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Abstract: We demonstrate that due to strong modal interactions through
cross-gain saturation, the onset of a new lasing mode can switch off an exist-
ing mode via a negative power slope. In this process of interaction-induced
mode switching (IMS) the two involved modes maintain their identities,
i.e. they do not change their spatial field patterns or lasing frequencies.
For a fixed pump profile, a simple analytic criterion for the occurrence
of IMS is given in terms of their self- and cross-interaction coefficients
and non-interacting thresholds, which is verified for the example of a
two-dimensional microdisk laser. When the spatial pump profile is varied as
the pump power is increased, IMS can be induced even when it would not
occur with a fixed pump profile, as we show for two coupled laser cavities.
Our findings apply to steady-state lasing and are hence different from
dynamical mode switching or hopping. IMS may have potential applications
in robust and flexible all-optical switching.
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8. H. E. Türeci, A. D. Stone, and L. Ge, “Theory of the spatial structure of nonlinear lasing modes,” Phys. Rev. A 76,

013813 (2007).
9. L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,”

Phys. Rev. A 82, 063824 (2010).
10. A. Cerjan, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory for complex gain media,” Opt.

Express 23, 6455 (2015).

#250453 Received 18 Sep 2015; revised 17 Dec 2015; accepted 17 Dec 2015; published 4 Jan 2016 
© 2016 OSA 11 Jan 2016 | Vol. 24, No. 1 | DOI:10.1364/OE.24.000041 | OPTICS EXPRESS 41 
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21. L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning

interactions,” Nat. Photon. 8, 871 (2014).
22. H. Fu and H. Haken, “Multifrequency operations in a short-cavity standing-wave laser,” Phys. Rev. A 43, 2446

(1991).
23. S. Burkhardt, M. Liertzer, D. O. Krimer, and S. Rotter, “Steady-state ab-initio laser theory for lasers with fully or

nearly degenerate resonator modes,” Phys. Rev. A 92, 013847 (2015).
24. H. Haken and H. Sauermann, “Nonlinear interaction of laser modes,” Z. Phys. 173, 261 (1963).
25. L. I. Deych, “Effects of spatial nonuniformity on laser dynamics,” Phys. Rev. Lett. 95, 043902 (2005).
26. P. Mandel, “Global rate equation description of a laser,” Eur. Phys. J. D 8, 431 (2000).
27. I. V. Koryukin and P. Mandel, “Two-mode threshold of a solid-state Fabry-Perot laser,” J. Opt. B: Quant. Semiclass.

Opt. 4, 27 (2002).
28. R. El-Ganainy, M. Khajavikhan, and L. Ge, “Exceptional points and lasing self-termination in photonic molecules,”

Phys. Rev. A 90, 013802 (2014).
29. The same behavior happens to I2 in Fig. 4(d) when different initial values of D2 are chosen.
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1. Introduction

Our understanding of lasers is largely based on the semiclassical laser theory, which describes
successfully modal thresholds, output power, spatial mode patterns inside and outside of the
laser cavity, as well as dynamical effects such as relaxation oscillations and mode, phase, and
frequency locking [1, 2]. With the advent of microlasers [3, 4], their non-Hermitian nature and
strong modal interactions not only introduced new phenomena (see, for example, [5, 6]) but
also imposed new challenges for the understanding of these novel lasers. A new framework
based on the semiclassical laser theory, known as the Steady-state Ab-initio Laser Theory
(SALT) [6–10], addresses these challenges satisfactorily when the level inversion in the gain
medium can be treated as stationary. SALT has been shown to give excellent agreement with
much more computationally intensive finite-difference-time-domain (FDTD) simulations of the
lasing equations [11–13], and it also accurately predicts recent experimental observations of
exceptional points in lasers [5, 14]. These advantages make SALT an ideal tool to study the
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Fig. 1. Schematics showing modal intensities as a function of the pump strength for (a)
interaction-induced mode switching and (c) typical two-mode lasing. (b,d) The correspond-
ing lasing spectra at pump strengths marked by I and II in (a,b).

effects of non-linear modal interactions in the steady-state, in regimes not previously studied
and in some cases not accessible with other approaches.

In this report, we reveal a surprising phenomenon due to such modal interactions: the onset of
one lasing mode can switch off another mode which is already lasing [Figs. 1(a) and 1(b)]; we
refer to this phenomenon as interaction-induced mode switching (IMS). IMS is very different
from typical multimode lasing, where the modal intensity of each mode increases linearly with
the pump strength and the power slopes of lasing modes are only slightly reduced at the onset of
a new mode [Figs. 1(c) and 1(d)]. IMS is a robust phenomenon and can in principle occur in
any type of laser, including standard systems such as a microdisk and coupled one-dimensional
cavities. We note that IMS is a steady-state effect and different from dynamical mode switching
and related phenomena [15,16]. It is also independent of laser bistability [17–20], which can also
lead to various mode switching scenarios. In addition, IMS differs qualitatively from seemingly
similar effects found in our previous work [5, 6], as we will explain in detail below.

