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Efficient quantum state measurement is important for maximizing the extracted information from a
quantum system. For multiqubit quantum processors, in particular, the development of a scalable
architecture for rapid and high-fidelity readout remains a critical unresolved problem. Here we propose
reservoir computing as a resource-efficient solution to quantum measurement of superconducting
multiqubit systems. We consider a small network of Josephson parametric oscillators, which can be
implemented with minimal device overhead and in the same platform as the measured quantum system. We
theoretically analyze the operation of such a device as a reservoir computer to classify stochastic time-
dependent signals subject to quantum statistical features. We apply this reservoir computer to the task of
multinomial classification of measurement trajectories from joint multiqubit readout. For a 2-qubit
dispersive measurement under realistic conditions we demonstrate a classification fidelity reliably
exceeding that of an optimal linear filter using only 2-5 reservoir nodes, while simultaneously requiring
far less calibration data—as little as a few shots per state. We understand this remarkable performance
through an analysis of the network dynamics and develop an intuitive picture of reservoir processing
generally. Finally, we demonstrate how to operate this device to perform 2-qubit state tomography and
continuous parity monitoring with equal effectiveness and ease of calibration. This reservoir processor
avoids computationally intensive training common to other machine learning frameworks and can be
implemented as an integrated cryogenic superconducting device for low-latency processing of quantum

signals on the computational edge.
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I. INTRODUCTION

Rapid and high-fidelity single-shot readout is a funda-
mental element of the manipulation and processing of
quantum information. In superconducting circuit quantum
processors [1,2], this requires a careful calibration of
the entire measurement chain, including cryogenic and
room-temperature amplifiers, circulators, attenuators, and
room-temperature electronics. This calibration becomes
particularly resource intensive for readout systems attached
to multiqubit quantum processors. The optimization of
quantum state readout has therefore been the focus of
considerable ongoing research [3—12], involving a delicate
balance of competing requirements: fidelity and speed.

For single-qubit readout, optimal filtering approaches [3]
and hardware architectures have been developed and imple-
mented to achieve fast and high-fidelity measurements

*Corresponding author.
ga4 @princeton.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

2160-3308/21/11(4)/041062(18)

041062-1

Subject Areas: Complex Systems, Quantum Information

without affecting qubit coherence [13]. More recently,
recognizing that the quantum measurement problem in
its very essence is the classification of time-dependent
voltage signals acquired at the end of a measurement chain,
machine learning solutions have been investigated [14—17],
and have shown an increase in single-qubit state discrimi-
nation by a few percent with respect to these conventional
approaches [16,17]. For measurement in multiqubit sys-
tems, however, the optimization and calibration of a read-
out system presents a difficult hardware design as well as a
computationally intensive signal processing problem [5,6];
measurement cross talk, in particular, imposes significant
limitations on device scaling [7,17]. Here we propose a
novel hardware-efficient approach to high-fidelity multi-
qubit readout based on reservoir computing and theoreti-
cally analyze its training-based operation.

Reservoir computing is a machine learning framework for
the processing of time-dependant data [18-21]. It is founded
on the idea that any sufficiently complex and high-dimen-
sional dynamical system, where only the linear output layer
is optimized, can have the same computational capacity as a
recurrent neural network in approximating arbitrary func-
tions or functionals [22,23]. Vastly different physical systems
have been employed as reservoir computers (RCs) for
applications such as forecasting and classification [24-30].
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The field of reservoir computing has recently expanded to
include quantum systems [31-36]. However, the application
of reservoir processing to the problem of quantum meas-
urement has not yet been explored.

Our goal in this paper is threefold: (1) describe a
reservoir computing approach to quantum measurement
that utilizes a physical system with recurrent connections,
(2) analyze its efficacy for fast and high-fidelity readout
and monitoring of multiple qubits simultaneously, and
(3) propose a superconducting preprocessor based on a
network of Josephson parametric oscillators (JPOs) to
enable hardware-efficient and low-latency multiqubit meas-
urement. While we discuss this approach for a multiqubit
superconducting platform and corresponding Josephson-
junction-based superconducting reservoir, we anticipate
that the techniques are general enough to also be applicable
for a broader class of quantum systems, measurement tasks,
and reservoirs.

Conventional RC wisdom suggests that very high-
dimensional dynamical systems are necessary for strong
computational performance, with 10°~103 nodes typically
used [24,37] in software or time-delay architectures (where
there is less overhead associated with increasing the size of
the network). Here, we show that a small physical RC (2-5
nodes) is able to classify 2-qubit measurement trajectories
with a fidelity higher than is achievable under the same
conditions with optimal conventional filtering approaches.
Equally strong performance is seen across a variety of
quantum systems and measurement tasks, without requir-
ing any modification of the RC.

This non-von Neumann-architecture computer can be
implemented in the same hardware platform as the target
quantum system with minimal overhead, providing a
uniquely low-latency approach to quantum measurement.
An important conclusion of our study is that the physical
RC we consider requires dramatically less training data
than a readout system that is calibrated using an optimal
matched filter. Our results indicate that a cryogenic readout
device should provide a rapid, robust, and autonomous
preprocessor for quantum state measurement. Such analog
processors are capable of operating on timescales orders of
magnitude faster than digital processors in head-to-head
comparisons on the same computational task [38], and
enable signal processing on the ‘“computational edge”
[21,29], significantly reducing computational costs.

In addition, we demonstrate that the RC provides a
model-independent approach to quantum state measure-
ment, ideal for multiqubit systems whose readout chains
are projected to become increasingly more complex. The
readout problem we consider here is one of retrodicting
certain features of the initial state of a measured quantum
system (QS), based on information obtained after a specific
quantum process, such as the scattering of a probe pulse off
of the QS. Within superconducting circuit implementa-
tions, the most widely employed readout setup is that of

quantum nondemolition (QND) dispersive measurement
[3-8]; however, actual hardware implementations exhibit
non-QND effects and experimental imperfections such as
drift and cross talk. Such nonidealities are difficult to
optimize in hardware and require several calibration experi-
ments to characterize, making precise knowledge of the
implemented physical model difficult to acquire. This lack
of an accurate physical model generally rules out a
description of the measurement chain via a stochastic
master equation (SME), integration of which would predict
precisely the measurement signal obtained given any initial
state of the QS.

The difficulty of extracting the implemented phy-
sical model increases the appeal of model-independent
approaches, such as linear filtering of the experimental data
(discussed in Sec II); however, this typically requires a
large amount of training data and is susceptible to errors
from quantum jumps and qubit decay. Similarly, current
machine learning approaches to readout are likely to be
limited by computing capacity and training time when
applied to systems more complex than a single qubit
[14,17]. In this paper we apply a RC to a scenario in
which constraints on QNDness and cross talk in multiqubit
readout are relaxed, thus simulating quantum measurement
with unoptimized hardware where the complexity of read-
out is relegated to the processing of acquired signals. We
find that the RC is able to perform said processing with
high fidelity and minimal computational cost, enabling a
powerful model-free approach to readout. Specifically, we
consider a situation where two qubits are measured
simultaneously through a common resonator, without
dedicated readout cavities and Purcell filters; our objective
is not to propose this particular measurement scheme, but
rather emphasize the reduced hardware and optimization
overhead, and thus increased potential scalability, enabled
through our reservoir processing approach generally.

We begin in Sec. II with a description of the joint
dispersive readout task we consider in this work. We then
give a high-level overview of our proposed RC quantum
measurement system in Sec. III A, followed by a detailed
description of the Kerr network RC model in Sec. III B. The
dynamics and performance of a typical Kerr RC are
presented in Sec. IVA. We then demonstrate the ability
of a Kerr RC to quickly learn a quantum measurement task
in Sec. IV B, enabling rapid readout chain calibration. In
Sec. IV C, we use an analysis of the Kerr RC phase space
dynamics to explain the strong performance of reservoirs
with as few as two Kerr nodes and develop an intuitive
picture of RC processing. In Sec. IV D we explore how
behavior varies with system hyperparameters and present
basic principles for the optimization of a hardware RC.
Finally, in Sec. V we demonstrate how one can operate this
reservoir processor to perform two additional important
quantum information tasks: 2-qubit state tomography and
continuous parity monitoring.
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II. QUANTUM STATE READOUT
OF MULTIPLE QUBITS

Multiqubit readout presents a sufficiently difficult
problem to quantitatively assess the advantage pro-
vided by more sophisticated signal processing tech-
niques, which we therefore discuss in some detail below.
Extensions of single-qubit quantum readout approaches
to larger multiqubit systems through various multi-
plexing techniques have been extensively investigated
[5-7,9]. A majority of these schemes rely on the pre-
mise of quantum nondemolition measurement through
the dispersive readout technique. In the single-qubit
variant, the binary state of the qubit (|0), |1)) is encoded
in the amplitude and phase of a microwave pulse
scattered from a readout resonator that is dispersively
coupled to the qubit [4].

