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Modeling the behavior of superconducting electronic circuits containing Josephson junctions is crucial for
the design of superconducting information processors and devices. In this paper, we introduce DEC-QED, a
computational approach for modeling the electrodynamics of superconducting electronic circuits containing
Josephson junctions in arbitrary three-dimensional electromagnetic environments. DEC-QED captures the
nonlinear response and induced currents in BCS superconductors and accurately captures phenomena such as
the Meissner effect, flux quantization, and Josephson effects. Using a spatial coarse-graining formulation based
on discrete exterior calculus (DEC), DEC-QED can accurately simulate transient and long-time dynamics in
superconductors. The expression of the entire electrodynamic problem in terms of the gauge-invariant flux field
and charges makes the resulting classical field theory suitable for second quantization.
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I. INTRODUCTION

Accurate modeling of superconducting microwave circuits
incorporating nonlinear Josephson junction (JJ)-based ele-
ments is essential for the design, control, and deployment
of quantum information processing systems involving qubits
and their readout systems. As the number of qubits increases
and their electromagnetic environments become more com-
plex [1], efficient computational approaches are required to
produce reduced quantum models that capture the relevant
degrees of freedom. This active research area [2–14], which
lies at the intersection of computational electromagnetism
and quantum electrodynamics of superconducting devices,
is of great importance not only for quantum information
processing, but also for a range of other applications, includ-
ing low-noise amplification, large-format detector arrays for
astrophysics, and fast digital circuits.

In this paper we present DEC-QED, a computational
approach for modeling superconducting nonlinear elements
in complex three-dimensional electromagnetic environments.
DEC-QED accurately solves Maxwell equations coupled to
the nonlinear Schrödinger equation describing the dynamics
of the order parameter of the electronic condensate field of
a superconductor. It utilizes the gauge-invariant flux field to
describe the interactions between electromagnetic fields and
charge degrees of freedom in superconducting materials. Fur-
thermore, we demonstrate that the use of discrete differential
forms and their exterior calculus, known as discrete exterior
calculus (DEC) [15–17], enables the efficient and accurate
solution of the numerical problem through spatial coarse
graining. We illustrate the capabilities of DEC-QED through
examples including the simulation of the Meissner effect, flux
quantization, and Josephson oscillations.

The flux-field description has been essential in the devel-
opment of circuit quantum electrodynamics (cQED) [18], a

formal quantum electrodynamic theory of light-matter inter-
actions involving macroscopic quantum degrees of freedom
acting as atoms. This theory has been successfully imple-
mented through computational approaches that synthesize
accurate low-energy quantum Hamiltonians based on the flux-
field description [2]. In this paper, we demonstrate that the
flux-field description emerges naturally from a coarse-grained
formulation of the electromagnetic and charge degrees of
freedom. This shift in perspective is significant because it
demands accuracy not at the pointwise level, but for averages
of the fields over spatial intervals. DEC provides a natural
framework for coarse-grained fields, enabling the accurate
construction of differential operators and nonlinear terms in
the wave equation. We also show that under the appropriate
geometric constraints, the 3 + 1D theory reduces to the stan-
dard 1 + 1D flux-field description of cQED for a transmission
line [7,18] and is able to capture the known nonlinear dynam-
ics of the gauge-invariant phase of a JJ. The theory provides
an ab initio parametrization of the reduced equations and
corrections to the known nonlinear JJ dynamics.

As quantum processors become more complex, there
are a number of computational and fundamental challenges
that need to be addressed. From a practical perspective,
there are challenges related to transient currents within su-
perconductors and unintended electromagnetic interactions
between circuit elements, known as cross-talk [19–23]. These
challenges can be addressed at the semiclassical level by
describing the superconductor using its order parameter equa-
tions and the electromagnetic degrees of freedom using the
classical Maxwell equations. The focus of this paper is on
computational problems of this nature. There are also fun-
damental challenges related to eliminating certain degrees
of freedom in order to arrive at a reduced quantum model
[7,8,24]. The efficient computational description of vari-
ous damping and decoherence effects, such as spontaneous
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FIG. 1. (a) A schematic of a superconducting material interacting
with the electromagnetic field [18]. The example used here is a
superconducting JJ-based qubit embedded in a coplanar waveguide
resonator. (b) An example of the spatial dependence of the density
of condensate electrons, ρ, in the jellium model, in which the charge
fluctuation δρ on top of the mean value ρ0 is small, i.e., δρ � ρ0.

emission and the Purcell effect [25], as well as quasiparticle-
related damping and decoherence [26–28] in the presence of
nonlinearity and multimode coupling, is a broader problem
that will be addressed in future work.