In the next section we first review the basic ansatz and results of SALT and its “single-pole”
approximation (SPA-SALT), where each lasing mode can be well approximated by a linear
mode, the constant-flux (CF) state [7, 9, 21]. We then present an example of IMS in a uniformly
pumped two-dimensional (2D) microdisk laser. The presence of IMS in this example can be
predicted and understood via a simple analytic criterion obtained from SPA-SALT, involving
only a few parameters, i.e., the self- and cross-gain saturation coefficients of the two modes
(“interaction coefficients”) and the thresholds of the modes in the absence of gain saturation
(“non-interacting thresholds”). The prediction of IMS from SPA-SALT is confirmed by the use
of the full SALT computation. Next, we show that IMS can also be facilitated by having a spatial
pump profile which evolves as the overall pump power is increased. An example is given using
two coupled one-dimensional (1D) slab cavities, in which IMS does not occur when the cavities
are pumped uniformly. With different choices of evolving the spatial pump profile, we show that
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either of two modes can undergo an IMS, i.e. mode 1 be switched off by mode 2 or vice-versa,
indicating the possibility of flexible control of the mode spectrum by using IMS and variable
pump profile. A criterion for IMS in this case is again given using SPA-SALT, which shows an
invariant property of IMS and its less restrictive requirement on the interaction coefficients.

2. SALT and SPA-SALT

SALT makes a steady-state ansatz and reduces the time-dependent coupled lasing equations
for the electric field, level populations and polarization of the gain medium, to a set of non-
linear time-independent wave equations for the lasing modes and their frequencies [6–12]. In
the case of multimode lasing it takes advantage of a separation of time scales between the
slow population dynamics and the beat frequencies of the modes to predict a stable multimode
stationary state, an approach which is typically valid only for microlasers [13, 22, 23]. While
SALT neglects the time-dependent effects of the four-wave mixing non-linearity, it treats the
time-independent effects of gain saturation and spatial hole-burning to infinite order and hence is
found to be accurate far above threshold in steady-state lasing. In the discussion below, diffusion
of excitations in the gain medium is assumed absent; recent work has shown how to include this
effect in the SALT framework [10].

SALT differs from the standard modal description of semiclassical laser theory [1, 2] in a few
important aspects: SALT describes the openness of the lasing medium rigorously in terms of
an outgoing boundary condition, and, as noted, the static modal interaction is treated to infinite
order and not truncated at the cubic level. The first method developed for solving the SALT
equations and the one most useful in the current work is through the expansion of a lasing
mode Ψµ(~r;D0) at a given pump strength D0 in an optimal basis of CF states {up(~r;ωµ)}, i.e.
Ψµ(~r;D0) = ∑p a(µ)p (D0)up(~r;ωµ). Each CF state is purely outgoing and parametrized by the
lasing frequency ωµ , and the full set is biorthogonal and complete; hence an arbitrary lasing mode
can be represented in this fashion. We define the modal intensity by Iµ(D0) = ∑p |a

(µ)
p (D0)|2,

and its power slope, Sµ = dIµ(D0)/dD0, is the key quantity of interest in the study of IMS.
In the previous expressions, the lasing frequency ωµ is a real quantity to be solved together

with the mode profile Ψµ(~r). The pump strength is represented as a dimensionless quantity D0
proportional to the level inversion in the gain medium, and its spatial profile is assumed given
by f (~r) and normalized by

∫
cavity f (~r)d~r =

∫
cavity d~r ≡V . The biorthogonality relation of the CF

states can be shown to be [7] ∫
cavity

d~r ū∗p(~r)uq(~r) =V δpq (1)

when the refractive index n is uniform inside the cavity. ūp(~r) is the biorthogonal partner of up(~r)
and “∗ ” denotes complex conjugation (for a lossless cavity without degeneracy, the partner is
simply up(~r) itself). In the next section we consider degenerate CF states, the traveling-wave
(clockwise (CW) or counterclockwise (CCW)) modes in a microdisk, i.e.,

up(r,φ) ∝ Jm

(
nΩpr

c

)
eimφ , r < R. (2)

In this case ūp(~r) is then given by

ūp(r,φ) ∝ Jm

(
n∗Ω∗pr

c

)
eimφ , r < R. (3)