Cross talk, which we take here to be any effect of the
measurement process on parts of the system one is not
trying to measure, is a significant problem in multiqubit
devices which scales very unfavorably with system size.
Reducing readout errors generally requires precise cali-
bration of readout pulses, carefully designed Purcell
filters, and a chip layout that minimizes cross talk
[6,7]. Such optimized calibration is difficult for a practical
multiqubit quantum processor due to drifts in system
parameters, and reducing cross talk imposes severe
limitations on readout spectral bandwidth. Here we con-
sider the joint dispersive readout scenario [5,9] where all
qubits are coupled to the same mode of a common readout
resonator, with the goal of measuring the combined state
of all qubits in a single shot.

Our starting point is the multiqubit Jaynes-Cummings
(JC) Hamiltonian:

7:[JC =A Zﬂ-&—i-é‘( )(&4‘2{‘-)

+Z q“z,+g, Gryd+6_yd). (1)

Here, d and 6; are cavity field and qubit Pauli operators,
respectively, and ¢(t) describes the amplitude of a coherent
drive applied at carrier frequency w, We are in a frame
rotating with w;: A, = w, —wy and A, ; = 0, ; — w, are
the cavity and qubit detunings, respectively. The cavity
qubit coupling, with strength g;, is treated in the rotating
wave approximation.

The JC Hamiltonian is accurate for weak readout pulses
e(r), where the role of other qubit energy levels can be
ignored [39-41]. If the qubit-resonator detuning &; =
w, ;j — w, is large, the cavity population remains below a
critical photon number (d'd) < min(|5;/2g;]*) for a suf-
ficiently weak drive. Equation (1) can then be perturba-
tively transformed [42], yielding what we refer to here as
the dispersive model:

R S A pon
Hp =Ad'd+e(t)(d+d)+ Z%@, +y;6.,d'd
J
+ ) Tpbo b (2)
ik

valid to second order in g;/6;. Here y; = gf /8; describes
the dispersive shift of the cavity frequency due to the state
of qubit j, and Aq‘ j = A, ; +xj is the renormalized qubit
detuning. The effective coupling between qubits via their
shared cavity is J ;. = g;gx(6; + 6;)/25;6;, a manifestation
of cavity-mediated cross-coupling.

We denote the multiqubit state |y (7)) = > c,(1)|z),
where |z) = |z;)®Ne represents the z-basis state of each
qubit as a binary digit (6,|0/1) = F[0/1)). We consider
the standard measurement process here, where the cavity is
initially in the vacuum state and a coherent drive is applied
at t =0: e(t) = ¢;0(¢). The X quadrature of the cavity
follows a unique trajectory for each multiqubit state, and by
measuring (d + d*)(¢) one seeks to determine |y(0)). In
this work, we specialize to the case of 2-qubit readout

= {00, 01, 10, 11}), which is later seen to be a nontrivial
classification task. We consider both the dispersive and JC
models with following parameters in units of the cavity
decay rate x, A, =0, ¢ =2, y; =18, y, =13,
A, =180, A, =130, g;/6; = 107", and include addi-
tional qubit decay with rate y, = 1072. These are all
physically plausible parameters for current superconduct-
ing circuit implementations of this system.

A thorough discussion of the joint dispersive measure-
ment process is contained in Appendix B; in the remainder
of this section we summarize the salient results. Figure 1(a)
depicts the expected readout cavity evolution (d + d")(¢)
for each initial qubit state |z) in the measurement basis
under the dispersive (ﬂD) and JC models (ﬂJC). In both
cases, the cavity evolves to distinct steady states over a
timescale set by . The difference between these models is
manifest in the qubit evolution shown in Fig. 1(b). Here we
plot the expected probability that the system will be
measured to be in the multiqubit state it was prepared
e.(1)> = [{zly (D)2, for |y(0)) = |2). The decay of
initially excited states can be seen to be significantly faster
for the JC model. In the dispersive model the qubit state
evolution is due to Jy, and y,, and the corresponding
timescales are taken to be slow relative to the system
dynamics. As Ji,/k,y,/k = 0, the measurement process
becomes QND since the qubit state is conserved, where in
a perfect QND measurement |c,(¢)|> = 1. In contrast, the
JC interaction o g; does not commute with 6 ;, and this
fast Hamiltonian evolution causes information about the
initial qubit state to be lost more quickly during
measurement.

We consider the situation where only the X quadrature
of the output cavity field is continuously monitored via
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FIG. 1. (a) Ensemble-averaged cavity field quadrature during

readout, for each initial qubit state [y(0)) = |z). (b) Ensemble-
averaged decay of the initial qubit state occupation during
measurement: |(y(0)[w(z))|*. In all plots, results for the dis-
persive and JC models are shown in dash-dotted and solid lines,
respectively, and |y (0)) for each curve is indicated via the colors
labeled in (a). Panels (c) and (d) demonstrate the matched filtering
of dispersive measurement currents. In (c) we show sample
readout cavity quadratures for ¢ initialized in [11) (blue) and
7:{1) in |[10) (green). The corresponding measurement currents J
are also plotted, reduced by an order of magnitude for visibility.
The subsequent filtered readout signals y(7) are shown in (d), as
computed via an ideal Q — oo matched filter. The filtered output
is classified according to which expected bin it falls in, which are
labeled with their associated quantum state. All figures are for the
parameters in text.

homodyne detection, with efficiency # = 1 unless speci-

fied. The QS (Hs € {Hp.H;c}) then evolves under the
stochastic master equation [4,43]:

p=—ilHs.p]+7,Y D61+ kDId)p+ /g M[AIpE(r).
J

(3)

In the above, the dissipative and measurement super-
operators are, respectively, D[0]p=0p 0" —1{070,p},
M[0)p = 0p+pO" — (O + O p. The SME describes
the evolution of the QS p conditioned on the observed
measurement outcome J (7). This measurement outcome is
the continuous classical current,

J(1) = Vin(d +d") (1) + &), (4)

where &(r) is white noise, arising from fundamental
quantum uncertainty in the cavity state: (£(7)) =0,
(E(1)E(F)) = 8(¢ — 7). In the above, the subscript ¢ denotes
expectation values taken with respect to the conditional
state p.

These quantities evolve stochastically during individual

measurements: samples of J(¢) and (d+d')(r) are
depicted in Fig. 1(c). The measurement signals J(t) are
dominated by noise £(7), and the measurement process
produces backaction on the quantum state, resulting in, for
example, the sudden jump seen for the JC sample. By
taking the ensemble average of many measurement records,
however, one recovers the unconditional system dynamics
of Fig. 1(a), described in Appendix B. Our quantum
measurement data are constructed by numerically integrat-
ing the SME of Eq. (3) from initial states p(0) = |0, z)(0, z|
using QuTiP [44]. Each trajectory ¢ has a unique noise
record £ () and thus conditional expectation values

<O>(Cq) and measurement signal J(? (7).

The individual measurement currents J(9)(z) have a
small signal-to-noise ratio (SNR) due largely to the additive
white noise term in Eq. (4), obscuring the relevant condi-
tional evolution, particularly when the cavity photon
number is kept low to keep the measurement in the
QND regime. In particular, for the chosen parameters,
including a sampling period of 1072/«, the steady-state
measurement current SNRs are —6.8 and —7.1 dB for
the dispersive and JC systems, respectively. Further
signal processing is thus needed to extract the underlying
initial qubit state; conventionally, this is done by con-
structing a matched filter (MF) from a large set of
measurement currents for which the initial qubit state is
known Specifically, a MF is a linear filter with kernel
h(z) = (J*(t— 1)), the conjugated and time-reversed
mean of a Q sample training set. For an input consisting
of a signal plus white noise, the output approaches
the autocorrelation function of the signal as Q — oo:
Y (1) = [*deh(t=7)J\ 9 (r) = ["dr(J* (7)), V(7). This
maximizes the SNR; a MF is the optimal linear
filter for distinguishing signals, such as we study here,
with additive noise. For the 2-qubit readout system, the
MF is constructed by summing the magnitude of the
mean currents associated with each initial state: h(z) =
> [(J*(t = 7)), ol resulting in a scalar kernel maximizing
the overall fidelity with which currents associated with
different states can be distinguished.

The filter is used to define an expected bin for each
filtered signal as a function of time, and quantum states are
classified according to which bin they fall into. The MF
classification process is depicted in Fig. 1(d); the filter is
seen to remove the white noise from the homodyne signals,
and the sample from the dispersive system falls into the
correct bin reasonably quickly. The readout process has a
more significant influence on the qubit state in the JC
system, which in this case causes the first qubit to decay at
t ~ 6/k. This results in the cavity state suddenly jumping as
well, and the filtered output falls into the wrong bin at later
times as a result. This loss of initial state information, at
rates depicted in Fig. 1(b), places a limit on maximum
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fidelity with which signals can be classified, since the task
is to learn |y (0)), not |y(7)).