The aim of this work is to rigorously extend the sub-
gap electrodynamics of superconducting electrical circuits to
three-dimensional structures that include JJs. To achieve this,
we will (1) extend the flux-field description to 3 + 1D in a
rigorous manner, (2) accurately account for processes occur-
ring within superconductors rather than bypassing them using
boundary conditions or the London theory, (3) capture the
time dynamics of both material and microwave degrees of
freedom, and (4) use a formulation that is manifestly gauge
invariant, achieved through the use of hybridized field degrees
of freedom.

The paper is structured as follows. In Sec. II, we introduce
the fundamental equations and field variables that will be
utilized to study the semiclassical dynamics of the condensate
field in superconducting materials embedded in a three-
dimensional electromagnetic environment. The discretized
equations for the spatially coarse-grained fields, derived us-
ing the DEC methodology, are presented in Sec. III. The
numerical results of our analysis, based on these equations,
are presented in Sec. IV. Specifically, in Sec. IV A, we discuss
the eigenmodes of the resulting vector Helmholtz equation ob-
tained through the application of DEC. The time-domain
simulation of an oscillating dipole inside a superconducting
cavity with finite-width walls is discussed in Sec. IV B. The
simulation of the dynamical Meissner effect is presented in
Sec. IV C, while the investigation of flux quantization in su-
perconducting loops is presented in Sec. IV D. Finally, the ab
initio modeling of Josephson junction dynamics is discussed
in Sec. IV E.

II. SEMICLASSICAL GAUGE-INVARIANT
FORMULATION OF ELECTRODYNAMICS

IN SUPERCONDUCTING MATERIALS

We consider a superconducting material consisting of po-
tentially multiple disconnected domains interacting with the
electromagnetic (EM) field in a three-dimensional volume
(see Fig. 1). A jelliumlike model is used to describe the super-
conducting material, in which the solid provides an immobile
ionic continuum that exactly balances the total charge of the
dynamical superconducting condensate field. The dynamics

of the order parameter �(r, t ) describing the condensate elec-
trons is then given by [29]

ih̄
∂�(r, t )

∂t
=

[
1

2m
(−ih̄∇ − qA)2 + qV (r, t ) + U (r)

]

× �(r, t ), (1)

where m = 2me and q = −2e correspond to the mass and
charge of a superconducting Cooper pair, respectively; A is
the magnetic vector potential; V is the scalar electric potential
of the condensate charge field; and U is the static potential de-
fined by the superconducting material. The spatial dependence
of the potential U will be used to define different materials
(and vacuum) that confine the condensate field. If there is
only one material in consideration, then U is constant. In the
Madelung representation [30] for the condensate wavefunc-
tion, we write �(r, t ) = √

ρ(r, t )eiθ (r,t ), where ρ and θ are
the density and phase of the condensate, respectively. The
supercurrent is then given by

Js = q

m
Re

{
�∗

(
h̄

i
∇ − qA

)
�

}
= qρ

m
(h̄∇θ − qA). (2)

Rewriting Eq. (1) using the Madelung representation we ob-
tain from the imaginary part of Eq. (1) the current continuity
equation

∂ρ

∂t
= −1

q
∇ · Js, (3)

while the real part of Eq. (1) gives the equation of motion for
the phase θ ,

∂θ

∂t
= − m

2h̄q2ρ2
J2

s + h̄

2m

∇2(
√

ρ)√
ρ

− 1

h̄
(qV + U ). (4)

The dynamics of the vector and scalar potentials A and V are
governed by the Maxwell equations as

∇ × ∇ × A + μ0ε0Ä = μ0(Js + Jsrc) − μ0ε0∇V̇ , (5)

−∇2V = q

ε
(ρ + ρsrc), (6)

where ρsrc and Jsrc are external charge and current sources.
Next, we introduce the gauge-independent hybridized field

A′ = A − h̄

q
∇θ. (7)

Using Eq. (2) to substitute Js, Eq. (5) can be rewritten in terms
of the new field A′ and ρ as

∇ × ∇ × A′ + μ0ε0
∂2A′

∂t2
+ μ0q2

m
ρA′ − μ0ε0q

2m

∂

∂t
∇|A′|2

+ μ0ε0h̄2

2mq

∂

∂t
∇

[∇2(
√

ρ )√
ρ

]
= μ0Jsrc. (8)

Equation (3) can also be written explicitly as

∂ρ

∂t
= ∇ ·

[
q

m
ρA′ − Jsrc

q

]
− ∂ρsrc

∂t
. (9)

Equations (8) and (9) are the two central equations of our
formulation, with which one can study the time evolution of
systems of piecewise superconducting objects embedded in
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the three-dimensional vacuum and interacting with an elec-
tromagnetic environment. The hybridized field A′ spans the
entire space and lives both inside the materials and in vacuum.