Here φ is the azimuthal angle, Jm is the Bessel function of azimuthal quantum number m, Ωµ is
the complex CF frequency, c is the speed of light in vacuum, and R is the radius of the microdisk
cavity.
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When the Q-factors of the lasing modes are relatively high, each lasing mode can be well
approximated by a single CF state, i.e., there is only one significant a(µ)p in the expansion of
Ψµ , even when well above the laser threshold and when the pump profile f (~r) is non-uniform
[9, 21]. This property enables us to invoke SPA-SALT, i.e., Ψµ(~r;D0)≈ a(µ)p (D0)up(~r;ωµ) and
Iµ(D0)≈ |a(µ)p |2. This approximation neglects the power-dependence of the lasing frequencies
and the change in the spatial mode profiles above threshold, but has the great advantage of
reducing the non-linear coupled SALT equations to a set of (constrained) linear equations for
the modal intensities [9]. For example, in the two-mode regime, the modal intensity I1 and I2 are
determined by

M
(

I1
I2

)
=


D0

D(1)
0

−1

D0

D(2)
0

−1

 , M ≡
(

Γ1χ11 Γ2χ12
Γ1χ21 Γ2χ22

)
, (4)

with the constraint that I1, I2 ≥ 0. Here Γµ ≡ γ2
⊥/[γ

2
⊥+(ωµ −ωa)

2]≤ 1 is the Lorentzian gain
factor for mode µ , where ωa is the atomic transition frequency and γ⊥ is the longitudinal
relaxation rate of the gain medium. The self-interaction coefficients χ11,χ22 and the cross-
interaction coefficients χ12,χ21 are given by

χpq =
1
V

∣∣∣∣∫cavity
d~r ū∗p(~r)up(~r)

∣∣uq(~r)
∣∣2∣∣∣∣ . (5)

We note that the product nΩµ is almost real for a relatively high-Q mode, even when the passive
cavity refractive index n has a small imaginary part due to the inclusion of material absorption.
Therefore, using the expressions (2) and (3), the cross-interaction coefficients are approximately
equal, i. e.,

χ12 ≈ χ21 ∝

∫
cavity

d~r
∣∣∣∣Jm1

(
nΩ1r

c

)
Jm2

(
nΩ2r

c

)∣∣∣∣2 (6)

in the microdisk laser to be discussed in the next section.
Since we are using the microdisk laser as an example, we need to discuss the conditions

for the validity of SALT (and SPA-SALT) in more detail. The rates which determine the laser
population dynamics (in the simplest case of the Maxwell-Bloch model of two-level gain atoms)
are described by a single parameter, denoted as γ‖. Multimode SALT is approximately valid when
γ⊥,∆� γ‖ [7, 11, 13, 22], where ∆ is the typical beat frequency between lasing modes (of order
the free spectral range). For the degenerate CW and CCW modes of a microdisk this condition is
not satisfied, and we will assume that, as is typical in ring lasers, one sense of rotation is chosen
by small perturbations, and SALT can then be used for the resulting non-degenerate lasing
modes. A more detailed treatment of the degenerate case can be found, for example, in [23], but
it is not relevant for the current discussion. We also note that the electric field and level inversion
are measured in their respective natural units ec = h̄√γ⊥γ‖/2g and dc = h̄γ⊥/4πg2, where g is
the dipole matrix element between the lasing transition levels.

The key quantity of interest in the discussion of IMS in the two-mode regime is the power
slope of the first mode, as we have shown schematically in Fig. 1(a). Within SPA-SALT all lasing
modes have a linear variation with pump power if the spatial pump profile is fixed, featuring
a slope which only changes when new modes turn on or off. For the two mode case, it is
straightforward to show that the power slope of the first mode is S1 = 1/[Γ1χ11D(1)

0 ] after it

turns on at D0 = D(1)
0 , in which χ

−1
11 plays the role of mode volume; this slope changes to

S̃1 =

χ22
χ12
− D(1)

0

D(2)
0

χ22
χ12
− χ21

χ11

S1 (7)
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once the second mode starts lasing at

D(2)
0,int =

1− χ21
χ11

D(1)
0

D(2)
0

− χ21
χ11

D(1)
0 . (8)

The subscript “int” here indicates that D(2)
0,int is the threshold of mode 2 in the presence of modal

interaction with mode 1. In contrast, D(2)
0 in Eqs. (7) and (8) is the threshold of mode 2 when the

modal interaction is neglected, which is determined by the openness of the laser cavity and the
material absorptions within, as well as the Lorentzian gain factor Γµ [21]. We will refer to D(µ)

0
as the non-interacting threshold of mode Ψµ . Since there is only one lasing mode at the first
threshold, D(1)

0,int = D(1)
0 by definition.

Within SPA-SALT the full lasing behavior is captured by the set of interacting thresholds
and power slopes between thresholds; these are determined solely by the non-interacting lasing
frequencies and thresholds, the gain curve parameters and the interactions coefficients. By
definition a mode which has just turned on has a positive power slope; IMS occurs when at some
interacting threshold the power slope of a previously lasing mode becomes negative, e.g., S̃1 < 0
in the two-mode case above. This criterion is completely general and can be applied to any laser
system for which SPA-SALT is a good approximation.