III. SUPERCONDUCTING RESERVOIR
COMPUTER

A. Proposal and overview

Having discussed the conventional treatment of quantum
state measurement, we now describe our proposed RC
approach, depicted schematically in Fig. 2. Generally, the
RC’s task is to classify the state |y(0)) of the target QS,
based on a quantum measurement that results in a noisy
readout signal containing information about this initial
state. We specialize to the QS described in the previous
section and the classification of its homodyne measurement
current Eq. (4) in this paper, but the same approach can be
applied to entirely different systems and measurement
modalities.

Instead of conventional processing with room-temperature
electronics and a software backend [14,16,17], the readout
current is routed to a superconducting reservoir. We assume
a generic architecture for this device, modeled by a coupled
network of Kerr oscillators coupled to this signal via a linear
input matrix W;. The reservoir nodes then evolve according
to this input and an internal structure defined by a con-
nectivity matrix Wy and nonlinearity vector A. This results
in a complex dynamical mapping: the physical state of the
RC x(¢) is a high-dimensional nonlinear functional of the
input history u(z < ). The output of the computation is a

Measured quantum system

Input layer: W, X u(t)

T T 1

mK
RT

(:? wd [ Output: X Train Wy

FIG. 2. A schematic of our proposal to use a hardware RC to
process quantum measurement signals, here shown for K =5
Kerr nodes. The QS is interrogated, and the resulting measure-
ment current u(z) is input to the reservoir. The input layer W,
randomly couples this signal to each node of the Kerr network,
whose subsequent dynamics are a nonlinear function of u(r) and
the network itself via Eq. (8). The output layer performs
classification by learning linear combinations of measured
reservoir variables x which extract the probability that the input
history corresponds to a given underlying quantum state.

linear combination of the RC nodes y(r) = W,x(t), where
the matrix W, can be trained such that y(¢) approximates a
desired function or functional of the input F(u(z < ¢)). This
linear output layer is the only RC property which is varied,
and in practice can be implemented at room temperature in
an field-programmable gate array after simply extracting all
available reservoir degrees of freedom.

Because only W, is optimized, training is a simple
convex optimization problem with a limited number of
parameters and is guaranteed to converge [19,26]. Physical
RC thus avoids the ‘“vanishing gradient problem” that
plagues training of other neural networks [45], as well
as the “simulation-reality gap” [46]. Although it may seem
like training only output weights W, would lead to inferior
results for time-series processing, head-to-head compar-
isons between state-of-the-art recurrent neural networks
and RCs show surprisingly similar performance [47-49],
despite RC training protocols being 103-10° times quicker.
The internal structure (W;, Wg, A) is not optimized; RCs
can thus be quickly retrained for different tasks, rendering
them powerful and generalizable analog neural networks
[21,24,30,38].

The reservoir we propose may be realized in a super-
conducting circuit platform via a network of coupled
Josephson parametric oscillators (JPOs). These JPOs can
be either single Josephson junctions or composite elements
such as superconducting nonlinear asymmetric inductive
elements (SNAILSs) [50]. The recurrent connections can be
flexibly generated by coupling the JPOs to a common
electromagnetic resonator. Variants of such networks have
been considered as hardware for superconducting quantum
annealers [51-53] and for stabilization of multiqubit
entanglement [54,55]. Such a RC then could be integrated
with the QS to be measured, sharing a cryogenic environ-
ment. For the present work we require that the JPOs are in
the weakly nonlinear regime, that their scale of nonlinearity
is much smaller than their dissipation. This is the regime of
Josephson parametric amplifiers [56]. Another particularly
interesting platform to realize this hardware RC is an
optical Kerr network, which would then be well suited to
the readout of optical QSs. An important advantage of
either of these realizations of Fig. 2 is that the RCs will
operate at the timescales of the measured quantum system,
faster than conventional field-programmable gate array-
based electronics and potentially allowing for real-time
analog processing.

B. Kerr network reservoir computer model

We model the reservoir as a generic network of
coupled Kerr-nonlinear oscillators, described by the master
equation,

pre = —iftrc. Pre] + > _riDlbilpre. (5)
K

where the governing Hamiltonian ’HRC takes the form
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ri:fRC = ZAkl’;Zl’;k szb + nglb b[
k

+ Ziekm(um (t
km

The input to the RC is a collection of signals u(f) where
each u,,(r) has a unique carrier frequency w,,. Each

e_’Ad-’"tb,L _ u)'l(t)elAgl,nxtEk)' (6)

nonlinear oscillator is described by a field operator Ek,
with detuning A; with respect to a common reference
@, 1, and Kerr nonlinearity 4;. g;; and &, are the linear
couplings between oscillators and to the input, respectively,
and y, is the energy decay rate. Interoscillator couplings
can be generated by cavity-mediated interactions [54,55] or
through parametric means [53].

The evolution of the field amplitude from each node is
given by the Heisenberg equation of motion:

<I;k> (lAk + ><bk> + i (bLb7)

_ i29k1<bl> —+ ngmum(t)e—im_mt. (7)
1 m

This general form of reservoir evolution is suitable for
frequency-multiplexed readout of several qubits [6,7,17].
Henceforth we simplify to the joint dispersive readout
scenario introduced in Sec. II, with a single carrier
frequency @, and scalar input u(z).

We will consider Kerr networks where the input signals
and corresponding field amplitudes are sufficiently large
that they are in the classical regime. For ¢ € R™, defining
scaled drive strengths &, = /cé&y,,, nonlinearity =X /c,
and introducing f; = /c(b;), it can be shown that
(bib}) = |BiBx + O(1/¢). Heuristically, this indicates
that for ¢ — oo, where the nonlinearity grows weaker
and the “classical” occupation |$;|> = c¢|(b;)|> becomes
simultaneously larger, quantum correlations captured in
higher-order moments can be neglected. Note that now u
are classical currents as well, whose potential quantum-
limited amplification is absorbed in ¢ [56,57].

In this case, Eq. (7) becomes

)y = —Pi + iNJBLB; —i(Wr-B) + (Wy-u). (8)

Without loss of generality, we have chosen the nodal decay
rates to be identical, y;, = y, to define the dimensionless
parameters, familiar to the RC framework:

Weik = 284/7,
Wi = 2&u/7,

Wra = 29u/7.
Ay = 2;11{/ V. )
Equations (8) govern the K-node RC response to a given

input signal (7). This description applies both to the high
power limit of u(¢) from measured QS on chip (Fig. 2) and

to the injection of any classical signal directly to the
reservoir for processing.

The philosophical underpinning of reservoir com-
puting holds that if one has a sufficiently complex and
high-dimensional system, there is no need to optimize its
many internal parameters for a specific computational
task. As such, here we consider random Kerr networks,
whose internal structure and dynamics, specified by W,
Wr, A, and y via Egs. (8), are set randomly and not
individually optimized. Instead, the RC properties are
controlled by the scale-independent hyperparameters
{y,a,A,u}, which define the limits [a,b] of uniform
distributions which reservoir internal parameters are
randomly sampled from:

A €[0,2A],
such that @ = A (Wg), (10)

Wik € [—u. ul,
Wgi & [—1’ 1]7

where A (W) refers to the maximum singular value of
the connectivity matrix Wyx. We constrain the ranges
of these hyperparameters to be compatible with the
proposed hardware realizations, while also importantly
enabling desired RC properties of fading memory, sepa-
rability and nonlinearity; their selection is discussed in
more detail in Sec. IV D. We will see throughout this
work that the generic behavior of a RC is well quantified
by its hyperparameters, and that performance is robust to
both network structure and variations in these values. We
have also introduced significant variation into node decay
rates y; and observed that the RC performance is again
unchanged.

We describe the state of a K-node Kerr RC in terms of
the 2K-dimensional vector of complex node amplitudes:
x(1) = V2(Re{f ). Im{p, }. ... Re{f}. Im{})7. ‘The
learned RC output can always be expressed as a linear
combination of these amplitudes y(¢) = W x(t), where W,
isa (C x 2K)-dimensional matrix of output weights. If each
Kerr oscillator is subject to a heterodyne measurement as is
standard in the superconducting realization we envision,
one extracts both orthogonal (Re{f;},Im{f;}) quadra-
tures, to which the weights W, can be applied exter-
nally [58].

