxkfβ2k < Sg

TACKLING SAMPLING NOISE IN PHYSICAL SYSTEMS FOR … PHYS. REV. X 13, 041020 (2023)

041020-15



short), for which the operator Ûðu; θÞ takes the precise
form

Ûðu; θÞ ¼
�
Rx

�
θx

2

�
WðJÞRzðθz þ θIuÞRx

�
θx

2

��
τ

ðCAnsatzÞ: ðB3Þ

For completeness, we recall that Rx=z are Pauli rota-
tions applied qubitwise, e.g., Rz ¼⊗l R̂zðθzl þ θIluÞ, while
the coupling gate acts between physically connected
qubits in the device and can be written as WðJÞ ¼Q

hl;l0i expf−iðJ=2Þσ̂zl σ̂zl0g. We emphasize here again that
τ∈Nþ is an integer, representing the number of repeated
blocks in the C-Ansatz encoding. We note that the actual
operations implemented on IBMQ processors also include
dynamics due to noise, gate, and measurement errors and,
thus, must be represented as a general quantum channel as
in Eq. (B1). As discussed in the main text, the REC of a
quantum system can be computed in the presence of these
more general dynamics and is sensitive to the limitations
introduced by them.
An alternative Ansatz analyzed here is the Hamiltonian

Ansatz (or H Ansatz for short) where the operator Ûðu; θÞ

describes continuous Hamiltonian dynamics. This Ansatz is
relevant to computation with general quantum devices,
such as quantum annealers and more generally quantum
simulators:

Ûðu; θÞ ¼ expf−iĤðuÞtg;
ĤðuÞ ¼ Ĥ0 þ u · Ĥ1 ðHAnsatzÞ: ðB4Þ

Here, t is a continuous parameter defining the evolution time,
Ĥ0 ¼

P
L
hl;l0i Jl;l0 σ̂

z
l σ̂

z
l0 þ
P

L
l¼1 h

x
l σ̂

x
l þ
P

L
l¼1 h

z
l σ̂

z
l , and Ĥ1 ¼P

L
l¼1 h

I
l σ̂

z
l . The transverse x-field strength h

x
l ¼ h̄x þ εxl and

longitudinal z-drive strength hz;Il ¼ h̄z;I þ εz;Il are all ran-
domly chosen and held fixed for a given realization of the
quantum system:

εx;z;Il ∼ hx;z;Irms N ð0; 1Þ; ðB5Þ

whereN ð0; 1Þ defines the standard normal distribution with
zero mean and unit variance. We consider nearest-neighbor
interactions Jl;l0 , which can be constant Jl;l0 ≡ J, or drawn
from Jl;l0 ∼ Unif½0; Jmax�, where Unif½a; b� is a uniform
distribution with nonzero density within ½a; b�.

FIG. 7. Schematic of a simple L ¼ 2 qubit circuit, comprised of a CNOT gate sandwiched by input-dependent local x-rotation gates
fRiðuÞg. Different 2D inputs shown on the left are mapped to the finite-S feature space on the right via this circuit. Specifically, a 2D
slice (X̄00 and X̄11) of the 4D feature space is shown. Each point represents an individual sample or experiment, i.e., an output
constructed with S < ∞ shots via Eq. (1). Distinct values of S ¼ 102; 103; 104 are shown in different colors (blue, red, and green,
respectively). For each input u and shots S, the simulation is repeated 100 times, resulting in the distribution shown.

Algorithm 1. Measured features under multinomial sampling in quantum system.

Input: u∈ ½−1;þ1�
Output: X̄ðuÞ, which approximates xkðuÞ ≔ Trfρ̂ðuÞjbkihbkjg
For s ← 1 to S

Initialize overall state ρ̂0 ← j0ih0j⊗L;
Evolve under quantum channel UðuÞ: ρ̂ðuÞ ← UðuÞρ̂0;
Measure all L qubits: bðsÞðuÞ ← bk ¼ ðbk;1; bk;2 � � � ; bk;LÞ∈ f0; 1gL;

EndFor
For k ← 0 to K − 1

Take the ensemble averages as readout features:
X̄kðuÞ ← 1

S

P
S
s¼1 δðbk; bðsÞðuÞÞ; /* Notice xkðuÞ ≔ Trfρ̂ðuÞjbkihbkjg ¼ limS→∞X̄kðuÞ */

EndFor
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As an aside, we note that the C-Ansatz quantum channel
described by Eq. (B3) can be considered a Trotterization-
inspired implementation of the H Ansatz in Eq. (B4). In
particular, if we set θx=z=I ¼ hx=z=IΔ · τ, where t ¼ Δ · τ,
and consider the limit Δ → 0 while keeping t fixed,
Eq. (B3) corresponds to a Trotterized implementation of
Eq. (B4). This correspondence is chosen for practical
reasons but is not necessary in our analysis.

APPENDIX C: INFORMATION CAPACITY
WITH SAMPLING NOISE

In this appendix, we provide a detailed theoretical
construction of the REC analysis. Important related
numerical techniques required for the practical calculation
of REC are addressed in Appendix D.
We start building the theory by rewriting the function

capacity Eq. (5) into a generalized Rayleigh quotient
Eq. (C13) in Appendix C 1. By solving for the critical
point of this generalized Rayleigh quotient, we prove in
Appendix C 2 that it naturally defines a set of orthonormal
functions—the eigentasks fyðkÞg. Each eigentask of the
Rayleigh quotient is associated with a particular eigenvalue
fβ2kg, called eigen-noise-to-signal ratio (NSR), whose
meaning is interpreted in Appendix C 3. In Appendix C 4,
we derive a formula CT ¼Pk 1=ð1þ β2k=SÞ to compute
the resolvable expressive capacity, which reproduces the
main result Eq. (7) in the main text. In many practical
scenarios in machine learning, like classification problems,
there is usually one more nonlinear postprocessing function
σNL acting onW · X̄ðuÞ. We generalize our methodology to
those cases in Appendix C 5, via an approximation truncat-
ing the third- and higher-order derivatives of σNL. Finally,
we give a simplified, equivalent form of eigenproblem in
Appendix C 6 specifically for systems obeying multinomial
statistics, which allows solving for both the eigentasks and
NSR eigenvalue more simply.

1. Definition of capacity for physical systems
with sampling noise

Suppose an arbitrary probability distribution pðuÞ for a
random (scalar) variable u defined inD ⊆ R. This naturally

defines a function space L2
pðDÞ containing all functions

f∶D→R with
R
f2ðuÞpðuÞdu<∞. The space is equip-

ped with the inner product structure hf1; f2ip ¼ R f1ðuÞ×
f2ðuÞpðuÞdu. We first review the definition of the func-
tion approximation capacity known as the information
processing capacity (IPC) introduced in Ref. [18]. This
deterministic quantity is based on a metric quantifying
the accuracy of a physical system to approximate one of
the functions flðuÞ of its input through a linear estimator
based on its accessible (measurable) degrees of freedom
xkðuÞ:

C½fl� ¼ 1 − min
Wl ∈RK

R ðPK−1
k¼0 WlkxkðuÞ − flðuÞÞ2pðuÞduR

flðuÞ2pðuÞdu
;

ðC1Þ

where functions flðuÞ are orthogonal target functions
hfl; fl0 ip ¼ R flðuÞfl0 ðuÞpðuÞdu ¼ 0 for l ≠ l0. The
IPC is defined as CT ≡P∞

l¼0 C½fl�, capturing the ability
of what type of function the linear combination of physical
system readout features can produce. Reference [18] pro-
vides an upper bound for the IPC; the IPC of any generic
dynamical system is bounded by the accessible degrees of
freedom, CT ≤ K.
While this result is quite general, it neglects the limi-

tations due to noise in readout features, which is unavoid-
able when using physical systems in the presence of finite
computational and measurement resources. It is generally
accepted that the capacity is reduced in the presence of
additive noise, but there are no general results on how to
quantify that reduction in the presence of general physical
noise. This is our goal here, to arrive at an exact result for
capacity reduction under well-defined but sufficiently
general conditions given the physical system. Additional
desideratum on this metric is that it provides a practical,
calculable metric that can be calculated either (i) from
numerical solution of the dynamics of the physical system
incorporating a sufficiently accurate noise model or (ii) if
desired from experimental data extracted from said physical
system. In the main text, we provide a comparative analysis

Algorithm 2. Training of output weights.

Input: fuð1Þ;…; uðNÞg∈ ½−1;þ1�N
Output: w̃N , such that y ¼ w̃N · X̄ðuÞ can approximate fðuÞ
For n ← 1 to N

Generate features X̄ðuðnÞÞ through Algorithm 1
EndFor
Collect the features into a regression matrix F̃N ∈RN×K ;
Compute empirical Gram matrix Ḡ ← 1

N F̃
T
NF̃N ; /* For finite S, limN→∞ Ḡ ¼ G̃ ≔ Gþ 1

SV */
Compute target vector Y ← ðfðuð1ÞÞ;…; fðuðNÞÞÞT ;
w� ← ðF̃T

NF̃NÞ−1F̃T
NY; /* For finite S, limN→∞w� ¼ w ≔ Eq. (C12) */
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of these two modalities for a seven-qubit superconducting
quantum processor.
We start from considering the noisy readout features

X̄ðuÞ whose expectations and covariances are

EX ½X̄ðuÞ�≡ xðuÞ; ðC2Þ

CovX ½X̄ðuÞ�≡ 1

S
ΣðuÞ; ðC3Þ

where the expectation and covariance are evaluated under

the product distribution of S-shot IID variable fXðsÞ
k ðuÞg.