The SPA-SALT equations (4) and their multimode form may look similar to the Haken-
Sauermann equations [22, 24] and their generalizations (e.g., [25]), but the latter employ the
cubic approximation for the modal interactions and lead to unphysical mode behaviors for pump
strength ∼ 20% above the first threshold [2]. A detailed discussion of these points can be found
in [9, 11], where SALT is also compared to the work by Mandel and coworkers [26, 27].

3. IMS with a fixed pump profile

In this section we give an example of IMS in a 2D microdisk laser. We consider uniform pumping
( f (~r) = 1) and transverse magnetic modes, with Ψµ(~r) representing the out-of-plane electric
field in the steady state. We restrict our treatment to CCW traveling waves solutions for the
reasons discussed previously.

Using the full SALT, we find that a whispering gallery mode of azimuthal quantum number
m1 = 8 starts lasing when the pump strength is higher than its threshold D(1)

0 = 0.075 (see Fig. 2).
Its modal intensity increases linearly with the pump strength, until a second mode of m2 = 7
turns on at D(2)

0,int = 0.17, whose non-interacting threshold is at D(2)
0 = 0.076. Beyond D(2)

0,int, an
anomalous behavior occurs: unlike in a typical laser where the onset of a new mode just slightly
slows down the increase of the intensity of the the existing mode(s) [Fig. 1(c)], the power slope
of mode 1 actually becomes negative, and it stops lasing at D(1)

0,off = 0.19. Note that we have used
here full SALT, for which the intensity variation with pump need not be linear [6], but in fact it
is quite linear as predicted by the SPA-SALT approximation. This phenomenon is confirmed
with good agreement by directly solving the differential form of SALT numerically [13], without
the expansion in the CF basis (not shown).

To understand the origin of this mode switching behavior we analyze in more detail the
criterion for IMS in the two mode case derived from the SPA-SALT approximation, that
S̃1 < 0. Let us first discuss the typical behavior in a two-mode laser shown schematically
in Fig. 1(c). One usually finds the cross-interaction coefficients to be much smaller than the self-
interaction coefficients, i.e., χ12,χ21� χ11,χ22. Therefore, for two lasing modes with similar
non-interacting thresholds, we immediately see that S̃1 . S1 from Eq. (7), which indicates that
the onset of the second lasing mode slightly reduces the power slope of the existing mode, and
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Fig. 2. Interaction-induced mode switching in a microdisk laser. Lower panel: Black solid
and red dashed lines show the modal intensities of the first two modes. They are whispering-
gallery modes with azimuthal quantum numbers m1 = 8, m2 = 7 and lasing frequencies
ω1R/c = 5.37,ω2R/c = 4.81, respectively. Upper panel: False color plots of the real part
of the electric field in these two modes, where red and blue indicate positive and negative
values. Their radial profiles are shown as the inset in the lower panel. The parameters used
are: atomic transition frequency ωaR/c = 4.83, longitudinal relaxation rate γ⊥R/c = 1 and
refractive index n = 2+0.01i.

S̃1 remains positive. Consequently, the IMS behavior shown in Fig. 2 must be due to a strong
cross-interaction.

We now derive the relevant criterion for IMS in terms of the self- and cross-interaction
coefficients. We first note that by definition D(0)

2,int,D
(2)
0 > D(1)

0 , i.e., the second mode turns on at
a higher pump strength than the first mode, with or without modal interactions. Therefore, we
find

χ21

χ11
<

D(1)
0

D(2)
0

< 1 (9)

from Eq. (8). With this observation, we derive from Eq. (7) the following criterion for a negative
S̃1:

χ21

χ11
<

χ22

χ12
<

D(1)
0

D(2)
0

. (10)

When satisfied, mode 1 is switched off at

D(1)
0,off =

1− χ22
χ12

D(1)
0

D(2)
0

− χ22
χ12

D(1)
0 . (11)

This expression is consistent with Eq. (8), which leads to D(1)
0,off > D(2)

0,int, i.e., the termination of
mode 1 happens after the onset of mode 2.

The criterion (10) requires a cross-interaction coefficient larger than the self-interaction
coefficient of the “killer” mode 2 and smaller than that of the “victim” mode 1:

χ22 < χ21 ≈ χ12 < χ11. (12)

To find the circumstances in which these inequalities can hold, we note that in the definition
(5) of the interaction coefficient χpq, the intensity profile of mode p (q) can be treated as the
weighting function for mode q (p). To have a large χpq, the best weighting function would be a
delta function at the peak(s) of mode q (p). Therefore, for the criterion (12) to hold, the intensity
profile of mode 1 needs to be peaked very close to the peak(s) of mode 2, and it should be more
localized. For the two whispering-gallery modes shown in Fig. 2, the first mode (m1 = 8) indeed
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Fig. 3. (a,c) Same as the modal intensity plot shown in Fig. 2 but with ωaR/c = 0.50 (a) and
ωaR/c = 0.48 (c). Single-mode lasing is observed and mode switching does not occur in
either case, even when the pump power is high above threshold. (b,d) The modal gain of
these two modes in (a,c), confirming that the m2 = 7 mode in (a) and the m1 = 8 mode in (c)
do not lase. Modal gain is clamped at 1 for lasing modes and stays below 1 for non-lasing
modes [9].

has a slightly narrower peak in the radial direction that overlaps with the peak of the second mode
(see the inset). As a result, we find χ21/χ11 = 0.977, χ22/χ12 = 0.979, and Eq. (12) is satisfied.
In addition, we find that the complete criterion (10) also holds, because D(1)

0 /D(2)
0 = 0.981.