To facilitate our analysis of reservoir processing, and
accommodate realizations where only a single quadrature
from each oscillator is measured, we specify that a single

quadrature for each node xf" , at angle ¢, contributes to the

output:

y(1) = Wox(1) = W,C(p)x(r) = Wox?(1).  (11)
Here W, is a (C x K)-dimensional matrix of output
weights over nodes, while C(¢) is a K x 2K projection
matrix, parametrized by K angles ¢ = (¢,...¢x), with its
only nonzero entries given by
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Cror-1(P) = cos ¢y, Cior(P) =singy.  (12)
This choice reduces the linear output layer from 2CK to
(C + 1)K parameters to optimize in RC training. More
significantly, x? becomes the RC variables which contain
the most information for the learned task, through which
we develop an intuitive picture of reservoir information
processing in Sec. IV C. Further, we find that this effective
reduction in the number of output variables does not reduce
performance, particularly with the small training sets con-
sidered in this work. However, we emphasize that this
projection—simply a constraint on the weight matrix W,
implemented in software—is not necessary, and using both
quadratures per node in general tasks can only improve
performance.

Finally, specific to the task of classifying C states of
the QS, it is appealing to map the RC output to a pro-
bability that the input to the RC corresponds to the QS
initialized in |y (0)) = |z). This is achieved by applying the
“softmax” function (Boltzmann distribution) to the trained
RC output:

PJ([) = e.)ﬁ’(ﬁ/Zeyk(t)’ (13)
k

which expresses y; as mutually exclusive probabilities that
sum to unity.

Details of and background on RC training are dis-
cussed in Appendix C; we briefly summarize some
of the salient aspects here. We first construct a training
dataset consisting of Q measurement currents U(r) =
{J(1)} for a measurement period 7, for associated
known initial states y*@ =z(4) (g =1,...,0). M mea-
surements are conducted for each initial state by integrating
the SME of Egs. (3) and (4). The RC node trajectories are
simulated by solving Eqgs. (8), and the resultant states are
used to minimize the multinomial cross entropy cost
function £, (Appendix C), optimizing W, and ¢ for the
training set. We consider small reservoirs (K = 2-5) and
training sets (Q < 100). Therefore, the optimization of the
cross entropy loss function on a digital computer is a quick
convex optimization problem with a small set of output
parameters.

It is worth reiterating here that reservoir internal param-
eters are not optimized, and this output layer can be
implemented via a simple linear combination of the
reservoir node quadratures externally: there is no need to
tune any aspect of the hardware during training or oper-
ation. We further stress that this network size is orders of
magnitude smaller than typical reservoirs, a choice made
for hardware realizability. After training, the direct RC

output max_{y? (1)} from Eq. (11) indicates the initial
state z(9) most likely to correspond to the observed record
J@(t) up to the current time, which we express for

interpretive convenience as a continuous probability
PL7(1) via Eq. (13).

IV. RESERVOIR PROCESSING OF QUANTUM
MEASUREMENT

We now analyze the performance of the proposed Kerr
network RC on the 2-qubit readout task described above.
We focus on the ability of a RC trained with a small labeled
training set to classify a much larger set of unknown test
signals (quantum states) from either the dispersive or
JC system: ﬂs € {ﬂD,ﬂJC} in Eq. (3), respectively. A
transparent metric to evaluate the performance is the
“classification accuracy” C £(t), which refers to the fraction
of test signals the RC correctly classifies at a given readout
time. For short readout times, the cavity is still being
populated and the signal is dominated by shot noise.
However, classification accuracy does not increase mono-
tonically with readout time; as indicated in Fig. 1, the initial
qubit state stochastically evolves and can be lost during the
measurement process, an outcome that is particularly likely
for the JC system. After this point J(#) no longer faithfully
provides information about [y(0)), imposing a steadily
decreasing ceiling on Cx(¢) (as can be seen in Fig. 4).

In practice, one would simply stop the measurement
process and RC computation at the time Cx(¢) peaks; this
time 7,, is consistent for a given QS being measured. Thus,
we define the “classification fidelity” F of a RC or filter to
be this peak accuracy,

F = max,{C(1)}, (14)

and we seek to optimize this metric when considering RC
design in Sec. IV D. Since the maximum possible Cx()
decays with time, F combines both speed and accuracy of
classification.

We compare the RC performance against that of conven-
tional filtering. In particular, we consider a boxcar filter
(BF), which amounts to integrating J(#) to remove noise, a
matched filter constructed using a training set of size Q of
labeled homodyne currents, and a MF constructed using the
analytic solution (d+d'), to T{,. For the dispersive
system, this corresponds to the Q — oo limit of the MF
constructed from homodyne currents. In many realistic
scenarios, the system model and parameters are not known
exactly or are subject to experimental drift, and attempting
to construct an analytic MF is impractical. Instead, either
the BF or a finite Q MF is used because they (like the RC)
do not require a model of the underlying system; for the MF
this requires regularly producing large training sets every
time the device is recalibrated.

A. Reservoir dynamics and classification fidelity

The response of a representative K =5 node RC to a
quantum readout signal from the dispersive system is
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FIG. 3. A demonstration of the RC classification process. Panel

(a) depicts a sample quantum signal u(t) = J@ (¢) generated by

the joint dispersive readout under F, of the initial state
[w(0)) = |11). This drives a K =5 node RC, producing the
node state dynamics xf" () shown in (b). The classification result
is in (c): the RC, previously trained with Q = 40 readout signals,
continuously updates the probability that the initial state was a
specific state in the measurement basis. These probabilities are
shown in solid lines in the color-scheme of Fig. 1. The
decomposition of the true quantum state conditional on the
measurement record up to time ¢ is depicted in lighter dashed
lines; for this sample the RC output is correct after ~3/k. Note

that |coy/00/*(#) (and associated P) are vanishingly small.

depicted in Fig. 3. Here (and in Fig. 4) the RC has
hyperparameters y = 0.7, a = 1.9, A =5x 1072, and
u = 5. The RC is driven with measurement signals u(¢) =
J@W(f) with a total measurement time 10/k and has
previously been trained with Q = 40 readout signals
(M = 10 samples for each state) to optimize {W,,¢}.
In Fig. 3(a) we show one such noisy signal for an unknown
(to the RC) quantum state |y(0)) = |11). Once the readout
drive is turned on, the noisy input u(7) acquires a nonzero
mean. This excites the network away from its rest state
x = 0 to a nontrivial trajectory x¢ in its measured phase
space, as shown in Fig. 3(b). Real-time classification is
performed by reading out each node continuously: the

outputs qu)(t) are shown in Fig. 3(c), where the RC
quickly stabilizes with PY? > 0.5, thus correctly classify-
ing this measurement record. The low measurement SNR
while the cavity is being populated is responsible for
the RC initially not distinguishing |10) and |11), with
P ~P9  The true quantum state |cl” ()] =
tr{p(r)|z)(z|} is also depicted, and we see that the RC

classification Pg'{) (1) is robust to the significant probability
amplitude fluctuations: the system almost jumps to the state
|01) for this specific trajectory, but P(1({> remains saturated.

The ability of this RC to classify unknown quantum
states is quantified in Fig. 4, where we evaluate its
performance on a test set of 1200 unknown quantum
signals generated from the dispersive and JC SMEs, and
compare with that of various linear filters. The RC is trained
as above using a Q = 40 measurement set for the corre-
sponding QS, while the MF is constructed from a much
larger O = 1200 set. We plot the classification accuracy on

(b) Hic
g RC, Q =40
5 MF, Q = 1200 :
(9] .’ o’
9] f
g ﬂ.‘/"
c BF i
2 (P
S a 74
= 1/
("]
(%)
©
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Readout time [1/k] Readout time [1/k]

FIG. 4. Classification accuracy versus readout time on a 1200
signal test set for the dispersive system in (a) and the JC system in
(b). In both cases, the RC of Fig. 3 (solid blue line) is trained with
Q = 40 measurements and the optimal readout time is indicated.
The average classification fidelity of 10 different random RCs
sharing the same hyperparameters is also shown in light dash-
dotted blue line. For comparison purposes we also show the
classification accuracy of a BF (dashed green line), analytic MF
(light red line), and Q = 1200 MF (dash-dotted red line).

both datasets for the RC and the filters; it is apparent that
the RC is able to rapidly and reliably extract the initial
quantum state and thus perform the readout for both QSs.

For the dispersive system both the RC and the MFs have
a classification fidelity F > 0.96, achieved for an optimal
readout time 7,, ~ 6.7 /. Interestingly, one can compute the
mutual information between the generated reservoir state
x?(9)(¢) and initial qubit states z(9), and find that it follows
C£(t), saturating at 7,,. F ~ 0.96 corresponds to a mutual
information of 1.9 bits (both limited by non-QND effects),
which implies that we can expect the RC’s state at 7,, to
yield, on average, 1.9 bits of information about the 2-bit
initial state. A dip in the MF performance is seen around
2.5/k; the expected filtered signals for [1(0)0) and [1(0)1)
cross for this specific measurement time, meaning the MF
has no information about the second qubit. This occurs
in the BF as well at a slightly later time. The RC avoids
such a problem by mapping the qubit state into its higher-
dimensional phase space.