To determine the optimal capacity to compute an arbitrary
normalized function fðuÞ using the noisy readout features
X̄ðuÞ extracted from the physical system, we need to find an
optimal W such that

C½f� ¼ 1 −
minW

R
EX ½ð

P
K−1
k¼0 WkX̄kðuÞ − fðuÞÞ2�pðuÞduR
f2ðuÞpðuÞdu :

ðC4Þ

By expanding the numerator of the right-hand side for a
given, finite number of shots S, we find

Z
f2ðuÞpðuÞdu −

Z
EX

��XK−1
k¼0

WkX̄kðuÞ − fðuÞ
�2�

pðuÞdu

¼ −
XK−1
k1¼0

XK−1
k2¼0

Wk1Wk2

Z
EX ½X̄k1ðuÞX̄k2ðuÞ�pðuÞduþ 2

XK−1
k¼0

Wk

Z
EX ½X̄kðuÞ�fðuÞpðuÞdu

¼ −
XK−1
k1¼0

XK−1
k2¼0

Wk1Wk2

Z �
xk1ðuÞxk2ðuÞ þ

1

S
ΣðuÞk1k2

�
pðuÞduþ 2

XK−1
k¼0

Wk

Z
xkðuÞfðuÞpðuÞdu; ðC5Þ

where the final line comes from the property of the covariancematrixEX ½X̄jðuÞX̄kðuÞ�−EX ½X̄jðuÞ�EX ½X̄kðuÞ� ¼ ð1=SÞΣðuÞjk.
The goal of the remaining part of this section is deducing a more compact generalized Rayleigh quotient form of

function capacity. The dependence of readout features xkðuÞ on the input u can always be written in the form of a Taylor
expansion:

xkðuÞ ¼
X∞
j¼0

ðTÞkjuj; ðC6Þ

where we define the transfer matrix TðθÞ≡ T∈RK×∞ that depends on the density matrix ρ̂ðuÞ and, in particular, on
parameters θ characterizing the physical system. The first term in Eq. (C5) does not depend explicitly on the function fðuÞ
being constructed and introduces quantities that are determined entirely by the response of the physical system of interest to
inputs over the entire domain of u. In particular, we introduce the Gram matrix G∈RK×K as

ðGÞk1k2 ¼
Z

xk1ðuÞxk2ðuÞpðuÞdu ¼
X∞
j1¼0

X∞
j2¼0

ðTÞk1j1
�Z

uj1þj2pðuÞdu
�
ðTÞk2j2 ≡ ðTΛTTÞk1k2 ; ðC7Þ

where we also introduce the generalized Hilbert matrix
Λ∈R∞×∞ as

ðΛÞj1j2 ¼
Z

uj1þj2pðuÞdu: ðC8Þ

Second, we introduce the noise matrix V ∈RK×K:

ðVÞk1k2 ¼
Z

ΣðuÞk1k2pðuÞdu: ðC9Þ

The second term in Eq. (C5) depends on fðuÞ and can be
simplified using the Λ matrix as well. Introducing the
Taylor series expansion fðuÞ ¼P∞

j¼0ðYÞjuj,

Eu½xkf� ¼
Z

xkðuÞfðuÞpðuÞdu

¼
X∞
j1¼0

X∞
j2¼0

ðTÞkj1
�Z

uj1þj2pðuÞdu
�
ðYÞj2

¼ ðTΛYÞk: ðC10Þ
With these definitions, Eq. (C4) can be compactly written
in matrix form as a Tikhonov regularization problem:

C½f� ¼ 1 −min
W

�kΛ1=2TTW − Λ1=2Yk2 þ 1
SW

TVW

YTΛY

�
:

ðC11Þ
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The least-squares form ensures that the optimal value
(argmin) w of W has closed form:

w ¼
�
Gþ 1

S
V

�
−1
Eu½xf� ¼

�
TΛTT þ 1

S
V

�
−1
TΛY:

ðC12Þ

Substituting w into the expression for C, we obtain the
optimal capacity with which a function f can be con-
structed, which takes the form of a generalized Rayleigh
quotient:

C½f� ¼ Eu½xTf�ðGþ 1
SVÞ−1Eu½xf�

Eu½f2�

¼ YTΛTTðGþ 1
SVÞ−1TΛY

YTΛY
: ðC13Þ

In the scenario of fundamental quantum measurement
noise, or quantum sampling noise, given u and S, the
quantum readout features X̄kðuÞ ¼ ð1=SÞPS

s¼1 δðkðsÞðuÞ; kÞ
are stochastic variables. The expectation vector and

covariance matrix of X̄ðuÞ can be expressed in terms of
ρ̂ðuÞ:

EX ½X̄ðuÞ�≡ xðuÞ ¼ TrfM̂kρ̂ðuÞg; ðC14Þ

CovX ½X̄ðuÞ�≡ 1

S
ΣðuÞ ¼ 1

S
ðdiagðxÞ − xxTÞ: ðC15Þ

To understand Eq. (C15), we provide brief proofs of some
important identities involving the second-order statistics of
multinomial distribution. In the case of quantum measure-
ment noise, the single-shot random-valued feature is the

indicator XðsÞ
k ðuÞ ¼ δðkðsÞðuÞ; kÞ for shot s and input u.

By definition, for any s, the expectation of indicator is
always the probability of obtaining index k, given the

input u: EX ½XðsÞ
k ðuÞ� ¼ xkðuÞ. If s ≠ s0, the experiment

for different shots must be independent, so we have

EX ½XðsÞ
k ðuÞXðs0Þ

k0 ðuÞ� ¼ xkðuÞxk0 ðuÞ; while if s ¼ s0, the
mutual exclusion for getting different indices in one shot

implies that EX ½XðsÞ
k ðuÞXðsÞ

k0 ðuÞ� ¼ δkk0xkðuÞ. Thus, we can
unify them into one equation:

EX ½XðsÞ
k ðuÞXðs0Þ

k0 ðuÞ� ¼ δss0δkk0xkðuÞ þ ð1 − δss0 ÞxkðuÞxk0 ðuÞ ¼ xkðuÞxk0 ðuÞ þ δss0 ðδkk0xkðuÞ − xkðuÞxk0 ðuÞÞ: ðC16Þ

Then, the expectation of the product of X̄k and X̄k0 is

EX ½X̄kðuÞX̄k0 ðuÞ� ¼
1

S2
X
s;s0

fxkðuÞxk0 ðuÞ þ δss0 ½δkk0xkðuÞ − xkðuÞxk0 ðuÞ�g

¼ xkðuÞxk0 ðuÞ þ
1

S
½δkk0xkðuÞ − xkðuÞxk0 ðuÞ�; ðC17Þ

which can be directly used to derive Eq. (C15); namely, the element Σkk0 ðuÞ is

EX ½½ðX̄kðuÞ − xkðuÞÞðX̄k0 ðuÞ − xk0 ðuÞÞ� ¼ EX ½X̄kðuÞX̄k0 ðuÞ� − EX ½X̄kðuÞxk0 ðuÞ� − EX ½xkðuÞX̄k0 ðuÞ� þ EX ½xkðuÞxk0 ðuÞ�

¼ xkðuÞxk0 ðuÞ þ
1

S
½δkk0xkðuÞ − xkðuÞxk0 ðuÞ� − xkðuÞxk0 ðuÞ

¼ 1

S
½δkk0xkðuÞ − xkðuÞxk0 ðuÞ�: ðC18Þ

Therefore, for quantum sampling noise, we can express the noise matrix V more explicitly:

ðVÞk1k2 ¼
Z

ΣðuÞk1k2pðuÞdu ¼
Z

ðδk1k2xk1ðuÞ − xk1ðuÞxk2ðuÞÞpðuÞdu≡ ðDÞk1k2 − ðGÞk1k2 ðC19Þ

Here, we also introduce the second-order-moment matrix D∈RK×K such that

ðDÞk1k2 ¼ δk1k2
X
k

Gkk1 ¼ δk1k2

Z
xk1ðuÞpðuÞdu: ðC20Þ

Then, the noise matrix simply defines the covariance of readout features and is, therefore, given by V ¼ D −G.
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In the study of quantummachine learning, it is convenient to define the tth-order quantum ensemble moment of ensemble
E ¼ fpðuÞdu; ρ̂ðuÞg in a t-copy space [46]:

ρ̂ðtÞ ¼
Z

ρ̂ðuÞ⊗tpðuÞdu: ðC21Þ

The Gram matrix and second-order-moment matrix can then be compactly expressed as

Dkk ¼
Z

xkðuÞpðuÞdu ¼
Z

TrfM̂kρ̂ðuÞgpðuÞdu ¼ Tr

�Z
M̂kρ̂ðuÞpðuÞdu

�
¼ TrfM̂kρ̂

ð1Þg; ðC22Þ

Gkk0 ¼
Z

xkðuÞxk0 ðuÞpðuÞdu ¼
Z

TrfM̂kρ̂ðuÞgTrfM̂kρ̂ðuÞgpðuÞdu

¼ Tr

�
ðM̂k ⊗ M̂k0 Þ

�Z
ρ̂ðuÞ ⊗ ρ̂ðuÞpðuÞdu

��
¼ TrfðM̂k ⊗ M̂k0 Þρ̂ð2Þg: ðC23Þ

While most of the results in our paper do not utilize this
representation, we do find that it provides a compact and
natural representation, and we use this representation to
derive the analytical results in Sec. III B; see Appendix F.