Due to the small differences between the ratios χ21/χ11, χ22/χ12, and D(1)
0 /D(2)

0 , which
appear in the denominators of Eqs. (8) and (11), the quantitative values of the onset threshold
of mode 2 and the termination threshold of mode 1 as given by SPA-SALT (D(2)

0,int ≈ 0.41,

D(2)
1,off ≈ 0.70) are susceptible to the inaccuracy introduced by the single-pole approximation and

do not agree very well with their actual values (D(2)
0,int ≈ 0.17, D(2)

1,off ≈ 0.19). Nevertheless, the
predictive power of Eq. (10) can be confirmed by showing the absence of IMS when Eq. (10) is
violated by some margin.

We can most conveniently violate the SPA-SALT criterion for IMS by varying the last
ratio of Eq. (10) in our numerical calculation; we achieve this by moving the gain center ωa.
This approach changes the non-interacting thresholds of these two modes but barely affects
their lasing frequencies and mode patterns. Hence χ’s and the first two ratios in Eq. (10) can
be treated as unchanged. We first move the gain center closer to the m1 = 8 mode, which
reduces its non-interacting threshold while increasing that of the m2 = 7 mode. Eventually
the last ratio in Eq. (10) becomes smaller than the middle one and Eq. (10) breaks down.
In Fig. 3(a) we show such a case with ωa = 5.0, where D(1)

0 = 0.0663,D(2)
0 = 0.0792, and

D(1)
0 /D(2)

0 = 0.837 < χ21/χ11,χ22/χ12. Indeed we find that IMS does not take place, and the
m2 = 7 mode is suppressed even when the pump strength is 10 times its non-interacting threshold.
Next we move the gain center closer to the m2 = 7 mode, which becomes the first one to lase.
Thus the necessary condition (12) breaks down, since now the mode index 1 and 2 are exchanged.
Therefore, the criterion (10) also breaks down, and again we find that IMS does not take place as
a result. In Fig. 3(c) we show such a case with ωa = 4.80, where the non-interacting thresholds
for the m = 7,8 modes are 0.0762, 0.0767, respectively. As a conclusion, we find that Eq. (10)
from the SPA-SALT derivation gives a reliable criterion for the occurrence of IMS.
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We also note that in Fig. 2 we have chosen the gain center to be in close vicinity of the
frequency of the second mode. This choice was made such that the non-interacting threshold
of the second mode, which has a lower Q-factor, is not too high to violate the last inequality of
Eq. (10). However, IMS in general does not require the gain center to be closer to the second
mode than the first mode.

Finally, we address in more detail the difference between the IMS phenomenon studied here
and the “mode-killing” effect found previously in 2D quasi-ballistic random lasers (QBRL) [6].
Because QBRL have very low Q, the lasing modes change considerably in their spatial mode
patterns above threshold and their lasing frequencies have strong power dependence, both of
which are not included in SPA-SALT. It was found that when two lasing frequencies began to
cross as a function of power, one of the solutions would reduce in intensity to zero, but the
remaining mode would change dramatically its spatial pattern and would evolve into a fairly
equal mixture of the two modes before the frequency crossing. This “mode-mixing” scenario
requires very low Q and does not occur even in more disordered diffusive random lasers. It
cannot play a role in the current example for two reasons. First, with uniform pumping the
microdisk laser conserves the azimuthal quantum number m, so our two interacting modes of
different m’s do not mix spatially through the non-linear interaction; they only affect each other
through gain saturation. Second, the frequencies of these two modes are well separated and
do not change with increasing pump. In fact we would not expect IMS to occur in general in
random lasers, because we require quite large cross-interaction coefficients, which are not likely
to occur between two modes of random lasers.

4. IMS with an evolving pump profile

In this section we show that when IMS does not occur for a fixed pump profile, it can be
facilitated by a pump profile that evolves with the pump strength; IMS can then be induced as a
result of the combined actions of a linear effect (i.e., change of non-interacting thresholds with
the varied pump profile) and the non-linear modal interaction.