As described in Sec. II, initial state information is lost
more quickly for the JC system due to non-QND
Hamiltonian evolution. Despite this, the RC is able to
accurately process these quantum measurements, with a
classification fidelity of 0.92, exceeding that of any linear
filter. The optimal measurement time is slightly later, at
~T7/k. This is due to the decreased SNR for the JC readout
task: /k(d + d') is reduced relative to the dispersive case
and there is increased measurement backaction noise [see
Figs. 1(a) and 1(c)]. We can decrease the SNR further by
decreasing the measurement efficiency n < 1: for both
systems the fidelity of the RC classification decreases
steadily with increasing relative noise strength, but remains
comparable with that of the MF.

This performance is in no way unique to the specific
random realization of the RC network; the average
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classification accuracy of 10 random K =5 RCs is also
shown for both QSs in Fig. 4. These RCs have different
structure (W;, W, A) but the same hyperparameters and
are trained on the same Q = 40 training set. The peak
classification accuracy occurs at different times for differ-
ent RCs, resulting in the average curve being artificially
flattened. The average classification fidelity of the 10
different RCs is 0.951 for the dispersive system and
0.905 for the JC system (for Q = 100, this increases to
0.915), indicating the robustness of the RC approach. A
few of the random networks experience a sharper drop in
classification accuracy after the optimal readout time: this
is because the RC states corresponding to different input
signals are less separated in phase space. In the next section
we explore the role of the RC evolution in its phase space in
more detail.

B. Rapid training

The results of Fig. 4 suggest that a RC is capable of
matching the performance of a MF constructed with a much
larger training set. We find that RCs hold this training-cost
advantage over a MF generally, and demonstrate its
dramatic nature in Fig. 5. Here, we plot classification
fidelity as a function of the number of training signals Q
used to train 10 random K = 5 RCs from Sec. IV A. Each
specific network is indicated in a different color, with the
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FIG.5. Testset classification fidelity as a function of number of
training trajectories for the MF and K = 5 RCs described in the
text. The dispersive and JC readout systems are in (a) and (b),
respectively. Individual RCs are indicated with different colored
circles, and the RC of Fig. 3 is emphasized with a black plus. The
average RC fidelity is indicated with a dashed blue line, and can
be compared with the MF performance, denoted with red crosses
and a dashed line. The (Q-independent) performance of the BF
and analytic MFs are denoted with horizontal dashed green and
pale red lines, respectively.

network emphasized in Figs. 3 and 4 highlighted with a
plus. The average classification fidelity across the 10
networks is also shown. The RCs perform remarkably
well at low Q, with 4 readout signals (just one for each
qubit state) being sufficient to achieve an average fidelity of
0.90. This average fidelity increases and the variance in
performance across networks decreases as the training set
grows, up to ~40 for the dispersive system (Q ~ 80 for the
JC). Beyond this point, the small fluctuations in fidelity are
due to the finite test set (1200 signals) used to calculate F.
The RC thus achieves optimal performance with a small
O = 40-80 training set for both the dispersive and JC
quantum systems, demonstrating its efficacy for rapid
measurement calibration. In contrast, the MF performs
very poorly in this regime, needing O(10%) training signals
(note the horizontal axis scale) to converge to the average
RC network classification fidelity.

This significant advantage is particularly relevant for
readout of online quantum processors for which calibra-
tions need to be done regularly: a RC-based measurement
scheme would thus require far fewer initialization and
measurement runs to train than are needed to construct a
MF of comparable performance. This can enable a re-
source-efficient readout calibration system that can also be
robustly automatized. The RC network can easily and
quickly be retrained as conditions or even the target QS
change, facilitated by the computationally inexpensive
software component of training, particularly for small
training sets.

We note that while widely used high-level metrics such
as squared error or classification fidelity are ideal for
quantifying the performance of the RC, they do not
elucidate the fundamental source of its classification
efficacy and fast learning ability. To address this, we carry
out a detailed analysis of the phase space dynamics of the
Kerr RC nodes in the following section, directly connecting
the underlying reservoir to the observed performance.

C. Phase space dynamics

Generally, the effectiveness of the RC approach is
attributed to the expressive power of its high-dimensional
state space [23,37,49]. In the present discussion, the RC
under scrutiny transforms a scalar input signal into the
2K-dimensional state space of the RC {f,f;}. It is also
well understood that the nonlinearity of the RC plays a
crucial role [22,24,30], but the underlying mechanism
behind how these and other RC properties impact the
measurement task is not immediately clear. To perform a
fundamental analysis of Kerr RC dynamics and gain unique
insight into its previously described performance, we
introduce the measured section (MS) of the reservoir.
Generally, it is difficult to visualize the dynamics in the
high-dimensional RC state space. Recalling, however,
that we only project out a specific quadrature of the RC
oscillators x? [Eq. (11)], these “visible” RC nodes evolve in
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FIG. 6. (a) Classification dynamics in the measured subspace
fora K = 2 RC with parameters y = 0.2, @ = 1.9, A = 5 x 1072,
and y = 5. In (b) we show the same network but with A = 0.
Regions in RC phase space are colored according to their learned
classification output; e.g., the region in (x‘lb‘ , x‘zbz) space for which
P, is largest is filled in blue. The separating lines constructed

from the trained W, are also shown. Dots indicate the final RC
state generated by each signal in the test set, which are colored
according to their ground truth |y (0)) = |z). Therefore, when the
colors of the dots and the underlying region are the same, the
classification result is correct.

the MS, a K-dimensional subspace of the full 2K-dimen-
sional phase space. As the angles ¢, have been optimized,
this phase space projection contains the relevant informa-
tion for the computational task.

With the aid of RC dynamics in the MS, we will show
that K = 2 degrees of freedom are sufficient to perform a
four-state classification task, provided the RC is sufficiently
nonlinear. For this two-node reservoir, the classification
process can be conveniently visualized in the MS, as
presented in Fig. 6. We consider the response of two
RCs, both trained with QO = 40 measurements, plotting the
final reservoir state (at 7,, = 6.7/k) in the MS for each
signal in a test set of 1200 signals, color coded with its true
[y (0)). The RC on the left is nonlinear with A = 0.05 and
attains a F = 0.96 on the shown test set, while the RC on
the right is linear (A = 0), with only F = 0.75.

The training task of learning {W,,¢} is equivalent to
finding hyperplanes in the full RC phase space which
separate the regions in Fig. 6 in a manner that maximally
distinguishes the RC states corresponding to different
inputs. These hyperplanes for K = 2 are simply lines in
the MS, shown in Fig. 6 separating colored regions, and
defined by (W,x%), = (W,x?),. Note that due to the
symmetry of the dispersive readout classification problem,
whereby (d + 2ﬂ>11/10 ~—(d+ 21T>00/01s two pairs of these
four separating lines fall almost on top of each other.

We note that the dynamics of the Kerr RC demonstrate
the four properties required of a reservoir, such that it forms
an effective RC [19,22,23,29]: separation, approximation,
fading memory, and nonlinearity. Separation is the require-
ment that different input classes map to distinct regions of
phase space, while approximation ensures that input series

which are close generate RC states which are similarly
close. Both these properties are manifest in Fig. 6, where
the final reservoir states for each class fall into separated
regions in the MS, and the final output is robust to noise in
individual trajectories. These regions are statistical steady
states: the ensemble average of the RC states for each input
are in the vicinity of their fixed points, with limited
diffusion resulting from individual stochastic trajectories.
The fading memory property requires that the current RC
state depends on the history of the input signal, with an
increasing importance placed on more recent inputs. Here,
the final RC state depends more strongly on the steady-state
readout signal, where the SNR is higher and QS states can
be more easily distinguished, aiding classification. At the
same time, the RC state does not depend entirely on its
most recent input, making the classification result resilient
to sudden changes in the input signal, for instance those due
to qubit decay.

The final requirement of a RC is of some degree of
nonlinearity in its dynamics or output layer for nontrivial
computation. For the linear RC, note that the classes
approximately lie on a line in the MS. The linearity of
the A = 0 RC enables its dynamics to be solved analyti-
cally: (1) = Y-y cjp [* drel@F7/2=0y (), where &, are
the real parts of the eigenvalues of Wy, and cj is the
product of the projections of eigenvector k onto node j and
the input W;. In the steady state, the different nodes x; are
now effectively scaled and rotated copies of each other. The
information capacity of classifying the final RC outputs is
then no different from that of classifying the input signals
themselves with a linear classifier.

By comparison, the role played by the Kerr nonlinearity
to provide high fidelities for this task is evident from Fig. 6.
The RC’s nonlinearity “shears” the high-amplitude readout
signals (associated with states [01) and |10)) out of the line
connecting the low-amplitude signals (states |00) and |11)).
The measured RC quadratures are then linearly indepen-
dent and not trivially related to each other or the input
signal, in contrast to the linear RC. The nonlinearity of the
Kerr reservoir allows it to utilize its dimensionality, form-
ing up to K linearly independent outputs, rather than being
bound by the dimension of the input signal. Nonlinearity,
together with the other dynamical RC properties satisfied
by the Kerr RC, thus allow the four different classes of
input signals and their resultant RC state distributions to be
linearly separated via the output layer.