2. Eigentasks

Equation (C13) defines the optimal capacity of approxi-
mating an arbitrary function fðuÞ ¼P∞

j¼0ðYÞjuj. We can,
therefore, naturally ask which functions f maximize this
optimal capacity. To this end, we first note that the
denominator of Eq. (C13) is simply a normalization factor
that can be absorbed into the definition of the function fðuÞ
being approximated, without loss of generality. More
precisely, we consider

hf; fip ¼ 1 ¼ ðΛ1=2YÞTðΛ1=2YÞ ¼ YTΛY: ðC24Þ

Then, we can rewrite the optimal capacity from
Eq. (C13) as

C½f� ¼ YTΛ1=2QΛ1=2Y: ðC25Þ

Here, we define the matrix Q∈R∞×∞ as

Q ¼ B

�
Iþ 1

S
R

�
−1
BT; ðC26Þ

B ¼ Λ1=2TTG−1=2; ðC27Þ

R ¼ G−1=2VG−1=2 ðC28Þ

by introducing the matrix square root of G1=2 ∈RK×K and
the NSRmatrixR. The decomposition in Eq. (C26) may be
verified by direct substitution into Eq. (C25). The ability to
calculate matrix powers and, in particular, the inverse of G
requires constraints on its rank.
Before we analytically find the eigenvectors of Q, we

need to show, in general, that the number of linearly
independent features always equals to the rank of the
Gram matrix G, no matter what symmetries the system is
subject to. Let us consider any vector c∈RK; the quad-
ratic form

XK−1
k1;k2¼0

ck1ck2ðGÞk1;k2 ¼
Z  XK

k1¼1

ck1xk1ðuÞ
! XK

k2¼1

ck2xk2ðuÞ
!
pðuÞdu ¼

*XK−1
k¼0

ckxk;
XK−1
k¼0

ckxk

+
p

ðC29Þ

gives the norm of function
P

K−1
k¼0 ckxkðuÞ in the rhs. The

summation
P

K
k1;k2¼1 ck1ck2ðGÞk1;k2 ¼ 0 vanishes if and

only if function
P

K−1
k¼0 ckxkðuÞ is a zero function; namely,

c is in the null space of G. We conclude that the rank Gram
matrix G is equal to the number of linearly independent
features. One way for the rank of G to be deficient is
through the use of the input encoding that leads to identical
dependence of the features in a way that is not broken by

the rest of the system’s interactions (dictated by θ). We do
not consider such symmetries. All simulations utilize
encodings that result in a full rank G. In the case of a
rank-deficientG, one should replace all appearances ofG−1

above with the pseudoinverse Gþ.
We now consider the measure-independent part of the

eigenvectors of Q, indexed YðkÞ, satisfying the standard
eigenvalue problem:
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QΛ1=2YðkÞ ¼ CkΛ1=2YðkÞ; ðC30Þ

where k ¼ 0;…; K − 1. From Eq. (C25), it is clear that
these eigenvectors have a particular meaning. Consider the
function yðkÞðuÞ defined by the eigenvector YðkÞ, namely,

yðkÞðuÞ ¼
X∞
j¼0

YðkÞ
j uj; ðC31Þ

which we refer to from now on as eigentasks. Suppose we
wish to construct the function yðkÞðuÞ using outputs
obtained from the physical system defined by Q in the
S → ∞ limit (namely, with deterministic outputs). At first
glance, before we dive into solving the eigenproblem
Eq. (C30), we do not know any relationship between
yðkÞ and xðuÞ. The rest of this subsection is aiming to
prove that yðkÞ must be a specific linear combination of
features xðuÞ. Then, the physical system’s capacity for this
construction is simply given by the corresponding eigen-
value Ck, as may be seen by substituting Eq. (C30) into
Eq. (C25). Formally, the yðkÞðuÞ serves as the critical point
(or stationary point) of the generalized Rayleigh quotient in
Eq. (C13). Consequently, the function that is constructed
with largest capacity then corresponds to the nontrivial
eigenvector with largest eigenvalue.
To obtain these eigentasks, we must solve the eigen-

problem defined by Eq. (C30). Here, the representation of
Q in Eq. (C26) becomes useful, as we see that the
eigensystem of Q is related closely to that of the NSR
matrix R. In particular, we first define the eigenproblem
of R:

RG1=2rðkÞ ¼ β2kG
1=2rðkÞ ðC32Þ

with NSR eigenvalues β2k and corresponding eigen-
vectors rðkÞ, which satisfy the orthogonality relation
rðk0ÞTGrðkÞ ¼ δk;k0 . Here, the rðkÞ can also be computed from
the solution to a simpler generalized eigenproblem, where
matrix square root operation G1=2 is not needed:

VrðkÞ ¼ β2kGrðkÞ: ðC33Þ

This is because VrðkÞ ¼G1=2RG1=2rðkÞ ¼ β2kG
1=2G1=2rðkÞ ¼

β2kGrðkÞ. The prefactor G1=2 is introduced for later conven-
ience. Equation (C32) then allows us to define the related
eigenproblem

�
Iþ 1

S
R

�
−1
G1=2rðkÞ ¼

�
1þ β2k

S

�−1
G1=2rðkÞ: ðC34Þ

Next, we note thatQ is related to thematrix in brackets above
via a generalized similarity transformation defined by B,
Eq. (C26). In particular, BTB¼G−1=2GG−1=2 ¼ I∈RK×K ,

while we remark that BBT ≠ I since it is in R∞×∞. This
connection allows us to show that

QBG1=2rðkÞ ¼ B

�
Iþ 1

S
R

�
−1
BTBG1=2rðkÞ

¼ 1

1þ β2k=S
BG1=2rðkÞ: ðC35Þ

Comparing with Eq. (C30), we can now simply read off both
the eigenvalues and eigenvectors of Q:

Ck ¼ 1
1þβ2k=S

Λ1=2YðkÞ ¼ BG1=2rðkÞ

�
⇒ YðkÞ ¼ TTrðkÞ; ðC36Þ

where we use the definition of B from Eq. (C27). The
functions defined by the eigenvectors YðkÞ are automatically
orthonormal:

hyðk1Þ; yðk2Þip ¼ ðΛ1=2Yðk1ÞÞTðΛ1=2Yðk2ÞÞ
¼ rðk1ÞTG1=2BTBG1=2rðk2Þ

¼ rðk1ÞTGrðk2Þ ¼ δk1k2 : ðC37Þ

3. Noisy eigentasks from readout features

We can now also discuss the interpretation of fβ2kg for a
physical system for which frðkÞg are known. Consider the
evaluation by the physical system (for a given u) under
finite shots S, which yields a single instance of the readout
features X̄ðuÞ. We can simply construct a noisy estimator of
the kth eigentask ȳðkÞðuÞ:

ȳðkÞðuÞ ¼
XK−1
k0¼0

rðkÞk0 X̄k0 ðuÞ; ðC38Þ

which is equivalent to requiring the output weights
W ¼ rðkÞ. The corresponding set of noisy function is also
orthogonal; this is because VrðkÞ ¼ β2kGrðkÞ implies
rðkÞTVrðk0Þ ¼ β2kδk;k0 and, hence,

Eu

	
EX ½ȳðk1Þȳðk2Þ�


 ¼ rðk1ÞT
�
Gþ 1

S
V

�
rðk2Þ

¼
�
1þ β2k

S

�
δk1k2 : ðC39Þ

Let us define ȳðkÞðuÞ ¼ yðkÞðuÞ þ ξðkÞðuÞ. It means, for
each k, the noisy eigentask ȳðkÞðuÞ contains a signal part
yðkÞðuÞ and a noise part in ξðkÞðuÞ, where the latter one is
computed from the linear combination ξðkÞðuÞ ¼ ð1= ffiffiffi

S
p Þ×P

K−1
k¼0 r

ðkÞ
k0 ζk0 ðuÞ. One can check Eu½EX ½yðk1Þξðk2Þ��¼

Eu½EX ½ξðk1Þyðk2Þ��¼0, and
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Eu

	
yðk1Þyðk2Þ


 ¼ rðk1ÞTGrðk2Þ ¼ δk1k2 ; ðC40Þ

Eu

	
EX ½ξðk1Þξðk2Þ�


 ¼ 1

S
rðk1ÞTVrðk2Þ ¼ β2k1

S
δk1k2 : ðC41Þ

It means that taking linear combinations of fxkðuÞg and
fζkðuÞ=

ffiffiffi
S

p g with coefficients frðkÞ ∈RKgk∈ ½K� not only
produces orthonormal eigentasks fyðkÞðuÞg for signal,
but also induces a set of orthogonal noise func-
tions fξðkÞðuÞg.
If the physical system can be run multiple times for a

given S, multiple instances of X̄ðuÞ can be obtained, from
each of which an estimate of the kth eigentask ȳðkÞðuÞ can
be constructed. The expectation value of these estimates
then simply yields

EX

	
ȳðkÞðuÞ
¼XK−1

k0¼0

rðkÞk0 EX ½X̄k0 ðuÞ�¼
XK−1
k0¼0

rðkÞk0 xk0 ðuÞ¼yðkÞðuÞ:

ðC42Þ

If we have access to only a single instance of X̄ðuÞ,
however, and thus only one estimate ȳðkÞðuÞ [as yðkÞðuÞ and
ȳðkÞðuÞ depicted in Fig. 10], it is useful to know the
expected error in this estimate. This error can be extracted
from Eq. (C11). In particular, requiring YðkÞ ¼ TTrðkÞ, we
have

kΛ1=2TTrðkÞ − Λ1=2YðkÞk2 þ 1
S r

ðkÞTVrðkÞ

YðkÞTΛYðkÞ

¼ 1

S
rðkÞTVrðkÞ ¼ β2k

S
: ðC43Þ

This mean-squared error in using ȳðkÞðuÞ to estimate yðkÞðuÞ
over the domain of u decreases to zero for S → ∞ as
expected, since the noise in X̄ decreases with S. However,
β2k defines the S-independent contribution to the error. In
particular, this indicates that, at a given S, certain functions
with lower NSR eigenvalues β2k may be better approxi-
mated using this physical system than others. We present in
Fig. 10 the measured features X̄, the eigentasks y, and their
S-finite version ȳ in a six-qubit Hamiltonian-based system.
The associated NSR spectrum, resolvable expressive capac-
ity, and total correlations are also depicted for both CS
(J ≠ 0) and PS (J ¼ 0) encodings.

4. S-shot resolvable expressive capacity:
Derivation of the bound

Given an arbitrary set of complete orthonormal basis
functions flðuÞ ¼

P∞
j¼0ðYlÞjuj,

hfl; fl0 ip ¼ ðΛ1=2YlÞTðΛ1=2Yl0 Þ ¼ δll0 : ðC44Þ

The total capacity is independent of the basis choice

CTðSÞ ¼
X∞
l¼0

C½fl� ¼
X∞
l¼0

YT
lΛ1=2

 
Λ1=2TT

�
TΛTT þ 1

S
V

�
−1
TΛ1=2

!
Λ1=2Yl

¼ Tr

 
Λ1=2TT

�
TΛTT þ 1

S
V

�
−1
TΛ1=2

!
¼ Tr

 �
Gþ 1

S
V

�
−1
G

!
¼
XK−1
k¼0

1

1þ β2k
S

: ðC45Þ

5. Eigentask learning training procedure for a
nonlinear postprocessing layer

The definition of REC metric and the training scheme
underlying eigentask learning considered in the main text is
based on a linear estimator W · X̄ fed into a quadratic loss
function. Note that, in an experimental context, their
calculations are performed on a classical processor after
the measurement results are collected. This is what is done
in the experiments on the superconducting quantum proc-
essor in Sec. IV. This choice of a linear estimator and a
quadratic loss function may seem arbitrary, but the rationale
behind it, as explained in the main text, is the desire to
quantify the function expression capacity of solely the
physical system itself rather than the classical postprocess-
ing layer.