Conceptually IMS is less surprising in this case. First one chooses a system in which different
modes are to some extent spatially distinct, so that by changing the spatial profile of the
pump one can favor one mode over another with similar Q value. Then one simply defines a
“pump trajectory” [5] which initially favors one mode and then evolves so as to favor the other.
Eventually the effective gain of the second mode becomes so high that it forces the first mode
below threshold by gain saturation [19].

However, this intuitive picture does not always hold, because there is no guarantee that the
effective gain of the first mode will reduce eventually as the overall pump power increases
(see the quantitative discussion below Eq. (16) near the end of this section). More importantly,
evolving the pump profile is an important generalization because one relies much less on fine
tuning of parameters of the cavity and gain medium to generate IMS, which then occurs more
robustly. This is exemplified in Fig. 4 using two coupled 1D laser cavities with slightly different
lengths (L1 < L2) and independent pump controls (D1,D2). The gap between the two cavities
(W ) is much shorter than their lengths, and there exist pairs of lasing modes that have similar
frequencies but reside asymmetrically in these two cavities.

One such pair (mode 1 and 2) are shown in Fig. 4(a). Mode 1 has a stronger intensity in the
left cavity, while mode 2 does the opposite. If the two coupled cavities are pumped uniformly, we
find that mode 1 turns on first at D0 = 0.313, and its intensity continues to increase after mode 2
turns on at D0 = 0.349 [see Fig. 4(c); inset]. The absence of IMS in this case is well captured by
the criterion (10), which does not hold since χ22/χ12 = 1.64 is larger than D(1)

0 /D(2)
0 = 0.953.

To generate IMS for this system and these two modes, we evolve the pump profile as we
increase its average strength, by uniformly pumping each cavity but with different weights.
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Fig. 4. Interaction-induced mode switching facilitated by an evolving pumping in two
coupled 1D cavities of index n = 3. Their lengths are L1 = 4.2µm, L2 = 5.0µm and the
gap width between them is W = 0.8µm. L ≡ L1 +L2 +W = 10µm. (a) Intensity profiles
of two modes with wavelength λ1 = 4.15µm, λ2 = 4.28µm. Shaded areas show the two
cavities. (b) Their non-interacting thresholds (solid and dashed lines) versus the pump ratio
D2/D1. The average pump strength D0 along the pump trajectory used in (c) is shown as
the dash-dotted line, and the arrow indicates the direction of increasing D1. The triangle
and diamond on it mark the onset of mode 2 and the termination of mode 1. The gain curve
is centered at ωaL/c = 15 (λa = 4.19µm) and its width is γ⊥L/c = 1. (c) IMS of mode 1
when the pump strength in the right cavity is increased while the pump strength in the left
cavity is fixed at D1 = 0.318. Inset: Mode switching does not occur for uniform pumping
(D1 = D2). (d) IMS of mode 2 when the pump strength in the left cavity is increased while
the pump strength in the right cavity is fixed at D2 = 0.344. Good agreement between SALT
(lines) and FDTD simulations (triangles) are shown. γ‖/γ⊥ = 5×10−4 is used in FDTD
simulations.

Specifically, the pump profile f (x) is normalized by
∫

L1∪L2
f (x)dx = f1L1+ f2L2 ≡ L1+L2, and

the average pump strength is given by D0 = (D1L1 +D2L2)/(L1 +L2), with D1(2) ≡ D0 f1(2) by
definition. Since mode 1 is stronger in the left cavity, its threshold increases if we pump the
right cavity preferably [see Fig. 4(b)]; the opposite holds for mode 2, because it has a stronger
intensity in the right cavity. For a fixed ratio f2/ f1 < 1.11 (including the uniform pumping case),
mode 1 is the first mode to lase when the pump strength is increased.

Starting from uniform pumping and D1 = D2 = 0.318 (grey dot in the inset of Fig. 4(c)), we
increase D2 while keeping D1 fixed. The modal intensity of mode 1 continues to increase until
the onset of mode 2 at D2 = 0.342 ( f2/ f1 = 1.07), after which it reduces with D2 [Fig. 4(c)].
Mode 1 is switched off eventually at D2 = 0.385 ( f2/ f1 = 1.21). It is clear that the non-linear
modal interaction still plays a crucial role in this mode switching scenario; mode 1 would have
continued to lase above D2 = 0.385 if not interacting with mode 2, because the average pump
strength is still above its non-interacting threshold [Fig. 4(b)]. This behavior is distinct from the
self-termination of a lasing mode due to an exceptional point as reported in [5, 14, 28]; the latter
is a linear effect and does not depend on the non-linear modal interactions.