Finally, we discuss why the RC appears to require fewer
training signals than an experimentally constructed MF to
attain high-fidelity classification. In Fig. 6 we also plot
the response to a single input trajectory for each class of
input signal in black. Even though these are unlabeled, it is
clear what their ground truth initial quantum state was;
an effective RC is able to integrate out the noise in the
readout signals, enabling efficient separation of the input
signals into the corresponding (color-coded) phase space
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distributions. These trajectories are information dense; each
time point functions as a new point of training data.
Hyperplanes drawn to separate these single trajectories
are found to differ only slightly from those shown on the
plot, constructed using Q = 40 trajectories: training from a
small set of measurement signals can be as effective as a
much larger training set.

This is in stark contrast to the MF approach, which uses the
noisy training data to construct a time-dependent kernel, as
opposed to static hyperplanes. The MF needs to be able to
separate signals at each point in time, and so a large number
of training sets are needed to produce an estimate of the mean
input at each time which is not dominated by noise. It is lastly
reasonable to ask why these linear filters, which perform only
a linear operation on the input signal, are able to perform the
classification task with high fidelity, but a linear RC is not.
The answer lies in the classification step: the continuous
filtered signal y() (1) is mapped to a discrete class label z by
comparing which expected signal y(?) (z) is closest to, via a
“distance” calculation that introduces the necessary non-
linearity. The RC approach is very different: the nonlinearity
occurs in the dynamical signal processing, and the output
classification stepy = W ,x? is linear. The use of a nonlinear
classification step would then supply the required non-
linearity and enable the linear RC to perform comparably
to a nonlinear RC.

D. Optimization of the Kerr reservoir

In the previous sections, we investigated the ability of
specific Kerr RC networks to perform a quantum meas-
urement task. We also demonstrated that this performance
is not particularly dependent on that network structure by
completing the same task with a set of random networks
that share the same hyperparameters. We now explore the
role of these hyperparameters in determining RC perfor-
mance, presenting the dispersive system readout fidelity of
random RC networks as a function of y, A, and y in Fig. 7.

In Fig. 7(a), we plot F for 10 random RCs with K = 2,
5, 10 (blue, green, and brown, respectively), sharing the
same hyperparameters. We vary only y, which sets the rate
at which the RC nodes evolve and thus the timescale over
which it samples the input signal. This system response
time is typically only considered for hardware RCs; in
software approaches a RC conventionally evolves under an
update that is equivalent to y = 1/Ar [19]. From Fig. 7, we
see that it is important for y to be approximately matched to
the timescale of the input signal’s evolution [29]; for the
quantum readout task, the signal /k(d + d'), evolves at
rate . To understand this relationship, consider first a slow
RC, with y < 0.1«: the RC then responds to the input signal
averaged over a large window, f3; « [ dre?’/**u(z), and
it is consequently more difficult to distinguish between
different signals on the timescale over which the measure-
ment is done. This slow evolution furthermore results in
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FIG. 7. Performance as a function of various hyperparameters.
In (a) we vary the RC timescale y for RCs with K = 2, 5, and 10
nodes, with y = 5 and A = 5 x 1072, Panel (b) shows fidelity as
a function of input coupling strength y and nonlinearity A for
K = 5 networks with y = 0.5«. In all plots @ = 1.9 and the RCs
are trained with Q = 80 measurements. Ten different random
networks are shown in (b), and 10 for each K in (a), with
individual F in colored circles, and the average fidelity as a
dashed line. The fidelity of the boxcar and analytic MF are
indicated in green and red dashed lines as in previous plots.

very little displacement from the initial RC state # = 0 over
this 10/x measurement window. Since the nonlinearity is
/33, the low node amplitude also results in the RC being

effectively linear.

There is a second timescale in the input signal: that of the
noise £(¢), at the sampling rate of the quantum measure-
ment Az. This defines an upper limit on y; it is advanta-
geous for the RC to respond to the much slower underlying
quantum signal rather than the rapid white noise, and so
one should have y <« 1/At. This allows the RC to average
over some of the white noise, improving its performance.
As seen in Fig. 7, y ~ 0.2-0.8« is the roughly optimal range
for the dispersive readout task, allowing the RC to still
respond to signal dynamics while integrating out much of
the readout noise.

Quite generally, with increasing K the performance of
the Kerr RCs becomes more robust to variation in hyper-
parameter values and to randomness in reservoir structure
(W;, W, A). In the optimal range of y ~ 0.2-0.8x, most of
the RCs (30 for each y) achieve effectively the theoretical
limit F ~0.95, and all the poorly performing networks
have K = 2 nodes [Fig. 7(a), blue]. Recall that as little as
two Kerr nodes are sufficient to perform the readout task;
thus as K increases, so does the probability that some
subset of the RC phase space forms a good network. If the
other hyperparameters are within some reasonably optimal
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window, there is a K for which the probability of finding a
good subnetwork is high enough that performance saturates
and any Kerr RC achieves high fidelity. In fact, note that the
K =5 and K = 10 sets of networks show almost equiv-
alent performance, indicating that 5 nodes are sufficient for
a random network to reliably complete the present readout
task. Finally, we emphasize that the performance of larger
reservoirs is more robust to hyperparameter values outside
the optimal range.

In Fig. 7(b), we consider the role of nonlinearity and
input scaling, plotting F obtained using 10 random RCs,
while varying y for various fixed values of A. The nonlinear
term in Eq. (8) scales as the node amplitude cubed, and as
such the effective nonlinearity is related to both A and u. To
zeroth order, f « u, and so the effective nonlinearity in f
and x? can be roughly quantified by Ayu’. As we saw in
Sec. IV C, some nonlinearity is necessary for computation,
so JF initially increases as either A or y is increased. We
encounter an upper limit, however—if nonlinearity is too
strong, the fixed points of the RC network for a given
steady-state drive become less stable. The dynamics of the
reservoir will then generically exhibit large oscillations and
not settle near their steady states over the measurement
timescale. This is exacerbated by the noise in the input
signal; as these fixed points in phase space are less
attractive, the strong white noise is able to generate larger
excursions in phase space. Thus, as seen in Fig. 7(b), F

falls off sharply for \/X,u above some upper limit; we find

that \//T\/,t should be in the range of 0.5 to 1 for optimal
performance, a trend we verified for additional A which are
not shown. This is precisely the regime for a single Kerr
oscillator where the nonlinearity begins to significantly
influence its dynamics and steady state. RC intuition
suggests that dynamics should be affected but not domi-
nated by the nonlinearity; the observation of an optimal
nonlinearity strength for a Kerr network appears consistent
with this understanding. It should be noted that for this plot
we have chosen A; = A to make the A —y relationship
clearer, but the results are qualitatively unchanged when
randomness in the nonlinearity is reintroduced as well.
The final hyperparameter « is the largest singular value
of the Kerr network connectivity matrix Wy and sets the
strength of the node-node coupling. In reservoir computing
literature, it is commonly stated that for an echo-state
network (with a hyperbolic tangent nonlinearity), if the
spectral radius of Wy is much larger than 1, the RC steady
state is not guaranteed to be stable and limit-cycle dynamics
can emerge [19,26,29]. A spectral radius close to this limit
(the so-called “edge of stability”) is often found to be
optimal for tasks requiring significant memory (i.e., where
previous states of the input are important) [22,29]. For the
Kerr network RC of Eq. (8), the coupling matrix is
symmetric, so « is also the spectral radius of Wg. Since
the network has an explicit decay term, the linear network
is stable for a < 2. When the nonlinearity is included,

numerically we find a stable steady state and thus the fading
memory property is always present for a < 2 for the non-
linearity parameters we consider. In agreement with other
works, we have found a ~ 1.5-2 results in optimal perfor-
mance, and thus have chosen to present results with @ = 1.9.

Overall, there is generally a broad range of Kerr RC
hyperparameters resulting in high-fidelity classification,

which we can summarize as y <k, \/KMNO.S—I, and
a < 2. This performance is independent of specific network
structure, and is robust to moderate disorder in these
structural parameters.

V. QUANTUM INFORMATION APPLICATIONS

In this final section, we demonstrate a pair of relevant
quantum information applications that can be implemented
in this same reservoir computing system: 2-qubit state
tomography and continuous qubit parity monitoring. In
both cases the description of Fig. 2 applies: a Kerr network
reservoir continually processes the measurement current
from a joint dispersive readout system. This is not intended
to be an exhaustive survey of potential applications, but to
emphasize the ease of generalizing our reservoir processing
approach.