The eigentask learning training methodology introduced
in the present work is, however, sufficiently general to be
adapted to nonlinear postprocessing scenarios as well,
which is the subject of this appendix. The central finding
is that a cumulant expansion of the nonlinear loss function
produces extra regularization terms whose magnitudes can
be characterized by the NSR spectra fβ2kg. The nonlinear
training loss can then be well approximated using a
truncated set of eigentasks. To be more specific, we
demonstrate that those eigentasks yðkÞ whose corresponding
β2k=S is larger should qualitatively contribute a larger
penalty to the loss function.
The most general case of the output layer can involve a

nonlinear activation function or kernel which may sub-
sequently be fed into a nonlinear loss function. A unified
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description of these two aspects can be achieved through
the usage of a differentiable nonlinear function σNL:

L ¼ Eu½EX ½σNLðX̄Þ��: ðC46Þ

For our proof, we do not consider the most general form of
σNL but employ some reasonable assumptions on it that
allow us to qualitatively demonstrate the role of eigentasks
in the presence of nonlinear postprocessing. First, we
assume that it is legitimate to truncate a series expansion
of σNL to second order; that is, all terms of the third- and
higher-order derivatives of σNL are assumed to be much
smaller in comparison. Second, we assume that the second-
order derivative (namely, the Hessian matrix) ∇x∇T

xσNLðuÞ
does not vary too stronglywith respect to u. Formean-square
loss in Eq. (5), theHessianmatrix of∇x∇T

xσNLðuÞ ¼ 2WWT

is a constant matrix. Another typical example of σNL is the
cross-entropy loss function of logistic regression used in the
toy binary classification problem considered in Sec. IV C.
Here, the target function is the conditional probability
distribution fðuÞ ≔ Prob½u∈C1ju�, where C1 represents
the class labeled by 1. The eventual loss function con-
tains a softmax layer and a cross-entropy function
L ¼ Eu½EX ½HðfðuÞ; σðW · X̄ðuÞÞÞ��, where σ is sigmoid

function [e.g., softmax function σðzÞ ¼ 1=½1þ expð−zÞ�]
and Hðp; qÞ ¼ −p lnq − ð1 − pÞ lnð1 − qÞ is the cross-
entropy. One can check that ∇x∇T

xσNL ¼ σðW · xÞ×
½1 − σðW · xÞ�WWT , where σðW ·xÞ½1−σðW ·xÞ�∈ ½0;1=4�
is a bounded function.
Suppose the eigentasks ȳ have been determined by

solving the generalized eigenvalue problem Eq. (8). We
proceed by expressing the nonlinear loss function
Eq. (C46) in terms of ȳ. This can be done by expressing
X̄ in terms of ȳ, X̄ ¼ Γȳ, with ΓT ¼ ðrð0Þ;…; rðK−1ÞÞ−1.
This is possible by virtue of frðkÞg being the eigenvectors of
the problem Eq. (C33). All noisy measured features fX̄kg
can now be expressed in terms of the orthogonal signal
basis fyðkÞg and the noise basis fξðkÞg:

X̄k0 ðuÞ≡
XK−1
k¼0

Γk0k½yðkÞðuÞ þ ξðkÞðuÞ�: ðC47Þ

Using a cumulant expansion for the nonlinear loss function
and recalling that EX ½ξðkÞðuÞ� ¼ 0 and EX ½ξðkÞξðk0Þ� ¼
rðkÞTΣrðk0Þ, where Σ is the covariance of original sampling
noise ζ,

L ¼ Eu½EX ½σNLðX̄Þ�� ¼ Eu½EX ½σNLðΓȳÞ�� ¼ Eu

�
EX

�
σNL

�X
k

Γ0;kðyðkÞ þ ξðkÞÞ;…;
X
k

ΓK−1;kðyðkÞ þ ξðkÞÞ
���

¼ Eu½σNLðΓyÞ� þ
XK−1
k¼0

Eu

�
EX

�
∂σNL
∂yðkÞ

ξðkÞ
��

þ 1

2

XK−1
k1¼0

XK−1
k2¼0

Eu

�
EX

�
∂
2σNL

∂yðk1Þ∂yðk2Þ
ξðk1Þξðk2Þ

��
þO

�
1

S2

�

¼ Eu½σNLðΓyÞ� þ
XK−1
k¼0

Eu

�
∂σNL
∂yðkÞ

EX

	
ξðkÞ

�þ 1

2

XK−1

k1¼0

XK−1
k2¼0

Eu

�
∂
2σNL

∂yðk1Þ∂yðk2Þ
EX

	
ξðk1Þξðk2Þ


�þO
�
1

S2

�

¼ Eu½σNLðΓyÞ� þ
1

2

XK−1
k1¼0

XK−1
k2¼0

Eu

�
∂
2σNL

∂yðk1Þ∂yðk2Þ
rðk1ÞTΣrðk2Þ

�
þO

�
1

S2

�
: ðC48Þ

We see here that all terms including third- and higher-order derivatives of σNL are of Oð1=S2Þ, which can be neglected in
comparison to lower-order terms for large enough S, in accordance with the discussion following Eq. (C46). Second, the
slow variation of the second-order derivative∇y∇T

y σNLðuÞ ¼ ΓT∇x∇T
xσNLðuÞΓwith respect to u allows us to make a further

simplification of Eq. (C48) by taking the mean-value approximation

Eu

�
∂
2σNL

∂yðk1Þ∂yðk2Þ
rðk1ÞTΣrðk2Þ

�
≈ Eu

�
∂
2σNL

∂yðk1Þ∂yðk2Þ

�
Eu

	
rðk1ÞTΣrðk2Þ


 ðC49Þ

and using the equality Eu½rðk1ÞTΣrðk2Þ� ¼ δk1k2β
2
k1
=S:

L ≈ Eu½σNLðΓyÞ� þ
XK−1
k¼0

β2k
S
· Eu

�
∂
2σNL

ð∂yðkÞÞ2
�
¼ Eu½σNLðΓyÞ� þ

X
k

β2k
S
· ðΓTEu½∇x∇T

xσNL�ΓÞkk: ðC50Þ

In typical scenarios, such as, for instance, the case of logistic regression, the loss function depends on the trainable
parameters Wk through a linear combination W · X̄ðuÞ. For such scenarios, it proves convenient to introduce Ω such that
Ω ¼ ΓTW:
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W · X̄ðuÞ≡XK−1
k¼0

Ωk · ½yðkÞðuÞ þ ξðkÞðuÞ�: ðC51Þ

For any loss function of the form σNLðxÞ ¼ gðW · xÞ, the
second term in Eq. (C50) can then be expressed as
ΓT∇x∇T

xσNLΓ ¼ g00ðΩ · yÞΩΩT . In the case of logistic
regression, σNLðxÞ ¼ gðW · xÞ ¼ Hðf; σðW · xÞÞ. The final
loss function can be further simplified to

L ≈ Eu½Hðf; σðΩ · yÞÞ� þ
�XK−1

k¼0

β2k
S
Ω2

k

�

· Eu½σðΩ · yÞð1 − σðΩ · yÞÞ�: ðC52Þ

Here, the first term is the S-infinity value of the loss
function, limS→∞ L ¼ Eu½Hðf; σðΩ · yÞÞ�. For the softmax
function, we have σðΩ · yðuÞÞð1 − σðΩ · yðuÞÞÞ∈ ½0; 1=4�,
which is assumed not to fluctuate strongly as a function of
u, compared to the fluctuation of rðk1ÞTΣðuÞrðk2Þ.
While the final result Eq. (C52) is obtained under certain

assumptions on σNL as detailed at the outset, the form of the
last term suggests the interpretation of β2k=S as a natural
regularization and the use of β2k=S as a metric for trunca-
tion. This truncation is successfully employed in calcu-
lations behind the generation of plots in Figs. 5 and 6 for
the binary classification task, using the cross-entropy loss
function of logistic regression. Equation (C52), therefore,
provides some theoretical justification for the use of this
truncation scheme when a nonlinear postprocessing layer is
employed.

6. Simplifying the noise-to-signal matrix
and its eigenproblem for quantum systems

We show that the problem of obtaining the eigentasks for
a generic quantum system, and deducing its resolvable
expressive capacity under finite measurement resources,
can be reduced simply to solving the eigenproblem of
its NSR matrix R [Eq. (C32)]. Note that constructing
R ¼ G−1=2VG−1=2 requires computing the inverse of G.
However, G can have small (although always nonzero)
eigenvalues, especially for larger systems, rendering it ill
conditioned and making the computation of R numerically
unstable. Fortunately, certain simplifications can be made
to derive an equivalent eigenproblem that is much easier to
solve. We begin by employing the fact that the second-
order-moment matrix D of multinomial sampling is diago-
nal. In particular,

ðDÞk1k2 ¼
�PK−1

k¼0 ðGÞkk1 ; if k1 ¼ k2
0; if k1 ≠ k2:

ðC53Þ

Using V ¼ D −G, we can rewrite the eigenproblem
for R:

RðG1=2rðkÞÞ ¼ β2kG
1=2rðkÞ

⟹ G−1=2ðD −GÞG−1=2ðG1=2rðkÞÞ ¼ β2kG
1=2rðkÞ

⟹ G−1DrðkÞ ¼ ð1þ β2kÞrðkÞ: ðC54Þ

Finally, considering the inverse of the matrix on the left-
hand side, we obtain the simplified eigenproblem for the
matrix D−1G:

D−1GrðkÞ ¼ ð1þ β2kÞ−1rðkÞ ≡ αkrðkÞ; ðC55Þ

which shares eigenvectors with R and whose eigenvalues
are a simple transformation of the NSR eigenvalues β2k.
Importantly, constructing D−1G no longer requires calcu-
lating any powers of G, and it relies only on the straight-
forward inversion of a diagonal matrix D.