Interestingly, with this additional control knob, the IMS scenario can be interchanged if
a different initial pump configuration is chosen. In Fig. 4(d) we start with D1 = 0.287 and
D2 = 0.344 (D2/D1 = 1.2). Only mode 2 lases since the pump strength is just above its non-
interacting threshold but below that of mode 1. As we increase D1 while keeping D2 fixed, the
intensity of mode 2 increases linearly until D1 > 0.306 (D2/D1 < 1.12), beyond which mode 1
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turns on and switches off mode 2 at D1 = 0.331 (D2/D1 = 1.04).
For this one-dimensional example it is relatively easy to provide a test of our results indepen-

dent of SALT by using time integration of the full Maxwell-Bloch equations [11–13]. As shown
in Fig. 4(d), such calculation also predicts IMS and agrees with SALT, finding less than a 1%
difference between the values of the pump strength at which mode 1 is killed. This difference
is within the typical range (a few percent) when comparing SALT and FDTD results [11–13].
We also note that our coupled-cavity laser does not show signs of bi-stability [17–20], i.e., the
frequencies and intensities of the lasing modes are unique for a given pump combination D1 and
D2, even though it can be reached by evolving different initial pump configurations. One such
comparison is shown by the grey dots in Fig. 4(c) and its inset, which give the same intensity of
mode 1 at D1 = D2 = 0.318. Another comparison is shown by the black dots in Fig. 4(d) and the
inset of Fig. 4(c), which give the same intensity of mode 1 at D1 = D2 = 0.344. The absence of
bistability here is due to the conditions γ⊥,∆� γ‖ we consider, with which a stationary inversion
can be assumed in the two-mode regime [7, 11, 13, 22]; it is exact in the single mode regime.

Besides the flexibility of exchanging the killer mode and the victim mode, IMS is also robust
and exists in a wide parameter space when evolving the pump profile. For example, IMS shown
in Fig. 4(c) does not rely on the specific value of the fixed pump strength D1; it always occurs as
D2 is increased, provided that the mode 1 still lases first. Surprisingly, we find that the modal
intensity I1 along these different pump trajectories are all invariant in shape as a function of D2,
as shown in Fig. 5(a): the triangular area underneath the modal intensity (“IMS triangle”) is
simply scaled and shifted [29].

To understand this observation, we first compare the thresholds (in terms of D2) of both modes
when evolving the pump profile from different D1 values. As we show in Fig. 5(b), if we increase
the D1 value we start with, the non-interacting threshold of mode 1 (in terms of D2) is reduced
more than that of mode 2, thanks to the stronger intensity of mode 1 in the left cavity. Therefore,
we expect mode 1 to lase in a wider range of D2, which enlarges the IMS triangle. To understand
the shape invariance of the IMS triangle, we note that it is equivalent to show that the power
slope of mode 1 with respect to D2 does not depend on the fixed D1 value along each pump
trajectory, both before and after the onset of the second mode.

We resort to SPA-SALT again to explain this property, which also gives the IMS criterion
when two independent pumps are applied. The constrained two-mode equations (4) now become:

M
(

I1
I2

)
= P

(
D1
D2

)
−
(

1
1

)
, P≡


W11

D(1)
0

W12

D(1)
0

W21

D(2)
0

W22

D(2)
0

 , (13)

where we have used the threshold CF states [9] that have the property that one such state is the
threshold solution, even for a non-uniform index cavity and non-uniform pumping. M here is the
same as given in Eq. (4), D(µ)

0 is the non-interacting threshold of mode µ with f1 = f2, and

Wµν =
1
V

∣∣∣∣∫cavity
dxuµ(x)ū∗µ(x)ην(x)

∣∣∣∣ (14)

is the overlapping factor of mode µ (its corresponding CF state uµ(x) to be exact) with the pump
in cavity ν (ν = 1,2), where ην(x) = 1 in cavity ν and 0 elsewhere in our example above. Wµν

represents the linear effect we mentioned at the beginning of this section, which indicates that the
evolving pump profile changes the non-interacting thresholds of the lasing modes. For example,
D(1)

0 /W12 and D(2)
0 /W22, whose inverse appear in the matrix P in Eq. (13), are approximations of

the non-interacting thresholds of mode 1 and 2 when pumping only cavity 2 [21]. The SPA-SALT
equations (13) give good approximations of the modal intensity of interacting thresholds as
shown in Fig. 5(a).

#250453 Received 18 Sep 2015; revised 17 Dec 2015; accepted 17 Dec 2015; published 4 Jan 2016 
© 2016 OSA 11 Jan 2016 | Vol. 24, No. 1 | DOI:10.1364/OE.24.000041 | OPTICS EXPRESS 51 



0.305 0.31 0.315 0.32 0.325 0.33

0.28

0.31

0.34

Pump strength D1

Pu
m

p 
st

re
ng

th
 D

2

Mode 2

Mode 1

(b)
Pump strength D2

(a)

M
od

al
 in

te
ns

ity D  =0.3251

D  =0.311
D  =0.3181

0.3 0.34 0.38 0.42
0

0.1

0.2

Fig. 5. Invariant shape of the IMS triangle. (a) Same as Fig. 4(c) but with different values
of the fixed pump strength D1. Modal intensity of mode 2 is not shown for clarity. Solid
lines show the full SALT results and dash-dotted lines show the SPA-SALT approximations
[Eq. (13)]. (b) Non-interacting thresholds in terms of D2 when D1 is varied.