A. Multiqubit tomography

To this point, we have only evaluated the ability of the RC
to classify measurement currents from quantum systems
prepared in computational basis eigenstates. However, a
reservoir processor trained using only these states |y (0)) =
|z) can measure arbitrary joint qubit states with high fidelity.
To be specific, when the target quantum system is inter-
rogated by driving the readout cavity, backaction rapidly
causes the joint qubit state to collapse to one of the
measurement basis eigenstates, with probability ~|c.(0)[%
The RC will then faithfully return the current state of the
target quantum system |y(z,,)). If this quantum state is
repeatedly prepared and measured, the distribution of RC
outputs will thus agree with that of the underlying state.
Furthermore, since the measured cavity quadrature is a
nonlinear function of the multiqubit operator jp =
>_;Xj6.; (Appendix B), one can perform full tomography
on the 2-qubit density matrix by simply preceding the
measurement with a set of single-qubit rotations [5].

To demonstrate this capability, in Fig. 8 we compare the
RC output with the true quantum state at the measurement
time, for the dispersive system initialized in the indicated
product or Bell states. The reservoir is that of Figs. 3 and 4,
and in particular has the same W ,: training was again done
by simply preparing the qubits in each computational basis
state 10 times, measuring for 10/k, and using that initial
state as the target. Even though the qubit state can jump
during this readout, training is still effective, and this
approach should be robust to preparation errors as well.
The quantum system was then initialized in each of the test
superposition states 800 times, and the time-dependent
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FIG. 8. Tomography demonstration. The dispersive system is
prepared in the indicated initial state and measured 800 times.
Measurement causes these superposition states to collapse; the
true distribution in the computational basis at z,, = 7.5/k is
indicated in red. In blue we plot the distribution of classification
outputs for the RC of Figs. 3 and 4, which has not been retrained.

RC output P, (r) was compared against the current quantum
state |c,(7)]>. Despite this simple training with only
easily accessible initial computational basis state labels,
the RC is highly successful at producing this dynamical
quantum variable, returning the current state |w(7))
(max_{P.(1)} = max_{|c.(¢)|*}) with 98% fidelity across
all test states.

Figure 8 compares the distribution of RC outputs with
the average quantum state at 7,,; it is clear the RC
accurately determines the underlying quantum distribution
for the three states tested. For simplicity we have chosen a
set of states where all the unique density matrix elements
are diagonal in the measurement basis, so this single set of
measurements is sufficient to distinguish states. As
described in Ref. [5], full tomography on arbitrary states
can be done by repeating this process after applying single-
qubit rotations; this reservoir processor can thus be an
effective tool for general tomography in addition to
computational basis measurement.

B. Joint parity monitoring

This reservoir processing approach is not limited to
determining qubit states from measurement currents—
generally, one can train a RC to return arbitrary dynamical
observables given an appropriate measurement record.
In this final example we describe the operation of the
K = 5 Kerr reservoir of Figs. 3 and 4 to measure multiqubit
parity: (6,6,,). Recall that for the dispersive readout
quantum system model described previously, the RC
was able to learn the quantum state and output |c,(7)[?
with very high fidelity: thus, one can trivially modify the
output layer to instead return the expected parity via
w,—-(1,-1,-1,1)- W,.

We instead consider a more interesting and relevant task
for quantum information applications by modifying the
dispersive readout system such that the observed quad-
rature does not distinguish between states in a given parity
subspace, setting y; = —y, = k, & = 2ik, and leaving all
other parameters unchanged. In this situation, the measured
quadrature will differ only for states of different parity, and
be the same for states in the even {|11), |00) } or odd parity
subspaces {|10),|01)} [Eq. (B3)]. As a result, when the
readout cavity is measured there is no backaction on qubit
states in a given parity subspace: this allows one to generate
and maintain superposition states, or manipulate the joint
qubit state within a parity subspace, a requirement for many
quantum error correction protocols. This specific parity
readout system has been explored both for Bell state
generation and error syndrome monitoring [9,59,60]. In
particular, this is a common error syndrome in quantum
error correction, where the detection of a change in parity
between two qubits is an unambiguous indicator that an
error has occurred [60,61].

We operate this system as previously, interrogating the
measurement cavity and inputting the resultant measure-
ment current to the RC; this task is thus also described via
Fig. 2, with the output now (6, ,6,,) instead of P;. For
training, the quantum system is again prepared in each of
the computational basis states Q = 40 times and a meas-
urement is performed for 10/k, with the target being the
initial parity, £1 for |y(0)) = [11/00),|10/01), respec-
tively. For the parameters chosen, the probability of a parity
jump occurring during this window is small due to the lack
of measurement backaction; thus this simple training
procedure allows the RC to compute the current multiqubit
parity. This is demonstrated in Fig. 9(a), where the trained
RC continuously monitors the parity as the quantum system
is measured over a much longer 50/x window. We plot both
the evolution of the parity (ground truth obtained from the
SME) as well as the RC output for three sample trajectories.
It is seen that the RC output follows the true parity closely,
and in particular, quickly switches after the parity jumps
due to qubit decay processes. Over 800 test measurements
(each of duration 50/k), the RC and true parity agree at
93% of times. This is limited by the finite response time of
the reservoir: on average the RC parity will flip 2.3/x ~ 1 /y
after that of the quantum system.

For both error syndrome monitoring and Bell state
generation, it is only necessary to detect these parity jumps,
rather than exactly reproduce the evolution of the parity. In
Fig. 9(a), we indicate the times of parity jumps in the
quantum system and RC output with circles and stars,
respectively. It is clear that for the examples shown, the RC
accurately detects when a parity jump occurs, and does not
predict one where there is no jump. In Fig. 9(b), we
evaluate the ability of the RC to detect parity jumps: the
quantum system is initialized in the 8 indicated states (of
definite parity), and measured 100 times each over a
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FIG.9. (a)Ground truth parity trajectories in dark thin lines and

corresponding RC parity estimate in light thick lines of the same
colors. The times at which the qubit parity jumps are indicated
with circles; the resultant RC parity change is denoted with a star.
The RC of Figs. 3 and 4 is again used, trained with Q = 40
measurements over the 10/x window shaded in gray. (b) Fraction
of trajectories for which parity monitoring was successful over
the entire 50/x monitoring window for each initial state. Failures
occur when the RC either predicts a parity change where none
occurred or fails to detect a parity change. Odd and even initial
states are colored red and blue respectively.

duration of 50/x. Plotted is the fraction of measurements in
which the RC successfully predicted a parity jump after one
occurred in the quantum system, or did not predict a parity
jump if none occurred. Overall, parity change detection
accuracy was 95.5%, indicating that this RC could be a
powerful tool for monitoring error syndromes or tracking
the evolution of general observables.

VI. CONCLUSIONS

In this work, we propose and analyze the operation of a
hardware reservoir computer, carefully designed to be
implementable in current superconducting platforms, to
facilitate measurement of an integrated multiqubit system.
We find that reservoirs as small as two oscillators can
reliably perform the nontrivial task of joint dispersive
quantum measurement of two qubits, achieving fidelity
comparable to or exceeding an optimally matched filter
while requiring orders of magnitude less training overhead.
We further demonstrate this processor can be readily
employed in important quantum information tasks such
as multiqubit tomography and the continuous monitoring
of observables such as parity, with similar fidelity and
simplicity of calibration. The proposed approach offers
significant efficiency improvements across several dimen-
sions: (i) hardware resources via compatibility with

existing quantum platforms, (ii) computational resources
via ease of training, and (iii) latency and data overhead via
edge computing in a physical reservoir.

Through a first-principles consideration of the system
dynamics, we explore the features and properties of the Kerr
oscillator network that enable this performance and make it
an attractive platform for reservoir computing more gener-
ally. We additionally develop an intuitive phase space picture
which provides insight into exactly how RCs process
information, and the important role of nonlinearity. Here
we have considered the operation of a Kerr reservoir in the
semiclassical regime where it is not entangled with the
quantum system it measures. The extension of this work to
the quantum limit—a challenging theoretical problem requir-
ing a unified quantum description of both the measured
system and measurement chain, including the reservoir—is
addressed in our follow-up work, Ref. [62]. This accounts for
the measurement backaction and nonlinearly transformed
quantum noise of the quantum reservoir itself, and forms the
foundation of a description of quantum measurement using
an apparatus that is architecturally complex, nonlinear, and
quantum-mechanical.
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Note added.—Recently, three papers were published apply-
ing software machine learning models to single-qubit
characterization [63], multiplexed readout [17], and rapid
three-state classification [64], respectively. Our work stands
in contrast to these studies in that we describe a piece of
hardware—a reservoir—whose continuous evolution per-
forms the desired computation. The application of machine
learning to quantum information is a rapidly developing
field which holds much promise; we believe the integration
of RCs with quantum information processing platforms can
be of particular benefit.

APPENDIX A: TABLE OF NOTATIONS
The notation used throughout this paper is summarized
in Table I.

TABLE I. Descriptions of symbols, sorted by topic.