APPENDIX D: SPECTRAL ANALYSIS BASED
ON FINITE STATISTICS
IN QUANTUM SYSTEMS

While Eq. (C55) is a numerically simpler eigenproblem
to solve than Eq. (C32), it still requires the approximation
of G (recall that D can be obtained from G) from readout
features X̄ðuÞ under finite sampling of the input (N) and
finite shots (S). To be more precise, in experiment one has
access to only measured features sampled at finite-S X̄
(indeed, this distinction is the underlying premise of this
article). However, in Eq. (8), G and V are defined with
respect to the ideal x. Let G̃≡ Eu½EX ½X̄X̄T �� and Ṽ≡
Eu½EX ½diagðX̄Þ − X̄X̄T ��. The objective of Appendix D 1 is
showing that the eigenanalysis fβ2k; rðkÞg can be accurately
expressed with

β2k ¼
S · β̃2k

ðS − 1Þ − β̃2k
; ðD1Þ

and rðkÞ ¼ r̃ðkÞ from solving generalized eigenvalue problem
Ṽr̃ðkÞ ¼ β̃2kG̃r̃ðkÞ. In what follows, we show how an approxi-
mation G̃N of G can be constructed from finitely sampled
readout features, as relevant for practical quantum devices.
Second, we also describe an approach in Appendix D 2 to
obtain the eigentasks yðkÞðuÞ and corresponding NSR eigen-
values β2k in a singular-value decomposition (SVD) problem
that avoids explicit construction of the Gram matrix and is
therefore numerically even more robust.

1. Approximating eigentasks and NSR eigenvalues
under finite S and N

For practical computations, readout features X̄ðuÞ from
the quantum system for finite S can be computed for a
discrete set of uðnÞ ∈ ½−1; 1� for n ¼ 1;…; N. Labeling the
corresponding readout features X̄ðuðnÞÞ, we can define the
regression matrix constructed from these readout features:
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F̃N ≡ ðX̄ðuð1ÞÞ; X̄ðuð2ÞÞ;…; X̄ðuðNÞÞÞT

¼

0
BB@

X̄0ðuð1ÞÞ � � � X̄K−1ðuð1ÞÞ
..
. ..

.

X̄0ðuðNÞÞ � � � X̄K−1ðuðNÞÞ

1
CCA: ðD2Þ

Here, F̃N ∈RN×K, with subscript N indicating its con-
struction from a finite set of N inputs, is a random matrix
due to the stochasticity of readout features; in particular, it
can be written as

F̃N ¼ FN þ 1ffiffiffi
S

p ZðFNÞ: ðD3Þ

where ðFNÞnk ¼ EX ½X̄kðuðnÞÞ� ¼ xkðuðnÞÞ and Z is the cen-
tered multinomial stochastic process, so that EX ½F̃N � ¼ FN .
Using this regression matrix F̃N , we can obtain an

estimation of the Gram matrix and second-order-moment
matrix, which we denote G̃N and D̃N , and whose matrix
elements are defined via

ðG̃NÞk1k2 ≡
1

N

XN
n¼1

X̄k1ðuðnÞÞX̄k2ðuðnÞÞ

¼ 1

N
ðF̃T

NF̃NÞk1k2 ≈
Z

X̄k1ðuÞX̄k2ðuÞpðuÞdu;

ðD4Þ

ðD̃NÞk1k2 ≡ δk1;k2
1

N

XN
n¼1

X̄k1ðuðnÞÞ ≈ δk1;k2

Z
X̄k1ðuÞpðuÞdu:

ðD5Þ

While the quantities G̃N and D̃N are computed from
stochastic readout features, their stochastic contributions
are suppressed in the large-N limit by the Hoeffding
inequality for sums of bounded stochastic variables.
In what follows, our goal is to prove that, by solving the

eigenproblem D̃−1
N G̃N r̃

ðkÞ
N ¼ ð1þ β̃2N;kÞ−1r̃ðkÞN , the true NSR

eigenvalue β2k and eigentask coefficients rðkÞ can be well

approximated bySβ̃2N;k=ðS − β̃2N;k − 1Þ and r̃ðkÞN , respectively.
In particular, to achieve the goal stated above, the first step is
still taking the N → ∞ limit and defining the deterministic
limit of G̃N and D̃N , according to Eq. (C17), as

G̃≡ lim
N→∞

1

N
ðF̃T

NF̃NÞ ¼ Gþ 1

S
V ¼ Gþ 1

S
ðD −GÞ; ðD6Þ

D̃≡ lim
N→∞

D̃N ¼ D: ðD7Þ

In a generic physical system, the covariance matrixV can be
reconstructed by computing the empirical covariance of
measured features and employing the well-known rule of

Bessel’s correction, EX ½ð1=SÞ
P

sðXðsÞ
k ðuÞ − X̄kðuÞÞ×

ðXðsÞ
k0 ðuÞ − X̄k0 ðuÞÞ� ¼ ½ðS − 1Þ=S�ΣðuÞ. In this way, V can

be approximated from the whole record of single-shot

random-valued features XðuÞ ¼ fXðsÞ
k ðuÞgk∈ ½K�;s∈ ½S�:

lim
N→∞

1

NðS − 1Þ
XN
n¼1

XS
s¼1

ðXðsÞ
k ðuðnÞÞ

− X̄kðuðnÞÞÞðXðsÞ
k0 ðuðnÞÞ − X̄k0 ðuðnÞÞÞ ¼ Vkk0 : ðD8Þ

However, in the scenario of quantum sampling noise, the
covariance matrix has a special structure. In particular, Σ is
not independent of the first-order moments xðuÞ. This allows
us to invert Eqs. (D6) and (D7) to express the GrammatrixG
and second-order-moment matrix D in terms of the estima-
tors G̃ and D̃ computed using a finite number of shots S, in a
numerically cheap way without using full readout record of

XðuÞ ¼ fXðsÞ
k ðuÞgk∈ ½K�;s∈ ½S�:

G ¼ S
S − 1

G̃ −
1

S − 1
D̃; ðD9Þ

D ¼ D̃: ðD10Þ

We see that, to lowest order in 1=S,G ≈ G̃ andD ≈ D̃, which
iswhat onemight expect naively.However,we clearly see that
the estimation of G can be improved by including a higher-
order correction in 1=S. This contribution arises due to the
highly correlated nature of noise and signal for quantum
systems: we are able to estimate the noise matrix G̃ and D̃
using knowledge of the readout features and correct for the
contribution to G̃ and D̃ that arises from this noise matrix.We
see that this contribution is important in more accurately
approximating quantities of interest derived from G, D.
To this end, we recall that our ultimate aim is not just to

estimate G and D but to solve the eigenproblem of
Eq. (C55). Using the above relation, we can then establish
D̃−1G̃ ¼ ½ðS − 1Þ=S�D−1Gþ ð1=SÞI and write Eq. (C55)
in a form entirely in terms of G̃ and D̃:

D−1GrðkÞ ¼ ð1þ β2kÞ−1rðkÞ

⇒ D̃−1G̃rðkÞ ¼
�
S − 1

S
ð1þ β2kÞ−1 þ

1

S

�
rðkÞ: ðD11Þ

Note that the final form is conveniently another eigenpro-
blem, now for the finite-S matrix D̃−1G̃:

D̃−1G̃r̃ðkÞ ¼ ð1þ β̃2kÞ−1r̃ðkÞ ≡ α̃kr̃ðkÞ; ðD12Þ

whose eigenvalues and eigenvectors can be easily related
to the desired eigenvalues β2k and eigenvectors rðkÞ in
Eq. (C55). Following some algebra, we find
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β2k ¼
S

ðS − 1Þ − β̃2k
· β̃2k ¼ β̃2k þ

X∞
j¼1

β̃2kð1þ β̃2kÞj
�
1

S

�
j
;

ðD13Þ

rðkÞ ¼ r̃ðkÞ: ðD14Þ

From Eq. (D13), we see that, to lowest order in 1=S,
β2k ≈ β̃2k. We note that β̃2k are always smaller than S − 1, and
the zeroth-order truncation of Taylor series expression for
β2k above is valid only for those k satisfying β̃2k ≪ S − 1

(see Fig. 8). However, this expression also supplies cor-
rections to higher orders in 1=S, which are non-negligible
for β̃2k ≲ S − 1, as we see in the example in Fig. 8. In
contrast, the estimated eigenvectors r̃ðkÞ to any order in 1=S
equal the desired eigenvectors rðkÞ without any corrections.
Of course, in practice, we do not have access to the

matrices G̃ and D̃, as these are defined precisely only in the
limit where N → ∞. However, for sufficiently large N, we
can approximate these matrices to lowest order by their
finite N values, G̃ ¼ G̃N þOð1=NÞ and D̃ ¼ D̃N þ
Oð1=NÞ. Then, the eigenproblem in Eq. (D12) can be
expressed in the final form

D̃−1
N G̃N r̃

ðkÞ
N ¼ ð1þ β̃2N;kÞ−1r̃ðkÞN ≡ α̃N;kr̃

ðkÞ
N ; ðD15Þ

where the eigenvalues β̃2N;k and α̃N;k and eigenvectors r̃
ðkÞ
N in

the large-N limit must satisfy

lim
N→∞

β̃2N;k ¼ β̃2k; lim
N→∞

α̃N;k ¼ α̃k; lim
N→∞

r̃ðkÞN ¼ r̃ðkÞ ≡ rðkÞ:

ðD16Þ

Here, the invertibility of the empirically computed matrix
D̃N required for Eq. (D15) is numerically checked, based
on which we can establish a better numerical method in
Appendix D 2.
Equation (D15) represents the eigenproblem whose

eigenvalues β̃2N;k and eigenvectors r̃ðkÞN we actually cal-
culate. For large enough N and under finite S, we can
use these as valid approximations to the eigenvalues and
eigenvectors in Eq. (D12). According to using Eqs. (D13)
and (D14), we are finally able to directly estimate the
N; S → ∞ quantities β2k and rðkÞ by the following two
quantities:

β̄2k ≡
S · β̃2N;k

ðS − 1Þ − β̃2N;k

¼ 1 − α̃N;k

α̃N;k − 1
S

; ðD17Þ

r̄ðkÞ ≡ r̃ðkÞN : ðD18Þ

It is clear that the approximation of β2k to lowest order is
an underestimate, as the contribution of order 1=S is
positive. In Fig. 8, we demonstrate a match between β̄2k ¼
ðS · β̃2N;kÞ=ððS − 1Þ − β̃2N;kÞ and β2k for a wide range of
eigentasks with lower order k. In Fig. 9, we plot the

estimated eigenvectors r̃ðkÞN computed under finite statistics
(N ¼ 300, S ¼ 1000, where these two numbers are relevant
for IBM quantum processors) in H encoding, together
with the N; S → ∞ eigenvectors rðkÞ, and the estimated
eigenvalues.