Assuming a fixed pump strength D1 and varying D2 as in Figs. 4(c) and 5(a), we immediately
find that the power slope of mode 1 with respect to D2, i.e., S1 =W12/[Γ1χ11D(1)

0 ], is independent
of the fixed pump strength D1 in cavity 1. Likewise, after the onset of mode 2, the power slope
becomes

S̃1 =

χ22
χ12
− D(1)

0 W22

D(2)
0 W12

χ22
χ12
− χ21

χ11

S1, (15)

which is also independent of the fixed D1 value along each pump trajectory. This concludes our
proof of the shape invariance of the IMS triangle.

The factor W22/W12 in the numerator of Eq. (15) makes IMS rely much less on fine tuning
of parameters of the cavity and gain medium. It is basically an indicator that shows how much
mode 2 (the killer mode here) benefits more from the second pump D2 than mode 1 (the victim
mode). For uniform pumping this factor is 1 by definition [see Eqs. (1) and (14)] and we recover
Eq. (7). In contrast to the uniform pumping case, here even with χ11,χ22 larger than χ12,χ21 as
in a typical laser (which gives a positive denominator in Eq. (15)), a negative power slope S̃1 and
hence IMS can still be induced by simply focusing the second pump onto mode 2 and avoiding
mode 1, such that

W22

W12
>

D(2)
0 χ22

D(1)
0 χ12

. (16)

#250453 Received 18 Sep 2015; revised 17 Dec 2015; accepted 17 Dec 2015; published 4 Jan 2016 
© 2016 OSA 11 Jan 2016 | Vol. 24, No. 1 | DOI:10.1364/OE.24.000041 | OPTICS EXPRESS 52 



As we mentioned previously, χ22/χ12 = 1.64 is larger than D(1)
0 /D(2)

0 = 0.953 in the example
shown in Figs. 4 and 5, and the criterion (10) for IMS with uniform pumping does not hold.
However, W22/W12 is 2.64 in this case and the criterion (16) holds, thanks to the asymmetric
intensity patterns of mode 1 and 2 in the two cavities [Fig. 4(a)]. Equation (16) also points
out the occurrence of IMS by evolving pump profile is more subtle than the intuitive picture
discussed at the beginning of this section: if the second pump favors mode 2 over mode 1(i.e.,
W22/W12 > 1) but fails to meet the quantitative requirement imposed by Eq. (16), IMS does not
occur either.

Last but last least, the lasing modes for two identical cavities near threshold are just the
symmetric and antisymmetric superpositions of the same individual cavity mode in these
two cavities, and their intensity profiles are both symmetric in the two cavities, resulting in
W22/W12 ≈ 1 and the absence of IMS, even with independent controls of D1 and D2. One
exception is when the system is so lossy that the cavity decay rate becomes larger than the
coupling between the two cavities, which can result in asymmetric intensity profiles of the two
modes in these two cavities (see the discussion of the “broken symmetry phase” in [28]).

5. Conclusion

We have discussed a mode switching behavior that occurs in lasers with strong non-linear modal
interactions. In this process the identities of the lasing modes are preserved, including their
spatial patterns and frequencies. IMS is a robust phenomenon and can in principle occur in any
type of laser, including standard systems such as a microdisk and coupled one-dimensional
cavities. In IMS the power slope of a lasing mode turns negative when another lasing mode
turns on, resulting in the switching off of the first mode in a linear fashion. Qualitatively this
phenomenon is due to strong cross-saturation effects, and it is explained by the satisfaction of
two inequalities involving the modal interaction coefficients and the non-interacting thresholds
of the modes. Specifically, using the SPA-SALT approximation, we have identified a criterion
for IMS with a fixed pump profile, which requires the cross-interaction coefficient to be stronger
than the self-interaction coefficient of the killer mode but smaller than that of the victim mode,
as well as a constraint on their non-interacting thresholds. These conditions can be satisfied,
for example, when the two modes have similar peak structures and the killer mode is more
localized. More importantly from the point of view of controlling the mode spectrum of lasers,
even when these conditions are not satisfied for a fixed spatial profile of the pump, IMS can be
generated by evolving the spatial pattern of the pump as the total pump power increases, no matter
whether the laser system consists of a single cavity or coupled cavities. This mode switching
behavior seems to occur in exciton-polariton condensates as well [30]. IMS may have potential
applications in robust and flexible all-optical switching [31], stepwise-tunable single-mode laser
sources, and optical memory cells [32]. An existing experimental setup for its demonstration
may consist of a microdisk cavity and a spatial light modulator for the optical pump, which has
been employed successfully to demonstrate pump-controlled emission directionality [33] and
modal interactions [34].
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