Measured quantum system

d Cavity field operator

6, Qubit Pauli operator

J(@) Cavity measurement current, sample g

K Readout cavity decay rate

Wy Frequency of cavity drive, measurement current

(Table continued)
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TABLE 1. (Continued)

Measured quantum system

A, Readout cavity—drive detuning: @, — @,
Ay Qubit j—drive detuning: w, ; — @,
0; Qubit j—cavity detuning: w, ; — @,
gj Qubit j—cavity direct coupling

X Qubit j dispersive shift: gf /6;

7h Qubit decay rate (non-Purcell)

Jin Qubit-qubit coupling via cavity

Ty Duration of measurement signal

Kerr network reservoir

by, Kerr oscillator k field operator

P Kerr oscillator k field amplitude

u Input signals to Kerr network at w,

Ay Kerr oscillator k—input detuning: @, — wy

Ak Kerr oscillator k nonlinearity

Gl Linear coupling between Kerr oscillators k and /
Etm Input m—Kerr oscillator k coupling strength

y Kerr oscillator decay rate, network evolution rate

Reservoir computer

x(1) Reservoir variables: v2(Re{f;},Im{,},...)T
x¢ Optimized node quadratures: (Be™ "% + ')/ /2
Wpe Dimensionless connectivity matrix: 2(A8;; + gu)/7
W, Dimensionless input layer: 2Z;,/y

A Dimensionless node nonlinearity: 24, /y

K Number of Kerr oscillators

u Input coupling strength: W, ; € [—u, y]

A Average node nonlinearity: Ay € [0, 2A]

a Spectral radius of connectivity matrix: Ap., (Wg)
C~'(¢) Matrix of node quadrature projection angles
w, Projected quadrature output weights

w, Full output layer: W,C(¢)

0 Number of training samples

» C-dimensional target output

y RC output: W x

P, RC output converted to probability: e¥:(")/ 37, e¥(?)
Cr Fraction of test signals classified correctly

F Classification fidelity: max,{Cr(t)}

APPENDIX B: JOINT DISPERSIVE
MEASUREMENT

The unconditional evolution of the multiqubit measure-
ment system under either model is described by the master
equation (ME) [5,9,42]:

p=Lp=—ilfts.pl+7v,y_Dlo_jlp+«Dldlp, (B)
J

where k and y,, describe cavity loss and qubit decay through
coupling to the external environment. 7:[S = {'HJC,’HD}:
for Hg = H, the ME acquires an additional term to
account for correlated qubit decay via the cavity:
L - L+«DI[y(g;/8;)6_ ], although it is O((g;/5;)*)

and thus weaker than other rates considered. We could
also include pure dephasing as well but consider a regime
where this environmental dephasing is much weaker than
dephasing induced by measurement.

The utility behind this dispersive measurement system is
that it allows one to perform a near-QND measurement of
all the qubits simultaneously. We recall first the basic
description of the measurement process from Ref. [4], based
on the pointer-state formalism. With the cavity initially in the
vacuum and a constant drive applied at ¢ = 0, under H g =
Hp there is a cavity coherent state associated with each joint
qubit state [i.e., poxy. . p(1). |a,(1).2){a,(t).Z|l. The
coherent state amplitudes evolve as

d

Gty = =ieo = (i(a. + (1) +5 )l (B2)

where we have defined the qubit operator 7 = Zj X0, 1y;

are distinct then for each of the 2V+ {|z) } qubit states, 7 has a
unique value and a different coherent state is generated in the
measurement cavity. The corresponding steady states are

. A+ (7). +i5
ss — —€0 ~ VR
: (AL + <)(>z)2 + (5)2

and the measurement of this cavity field results in an effective
measurement of the joint qubit state, i.e., all qubits in the
z-basis simultaneously. This measurement becomes QND if
J commutes with all the operators in £; joint qubit eigenstates
are then preserved by the measurement process. This can be
achieved in practice in the dispersive regime if k is larger than
J jx and the qubit decay rates, such that these terms can be
ignored on the timescale over which measurement proceeds.
Even away from the dispersive regime, where the system is

better described by 7:[JC, the state of the cavity field still
contains information about the joint qubit state, and a
sufficiently rapid cavity measurement can be used to learn
the initial joint qubit state [y (0)).

By continuously recording the X quadrature of the field
radiating from the measurement cavity, one obtains the
homodyne measurement current of Eq. (4), which provides
information about p(¢), the current state of the QS. The
consequent evolution of an observer’s knowledge of the QS,
conditioned on observing J(#), is found by appending the
measurement superoperator to Eq. (B1), resulting in the SME
of Eq. (3). Recall that (£(7)) =0, and so by taking the
ensemble average of Eq. (3) we recover Eq. (B1) and
(J(1)) = /xn{d + d'): density matrix evolution and oper-
ator expectation values converge to their unconditional
results.

Equation (4) describes a measurement current and
corresponding noise which is continuous; both due to finite
sampling times in real measurements and for our numerical
simulations, the homodyne current is actually sampled at
discrete times t, = nAt, where we use At = 1072 /Kk. As a
consequence, &(t) — &(¢,) in both Egs. (3) and (4):

a (B3)
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&(t,) = N, (0,1)/VAt, (B4)

where A,(0,1) are samples drawn from the normal
distribution with zero mean and unit variance. This con-
verges to white noise in the continuum limit At — 0, with
(E(1)é(1)) - 6(r—1'). The integrated noise power is
importantly independent of Ar: ["dedd (E(7)é(7)) =1,
so the SNR of the integrated measurement current, and
consequent filter performance, remains fixed for any
sampling rate.

The noisy continuous signal described in Eq. (4) is what
is seen by any classical system interacting with the readout
cavity output field [43]. When we take J(#) as the input to a
RC, there is no entanglement between QS being measured
and the classical RC processing this measurement record.
In this work we assume each Kerr oscillator has sufficiently
large field amplitudes to be in a classical regime. In
practice, passing the output of the QS through a quan-
tum-limited amplifier or circulator, as depicted in Fig. 2,
results in this description, which is also necessary to
describe realizations where the RC and QS are built on
different platforms.

APPENDIX C: RESERVOIR COMPUTER
TRAINING

Training amounts to choosing an optimal set of phase
angles for each oscillator and linear weights to apply to
each resultant node. For a K-node network and C-dimen-
sional target output, these are encoded in the (C x K)
output matrix W, and the K element vector ¢p = (¢b;...¢x)
of measurement angles, for a total of (C 4 1)K parameters
to optimize. To train a RC, a set of labeled training data
{ul9(1),y*9 (1)}, consisting of Q (generally multidimen-
sional) input signals U = {u(? ()} and their respective
target outputs Y* = y*(9)(¢) is constructed. The training
data are fed into the RC, producing the dynamical response
pl (1), which we decompose into independent quadratures
x(9)(¢). Importantly, both quadratures must be extracted
during training, in order to optimize the projection angle. A
loss function depending on the difference between the RC
output and target £(W,,¢) is then constructed from this
training set. By minimizing the loss function with respect to
W, and ¢, one hopes to obtain the RC output y(@)(f) =
W,C(¢)x9 (1) = y*9 (1) and thus reproduce the desired
target function.

The specific task we consider in this work is the
retrodiction of the initial state that produced an obser-
ved measurement record, requiring that the computation
returns the probability that the input is a homodyne record
from a QS with |y(0)) = |z). The training data labels
are thus ground truth probabilities for each input signal
P*@) € [0, 1]. The cross entropy loss function is then

. 1
‘cx(Woa ¢) = _@ P*(q)(tn) : log[P(q)(tn)L
q’t”

(C1)
where P(9)(t,) is found from y@(¢) via Eq. (13).
Throughout this work, training is done by minimizing
the £, of Eq. (C1), with an added L, regularization term
A,|W,|?, via gradient descent. We consider small K = 2-10
RCs and small training sets, so this loss function mini-
mization is a computationally easy task. In our physical RC
framework, we envision this training is done using external
software to the RC. The RC node trajectories are measured
during training, and {x'? (¢),y*(@)(¢)} are used to minimize
L, to compute W, and ¢ for the task at hand. ¢ then sets
the projection angles for subsequent RC processing and W,
maps these measurements to the RC output. The descrip-
tion here is equally valid if one skips the projection step and
just uses both quadratures directly to form the output:
y @ =W x@. £ (W,) is then simply a function of the
general (C x 2K)-independent element output matrix,
whose minimization remains convex. The RC output
y(@(t) is the linear combination of measured node quad-
ratures that expresses the probability of the input meas-
urement record being associated with each state. The
softmax function is applied in software and is only
necessary to construct £, during training; linear classifi-
cation using y(@)(¢) or P'9)(t) is equivalent. Thus, outside of
training, the only necessary computation to apply to the RC
output is the weighting and addition of measured reservoir
variables, a simple task to accomplish externally in devices
on equally rapid timescales, or on chip with dedicated
superconducting electronics for feedback applications.
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