2. Gram matrix-free construction to approximate
eigentasks and NSR eigenvalues

If we consider Eq. (D15) and multiply through by D−1=2
N ,

the resulting equation can be written as an equivalent
eigenproblem:

1

N
D̃−1=2

N F̃T
NF̃ND̃

−1=2
N ðD̃1=2

N r̃ðkÞN Þ ¼ α̃N;kðD̃1=2
N r̃ðkÞN Þ; ðD19Þ

where we also write G̃N ¼ ð1=NÞF̃T
NF̃N as in the previous

section. Note that, as written above, the eigenproblem is
entirely equivalent to obtaining the singular-value decom-
position of the matrix ð1= ffiffiffiffi

N
p ÞD̃−1=2

N F̃T
N ¼ UΣVT , where

U∈RK×K and V ∈RN×N are unitary matrix and Σ is a
non-negative diagonal matrix with nonincreasing diagonal
entries:

Σ ¼ diagðα̃1=2N;0;…; α̃1=2N;K−1Þ ≈ diagðα̃1=20 ;…; α̃1=2K−1Þ: ðD20Þ
To obtain the estimation of combination coefficients rðkÞ,
let t̄ðkÞ ∈RK be the normalized left singular vector of

FIG. 8. Eigenanalysis in L ¼ 5 H-Ansatz system by taking
S ¼ 102 shots on each of N ¼ 104 input samples, with true NSR
eigenvalues β2k (black), S-finite sampled β̃2N;k (blue), and cor-
rected NSR ðS · β̃2N;kÞ=ððS − 1Þ − β̃2N;kÞ (purple). β̃2k, the large-N
limit of β̃2N;k, is also plotted in red for comparison. The data
correction is necessary, since all β̃2N;k are below the gray dashed
line (representing S ¼ 102), and the corrected data (in purple)
show much better performance even if β2k ≫ S. The corrected
data (in purple) have a cutoff at k ¼ 25, because in this example
all sampled β̃2N;k with k > 25 are larger than S − 1 and, hence, are
not correctable.
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ð1= ffiffiffiffi
N

p ÞD̃−1=2
N F̃T

N (which is also the eigenvector of
ð1=NÞD̃−1=2

N F̃T
NF̃ND̃

−1=2
N ≈D−1=2G̃D−1=2 in the large-N

limit). Then rðkÞ ≈ α̃−1=2N;k D̃−1=2
N t̄ðkÞ ¼ r̄ðkÞ ∈RK , and

U ¼ ðt̄ð0Þ;…; t̄ðK−1ÞÞ ¼ D̃1=2
N ðα̃1=2N;0r̄

ð0Þ;…; α̃1=2N;K−1r̄
ðK−1ÞÞ:

ðD21Þ

Here, r̄ðkÞ ¼ α̃−1=2N;k D̃−1=2
N t̄ðkÞ can be treated as the combina-

tion prefactor of M̂k, to obtain the observables which
correspond to the eigentasks. The merit of an SVD analysis
of ð1= ffiffiffiffi

N
p ÞD̃−1=2

N F̃T
N is that we need only to work with a

K-by-N matrix of features F̃N , which is numerically cheaper
than further constructing a Gram matrix ð1=NÞF̃T

NF̃N .
Therefore,

ΣVT ¼ UT 1ffiffiffiffi
N

p D̃−1=2
N F̃T

N ¼ 1ffiffiffiffi
N

p

0
BBB@

α̃1=2N;0r̄
ð0ÞT

..

.

α̃1=2N;K−1r̄
ðK−1ÞT

1
CCCAD̃1=2

N D̃−1=2
N F̃T

N ¼ 1ffiffiffiffi
N

p

0
BBB@

α̃1=2N;0r̄
ð0ÞT

..

.

α̃1=2N;K−1r̄
ðK−1ÞT

1
CCCAF̃T

N: ðD22Þ

The entries in Eq. (D22) are

ðΣVTÞk;n ¼
1ffiffiffiffi
N

p α̃1=2N;k

XN
n¼1

r̄ðkÞk0 ðF̃NÞn;k0 ¼
1ffiffiffiffi
N

p α̃1=2N;k

XN
n¼1

r̄ðkÞk0 X̄k0 ðuðnÞÞ ∝ ȳðkÞðuðnÞÞ: ðD23Þ

This means that, for each data sample uðnÞ, the value of
the kth-order eigentask ȳðkÞðuðnÞÞ is exactly the principal
component coordinate of ð1= ffiffiffiffi

N
p ÞD̃−1=2

N F̃T
N , up to a con-

stant factor.
The appearance of the SVD above brings comparisons to

a popular, powerful data-compressing tool: principal com-
ponent analysis, or PCA, which is used to project a
relatively high-dimensional dataset into a smaller space,

without losing much information. In standard PCA, the
original dataset is cast into a feature matrix F∈RN×K ,
representing N data samples and K features. Let μk ¼
ð1=NÞPn Fn;k and σ2k ¼ ð1=NÞPnðFn;k − μkÞ2. Then the
standard-scored (or the z-scored) matrix F0 is defined by

F0
n;k ¼

Fn;k − μk
σk

: ðD24Þ

FIG. 9. Estimating noise-to-signal ratio eigenvalues and corresponding eigentask coefficients under finite statistics (N ¼ 300,
S ¼ 1000) in a four-qubit H-encoding system and comparison with theoretical value for N → ∞; S → ∞.
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The SVD of F0T ¼ UΣVT gives the well-known principal
component analysis. Each row of ΣVT ∈RK×N is called a
principal component of the standard score dataset F0. To be
more specific, for each data sample labeled by n, the
coordinate of its kth principal component is ðΣVTÞk;n.
While classical PCA focuses on how to reconstruct a

dataset with minimal representative features, REC analysis
focuses on minimizing the effect from quantum samp-
ling noise. Since the aim of REC analysis is about the
effect from quantum sampling noise, the normalization
factor in REC is taking the reciprocal of

ffiffiffiffi
N

p ðD̃1=2
N Þkk ¼

ðPn X̄kðuðnÞÞÞ1=2, which is quite different from usual PCA,
where one uses the reciprocal of the standard deviation σk
of each feature over the whole dataset samples for nor-
malization, as is described by the form of Eq. (D24).

APPENDIX E: H-ANSATZ QUANTUM SYSTEMS:
NSR SPECTRA, RESOLVABLE EXPRESSIVE

CAPACITY, AND EIGENTASKS

In this section, we evaluate the REC for quantum
systems described by the H Ansatz introduced in
Appendix B, as an example of how REC can be efficiently
computed for a variety of general quantum systems, and is
not just restricted to parametrized quantum circuits. The
results of the analysis are compiled in Fig. 10 and
discussed below.
Figure 10(a) presents the set of features fX̄kðuÞg for

typical L ¼ 6 qubit CS and PS at S ¼ 1000 with randomly

chosen parameters (referred to as encodings; see the
caption). The resultant noisy eigentasks fȳðkÞðuÞg and
NSR spectra fβ2kg extracted via the eigenvalue analysis
are shown in Figs. 10(b) and 10(c), respectively. In the
side-by-side comparison in Fig. 10(b), we clearly see the
J ¼ 0 Ansatz transitioning to a regime with more noise at
much lower k than the J ≠ 0 Ansatz. This is reflected in
Fig. 10(c), the β2k spectrum, having a much flatter slope for
larger k (note the plot is semilog). Finally, Fig. 10(d) shows
the REC of both systems as a function of S. REC rapidly
rises for small S for both systems, but the rise of the J ¼ 0
system is steeper. After a certain threshold in S, however,
the CS grows more rapidly, approaching the upper bound
26 ¼ 64with S ∼ 108; in contrast, the PS has a significantly
lower CT.
Just like the case of parametrized quantum circuits

considered in the main text, we also explore how the
REC CT changes with J for theH Ansatz and compare it to
the total correlation ETC T̄ , as shown in Fig. 10(f). For
J → 0 we have a PS with T̄ ¼ 0, whereas in the J → ∞we
also have T̄ ¼ 0, because ρ̂0 ¼ j0ih0j⊗L is an eigenstate of
the encoding [ρ̂ðuÞ ¼ ρ̂0]. This implies there must be a
peak at some intermediate J, which for both REC and ETC
occurs when the coupling is proportional to the transverse
field J ∼ hx. At finite S, increased ETC is directly related to
a higher REC.
Another interesting aspect is the clear trend seen in the

maximization of REC around J ∼ hxrms for various hxrms,
possibly hinting at the role of increased correlation around

FIG. 10. Eigenanalysis in a six-qubit H-Ansatz system (with N ¼ 5000 and S ¼ 1000) forming a 1D ring. The Hamiltonian
parameters are chosen randomly with zero mean and variance ðhxrms; hzrms; hIrmsÞ ¼ ð20; 5; 5Þ and t ¼ 5 (see Appendix B for details).
Coupling strength is uniformly J ≠ 0 (correlated system) or J ¼ 0 (product system). (a) All 2L ¼ 64 noisy features X̄kðuÞ and (b) noisy
eigentasks ȳðkÞðuÞ ¼ rðkÞ · X̄ðuÞ for selected k from the features in (a), as well as their expected values yðkÞðuÞ ¼ limS→∞ ȳðkÞðuÞ ¼
rðkÞ · xðuÞ (black). (c) Noise-to-signal ratio spectrum β2k and (d) CT vs shots S for both correlated system and product system encodings.
(e) CT at S ¼ 105 and (f) ETC T̄ ðρ̂MÞ in a representative random six-qubit H Ansatz, as a function of coupling strength J. The peaks of
capacity and correlation coincide, around J ∼ hxrms.
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the many-body localization phase transition in random spin
systems [56]. This trend is consistent with results in quantum
metrology—in general, the SNR obtained from averaging L
uncorrelated probes scales as 1=

ffiffiffiffi
L

p
. This scaling can

become favorable in the presence of quantum correlation
and other nonclassical correlations, in which case the scaling
of the SNR can show up as a quadratic improvement 1=L
[55]. For even larger J, we find that ρ̂ðuÞ → ρ̂0 ¼ j0ih0j⊗L,
which clearly reduces T̄ , but alsoCT as the quantum system
state becomes u independent.

APPENDIX F: ANALYTIC SOLUTION TO THE
QUANTUM TWO-DESIGN RESOLVABLE

EXPRESSIVE CAPACITY

There are many system-specific factors that can con-
tribute to the scaling of resolvable expressive capacity with
system size, making it challenging to create a general
model that describes all systems. However, we can ana-
lytically solve for the REC of a class of quantummodels for
a specific system: two-design parametric quantum circuits

fpðuÞdu; Ûðθ; uÞg. We clarify that we are referring here to
systems with specific parameters θ which result in two-
designs with respect to the input distribution pðuÞ; the
ensemble average is taken with respect to inputs u.
Quantum literature [49] often refers to general Ansätze
which form two-designs with respect to parameters θ
instead, which is not what we are considering here.
To be more specific, an ensemble fpðuÞdu; Ûðθ; uÞg is a

two-design if the following two quantum channels, defined
on any 2L-qubit state τ̂, are equal:

Cðτ̂Þ ¼
Z

Ûðθ; uÞ⊗2τ̂ðÛðθ; uÞ†Þ⊗2pðuÞdu

¼
Z

Û⊗2τ̂ðÛ†Þ⊗2dμHðÛÞ; ðF1Þ

where μH is the uniform (Haar) measure. We can verify that
all information in the Gram matrix is explicitly contained in
the elements of Cðρ̂0 ⊗ ρ̂0Þ. To be more specific,

hbk1 ; bk2 jCðρ̂0 ⊗ ρ̂0Þjbk1 ; bk2i

¼ hbk1 ; bk2 j
�Z

ðÛðθ; uÞ ⊗ Ûðθ;uÞÞjb0; b0ihb0; b0jðÛðθ; uÞ† ⊗ Ûðθ; uÞ†ÞpðuÞdu
�
jbk1 ; bk2i

¼
Z ��hbk1 jÛðθ;uÞjb0i

��2 · ��hbk2 jÛðθ; uÞjb0i
��2pðuÞdu

¼
Z

xk1ðuÞxk2ðuÞpðuÞdu ¼ ðGÞk1k2 : ðF2Þ

However, Cðρ̂0 ⊗ ρ̂0Þ ¼
R
U⊗2ðρ̂0 ⊗ ρ̂0ÞðU†Þ⊗2dμHðUÞ implies that we can compute the Gram matrix by instead

integrating over the Haar measure [61]:

ðGÞk1k2 ¼
Z

jU0;k1 j2jU0;k2 j2dμHðUÞ ¼
(

2
KðKþ1Þ ; if k1 ¼ k2;

1
KðKþ1Þ ; if k1 ≠ k2:

ðF3Þ

Then, the corresponding second-order-moment matrix D is
given by

ðDÞkk ¼
2

KðK þ 1Þ þ ðK − 1Þ × 1

KðK þ 1Þ ¼
1

K
: ðF4Þ

It is self-consistent that the matrix D ¼ diagð1=K; 1=K;
…; 1=KÞ obeys the normalization condition TrðDÞ ¼ K ·
ð1=KÞ ¼ 1. Then, we can solve the eigenvalues fαkgk∈ ½K� of
randomwalkmatrix ðD−1GÞk1k2 ¼ ½1=ðKþ 1Þ�ð1þ δk1k2Þ. It
gives

αk ¼
1

K þ 1
ð1þ Kδk0Þ: ðF5Þ

Furthermore,we useαk ¼ 1=ð1þ β2kÞ or β2k ¼ ð1=αkÞ − 1 to
compute the NSR eigenvalue:

ðβ20; β21; β22;…; β2K−2; β
2
K−1Þ ¼ ð0; K; K;…; K; KÞ: ðF6Þ

Then, the resolvable expressive capacity of any two-design
system is given by

CT ¼ 1þ K − 1

1þ K
S

¼ K ×
1þ 1

S

1þ K
S

¼ 2L ×
Sþ 1

Sþ 2L
: ðF7Þ

APPENDIX G: QUANTUM CORRELATION
METRICS

There is no one standard metric to quantify correlation in
a many-body state. The metric wewould like to utilize here,
the quantum total correlation, is a quantity inspired by
the classical total correlation of L random variables
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ðb1;…; bLÞ, that is,
P

L
l¼1HðblÞ −Hðb1;…; bLÞ. Using

the chain rule of Shannon entropy Hðb1; b2;…; bLÞ ¼
Hðb1Þ þHðb2jb1Þ þ � � � þHðbLjb1; b2;…; bL−1Þ,

XL
l¼2

HðblÞ −Hðb1; b2;…; bLÞ

¼
XL
l¼1

HðblÞ −
XL
l¼1

Hðbljb1; b2;…; bl−1Þ

¼
XL
l¼2

Iðb1;…; bl−1; blÞ∈ ½0; L − 1�; ðG1Þ

we can see that the classical total correlation tells us how a
set of random variables reveals information about each
other. Similarly, the quantum total correlation can be
defined as [52,53]

T ðρ̂Þ ¼
XL
l¼1

Sðρ̂lÞ − Sðρ̂Þ; ðG2Þ

where S is von Neumann entropy and ρ̂l ≔ Tr½L�nflgfρ̂g is
the subsystem state at qubit l. Because of the subadditivity
of von Neumann entropy

P
L
l¼1 Sðρ̂lÞ ≥ Sðρ̂Þ, the quantum

total correlation is non-negative and is zero iff the state
ρ̂ ¼⊗L

l¼1 ρ̂l is a product state.
In this paper’s measurement scheme, the specific

readout POVMs are the projectors onto the computational
states fjbkihbkjgk∈ ½K�. Thus, we are, in particular, interested
in analyzing the postmeasurement state ρ̂MðuÞ ¼P

k ρkkðuÞjbkihbkj whose subsystems are correspondingly
in states ρ̂Ml ðuÞ ¼ Tr½L�nflgfρ̂MðuÞg. We compute the aver-
age or expected quantum total correlation over the input
domain u with respect to the input probability distribution
pðuÞ:

T̄ ðρ̂MÞ ¼ Eu

"XL
l¼1

Sðρ̂Ml ðuÞÞ−Sðρ̂MðuÞÞ
#

¼ Eu

"XL
l¼1

HðblðuÞÞ−Hðb1ðuÞ;…;bLðuÞÞ
#
; ðG3Þ

where the second equality comes from the diagonal nature
of the postmeasurement state which reduces the quantum
total correlation to a normal classical total correlation.
The postmeasurement quantum total correlation always

reaches its maximum L − 1 when the postmeasurement
state (which just constitutes the diagonal entries of
the premeasurement state) is a Greenberger-Horne-
Zeilinger-type state. As an additional example, for a W
state jWi¼ ð1= ffiffiffiffi

L
p Þðj10 � � �0iþ j01 � � �0iþ �� �þ j00 � � �1iÞ,

the postmeasurement quantum total correlation
T ðjWihWjÞ is

L

�
−
�
1

L

�
log2

�
1

L

�
−
�
L− 1

L

�
log2

�
L− 1

L

��

−L

�
−
�
1

L

�
log2

�
1

L

��
¼ ðL− 1Þ log2

�
L

L− 1

�
; ðG4Þ

which is upper bounded by limL→∞T ðjWihWjÞ ¼
½1= lnð2Þ� ≈ 1.443.

APPENDIX H: REC AND EIGENTASKS
FOR CLASSICAL SYSTEMS: A BASIC

OPTICAL PNN EXAMPLE

In this appendix, we present some additional details of
the REC analysis of the optical setup considered in
Sec. II D of the main text. Our focus here is (i) on the
details of the sampling noise statistics, which are different
when compared to quantum systems, and (ii) the form of
the REC eigenproblem for this special case.

1. Sampling noise statistics for a classical optical system

For convenience, we recall the form of the electric field
of propagating radiation presented in Sec. II D. The electric
field after the SLM can be written generally in the form [41]

E0ðu; d⃗Þ ¼ A0 cos

�
φ1ðu; d⃗Þ

2

�

× exp

�
i

�
φ1ðu; d⃗Þ þ 2φ2ðu; d⃗Þ

2

��
; ðH1Þ

where φlðu; d⃗Þ are input encoding functions and d⃗ is the
position vector describing the coordinates where the
electric field is evaluated in the plane orthogonal to
the propagation direction; in particular, d⃗ ¼ ðq1; q2Þ. The
specific form of the encoding functions is given by

φ1ðu; d⃗Þ ¼ Bðcos u½A1ðd⃗Þ cos q1 þ A2ðd⃗Þ sin q2�
þ sin u½A1ðd⃗Þ sin q1 þ A2ðd⃗Þ cos q2�Þ; ðH2aÞ

φ2ðu; d⃗Þ ¼ BuðA1ðd⃗Þq1 þ A2ðd⃗Þq2Þ; ðH2bÞ

where we set B ¼ 3.75 and A1;2ðd⃗Þ are fixed input-
independent spatial mask functions whose values are
sampled from a normal distribution with zero mean and
unit variance; more precisely, A1;2ðd⃗Þ ∼N ð0; 1Þ for

every d⃗ ¼ ðq1; q2Þ.
Following the input encoding, the light propagates

through a lens and is measured in the lens’ focal plane.
The electric field in the focal plane Eðu; d⃗Þ can be shown to
be related to the initial field E0ðu; d⃗Þ via a Fourier trans-
form [42,43]:
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Eðu; d⃗Þ ¼
Z Z

d2d⃗0E0ðu; d⃗0Þ exp
�
i2π
λf

ðd⃗ · d⃗0Þ
�
; ðH3Þ

where λ ¼ ð2π=kÞ is the wavelength of the propagating
field with wave vector k and f is the focal length of the lens
being used.
Finally, information must be extracted from this optical

system via measurement for its use as a PNN, which also
requires us to address the associated measurement noise in
a classical setting. We consider photodetection using a
camera in the focal plane of the lens. Furthermore, we
consider the camera plane as being comprised of a discrete
set of K ¼ P2 photodetectors, arranged in an P-by-P
square spatial grid, such that the kth photodetector is
identified with coordinates d⃗k ¼ ðq1k; q2kÞ. This spatial grid

ultimately defines the coarse-graining level at which the
propagating fields can be probed and is set by the spatial
resolution of the photodetection apparatus, as expected.
Then, it is known [44] that the differential, stochastic
photocurrent generated in a given photodetector in a single
measurement, which we name for reference dIðd⃗k; tÞ, can
be written as a Poisson point process:

dIðd⃗k; tÞ ¼ dNðd⃗k; tÞ; ðH4Þ

where dNðd⃗k; tÞ describes the increment in photodetector
counts in a time dt. The stochastic increments, which are
independent at different time, has the specific statistical
properties:

Prob½dNðd⃗k; tÞ ¼ 1� ¼ ηPðd⃗kÞdtþ oðdtÞ; ðH5aÞ

Prob½dNðd⃗k; tÞ ≥ 2� ¼ oðdtÞ; ðH5bÞ

E½dNðd⃗k; tÞdNðd⃗k0 ; t0Þ� ¼ E½dNðd⃗k; tÞ�E½dNðd⃗k0 ; t0Þ�; if d⃗k ≠ d⃗k0 ; ðH5cÞ

where expectation values are formally computed over the
distribution of Poisson point processes dNðd⃗k; tÞ. Impor-
tantly, Pðd⃗kÞ is the power incident on the photodetector
with spatial coordinate d⃗k. Then, the expectation value of
the increment in counts is directly proportional to the
intensity of the incident radiation and a measurement
efficiency factor η. The second line defines the fact that
the probability of more than a single increment in counts
in the time interval dt is oðdtÞ and, hence, higher order.
Finally, the third line indicates that counts on
spatially distinct photodetectors and at distinct times
are uncorrelated.

The single-shot measured features of this photonic
learning scheme become the integrated photocurrent values
over an integration time T int (the input u is not written
explicitly for notational simplicity):

XðsÞ
k ≡ Iðd⃗kÞ ¼

Z
T int

0

dIðd⃗k; tÞ∈N; ðH6Þ

which are once again stochastic quantities, as they vary
from one measurement to the next. This also allows us to
easily write down the statistical properties of the integrated
photocurrent using Eqs. (H5a)–(H5c):

E½Iðd⃗kÞ� ¼ ηPðd⃗kÞT int; ðH7aÞ

E½Iðd⃗kÞIðd⃗k0 Þ� ¼ E½Iðd⃗kÞ�E½Iðd⃗k0 Þ�; if d⃗k ≠ d⃗k0 ; ðH7bÞ

E½I2ðd⃗kÞ� ¼ ηPðd⃗kÞT int þ ðηPðd⃗kÞT intÞ2 ¼ ηPðd⃗kÞT int þ ðE½Iðd⃗kÞ�Þ2: ðH7cÞ

The final expression then provides the variance of the integrated photocurrent for a given photodetector indexed by k:

σ2I ðd⃗kÞ ¼ E½I2ðd⃗kÞ� − ðE½Iðd⃗kÞ�Þ2 ¼ ηPðd⃗kÞT int: ðH8Þ
As an aside, we calculate the measured power signal-to-noise ratio of the integrated photocurrent, SNRI , which takes the form

SNRI ¼
ðE½Iðd⃗kÞ�Þ2
σ2I ðd⃗kÞ

¼ ηPðd⃗kÞT int ðH9Þ

and, therefore, grows with incident power Pðd⃗kÞ and integration time T int (assuming an unsaturated photodetector).
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We now make the connection between the measured
photocurrents and the propagating fields reaching the
photodetector, described by Eðu; d⃗kÞ. More precisely, the
power incident on the photodetector is simply set by
the Poynting flux of the propagating fields and can be
related to the electric field intensity, Pðd⃗kÞ ¼ αjEðu; d⃗kÞj2,
where α is as introduced in Sec. II D.
The complete input-output map defined above fits within

our very general framework. To emphasize this, we now
define the measured features X̄kðuÞ extracted from this
classical machine analogously to the case of measured
features extracted from quantum systems, namely, Eq. (1).
Precisely, we define X̄kðuÞ as averages over individual
shots s of integrated photocurrents for each photodetector:

X̄kðuÞ ¼
1

S

X
s

XðsÞ
k ðuÞ: ðH10Þ

We here restore the u dependence of Xk, which arises via
the encoded amplitudes and phases in the electric
field Eðu; d⃗kÞ.
X̄kðuÞ are therefore sums over IID random variables

XkðuÞ. Hence, we can directly write for the mean and
covariance of these measured features calculated from
infinitely many samples:

EX ½X̄kðuÞ� ¼ ηαjEðu; d⃗kÞj2T int; ðH11aÞ

CovX ½X̄j; X̄k�ðuÞ ¼
1

S
δjkηαjEðu; d⃗kÞj2T int: ðH11bÞ

To connect with our prior notation, we further write

X̄kðuÞ ¼ xkðuÞ þ
1ffiffiffi
S

p ζkðuÞ; ðH12Þ

which is simply Eq. (3) in the main text. Note that, for most
classical machine learning schemes, S ¼ 1; however, in our
analysis we allow that the shot number S can be any integer.
Here, xkðuÞ are deterministic quantities defined as

xkðuÞ≡ EX ½X̄kðuÞ� ¼ ηαjEðu; d⃗kÞj2T int: ðH13Þ

Then, it follows that the remaining term ð1= ffiffiffi
S

p ÞζkðuÞ is a
stochastic process with zero mean [as taking expectation
values on both sides of Eq. (H12) demonstrates] and whose
second-order moment (equivalent to the variance, as it has

zero mean) encodes the variance of the Poisson point
process in one shot of experiment:

CovX ½X̄j;X̄k�ðuÞ¼
1

S
CovX ½ζj;ζk�ðuÞ¼

1

S
ηαjEðu;d⃗kÞj2T intδjk

¼1

S
δjkxkðuÞ; ðH14Þ

where we use Eq. (H13). This finally yields

CovX ½ζj; ζk�ðuÞ≡ ΣjkðuÞ ¼ δjkxkðuÞ ðH15Þ

as presented in Sec. II D.

2. REC analysis for a classical optical system

For the Poisson noise process of photodetection, the
noise matrix V is different compared to the case of the
multinomial noise process. Fortunately, for the specific
case we consider with spatially uncorrelated detectors, V is,
in fact, simpler. We note that

Vjk ¼
Z

dupðuÞΣjkðuÞ ¼
Z

dupðuÞδjkxkðuÞ: ðH16Þ

Hence, V is itself now diagonal. The eigenproblem in
question [Eq. (8)] can, therefore, be simplified to

VrðkÞ ¼ β2kGrðkÞ ⟹ V−1GrðkÞ ¼ 1

β2k
rðkÞ; ðH17Þ

where we compute the inverse of V, since it is a diagonal
matrix; we also assume none of its diagonal entries vanish.
This is not a strong constraint, since these entries are simply
equal to the measured features, which are the sum of
intensities incident on the photodetector, and typically are
nonzero (assuming integrated photocurrents from any
“dead” photodetectors or pixels are excluded from the
measured features).
Solving Eq. (H17) allows us to calculate the infinite-shot

eigentasks and the CT as a function of S for the photonic
learning system. We can also construct the Gram and
covariance matrices using finitely sampled features X̄kðuÞ
over the input domain, as would be done in a real experi-
ment. One does not need to employ the general Eq. (D8) to
estimate the eigentasks. In fact, there is a simpler procedure
which is similar to Eqs. (D6) and (D7). The following two
quantities can be computed from the S-finite statistics:

ðG̃NÞk1k2 ≡
1

N

XN
n¼1

X̄k1ðuðnÞÞX̄k2ðuðnÞÞ ¼
1

N
ðF̃T

NF̃NÞk1k2 ≈
Z

X̄k1ðuÞX̄k2ðuÞpðuÞdu; ðH18Þ

ðṼNÞk1k2 ≡ δk1;k2
1

N

XN
n¼1

X̄k1ðuðnÞÞ ≈ δk1;k2

Z
X̄k1ðuÞpðuÞdu: ðH19Þ
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Similar to the scenario in Appendix D 1, we can show that,

by solving the eigenproblem Ṽ−1
N G̃N r̃

ðkÞ
N ¼ α̃N;kr̃

ðkÞ
N , the true

eigen-NSR β2k and eigentask coefficients rðkÞ can be well

approximated by 1=ðα̃N;k − 1=SÞ and r̃ðkÞN , respectively. The
derivation still starts from taking their limits for N → ∞:

G̃ ¼ lim
N→∞

G̃N ¼ Gþ 1

S
V; ðH20Þ

Ṽ ¼ lim
N→∞

ṼN ¼ V: ðH21Þ

Therefore, G̃ and Ṽ provide an eigenproblem:

Ṽ−1G̃rðkÞ ¼ α̃krðkÞ; ðH22Þ

where α̃k ¼ ð1=β2kÞ þ ð1=SÞ or, equivalently, β2k ¼ ð1=
α̃k − 1=SÞ. It means that, by numerically solving

Ṽ−1
N G̃N r̃

ðkÞ
N ¼ α̃N;kr̃

ðkÞ
N , one can use

β̄2k ≡ 1

α̃N;k − 1=S
; ðH23Þ

r̄ðkÞ ≡ r̃ðkÞN ðH24Þ

to accurately approximate to β2k and r
ðkÞ, which finishes the

proof of the desired statement.
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