For macroscopic superconducting devices, it is reasonable
to assume that the electron condensate is nearly “rigid” in
the bulk, meaning that the time-dependent EM field only
causes a small fluctuation in the distribution of Cooper pairs.
As a result, in the bulk of the material, the charge density
can be expressed as ρ = ρ0 + δρ, where ρ0 is the uniform,
static charge distribution that cancels out the charge from the
ionic lattice in the unperturbed case and δρ is the fluctuation
due to the presence of EM fields. Equations (8) and (9) can
be solved without this approximation; the equations we will
be solving below are nonlinear as well. This approximation
allows, however, for the introduction of important physical
scales in a natural way and enables a systematic expansion in
δρ/ρ0 if greater accuracy is required. As demonstrated in the
numerical results of Sec. IV, when combined with the coarse-
grained formulation provided by DEC, this approximation can
be reliably extended to the boundaries of macroscopic objects.

Introducing the penetration depth of a superconductor

λL =
√

m
μρ0q2 , Eq. (8) can be decomposed into linearized and

nonlinear parts. Before we do that, notice that the last term
in the left-hand side (LHS) of Eq. (8), the quantum pres-
sure term, can be shown to be very small in the bulk of the
superconductor. In fact, expanding

√
ρ ≈ √

ρ0(1 + δρ/2ρ0)
and using Eq. (9), one can show that this term becomes
με h̄2

4m2 ∇(∇2(∇ · A′)). The smallness parameter for this term is
h̄2

4m2c2λ4
L

≈ 10−12 inside the superconductor for λL = 100 nm,
justifying our neglecting this term. Equations (8) and (9) can
then be written as

∇ × ∇ × A′ + μ0ε0
∂2A′

∂t2
+ 1

λ2
L

A′ + μ0q2

m
δρA′

− μ0ε0q

2m

∂

∂t
∇|A′|2 = μ0Jsrc, (10)

and

∂δρ

∂t
= ∇ ·

[(
1

μ0qλ2
L

+ qδρ

m

)
A′ − Jsrc

q

]
− ∂ρsrc

∂t
. (11)

Equations (10) and (11) accurately describe the evolution of
A′ and δρ in the bulk of the superconducting material. The
first three terms on the left-hand side of Eq. (10) constitute the
linear response of a superconductor as described by London
theory [31], while the remaining terms are nonlinear correc-
tions. Given the source terms, these equations form a complete
set of equations. However, near the boundaries, it is necessary
to include nonlinear corrections from the quantum pressure
term. Section IV E provides a detailed numerical analysis
and analytical derivations where such boundary terms become
important, solving the full Eqs. (8) and (9), or their discretized
version, Eqs. (24) and (25).

Note that the A′ field here is a light-matter field containing
both electromagnetic (A) and condensate (∇θ ) degrees of
freedom. Using such a hybrid field in the formulation helps
us efficiently capture the dynamics of both the EM field and
the material and their interactions. Indeed, the nonlinearities
in Eq. (10) arise from such interactions: the term δρA′ comes

from the fluctuation in the supercurrent inside the material due
to a time-dependent EM field, while the term ∇|A′|2 derives
from the nonlinear dependence of the superconducting phase
θ on the EM field [Eq. (4)].

The hybridized light-mater dynamics in a superconducting
material can then be simulated by numerically solving either
of Eqs. (8) and (9) or the pair Eqs. (10) and (11). For complete-
ness, in Appendix D we also provide a perturbative analysis
to treat the nonlinear terms in Eqs. (10) and (11).

III. ELECTRODYNAMICS WITH COARSE-GRAINED
FLUX VARIABLES

A. Discretization of Maxwell’s electrodynamics

This section outlines the method by which the discretiza-
tion of Maxwell’s theory of electromagnetism is achieved
through the use of DEC. This discussion aligns with
previous research on DEC formulations of Maxwell’s equa-
tions [17,32]. In this specific instance, we utilize a variant that
is formulated in terms of the potentials (A,V ) as a founda-
tion for deriving the equations of a superconductor. Here the
spatiotemporal behavior of sources is assumed to be given.
In the subsequent section, we will require these sources to
be self-consistently determined through the order parameter
equation [Eq. (1)].

We consider a mesh M that spans over the domain of
interest D and decomposes it into polygonal [two-dimensional
(2D)] or polyhedral [three-dimensional (3D)] cells. The DEC
framework requires in addition the introduction of a dual mesh
M† whose vertices are the circumcenters of the cells of M such
that connecting two vertices in M† creates an edge if and only
if the corresponding cells in M share a face. Therefore, by
construction there is a one-to-one mapping between vertices
(v), edges (e), faces ( f ), and cells (c) in M and cells, faces,
edges, and vertices in M†, respectively. In this paper we will
use † to denote the duality of the two lattices. For example,
v† is the cell in M† whose circumcenter is v, or e† is the
face in M† that is orthogonal to e, etc. (see Fig. 2). Starting
with the canonical fields {A,∇V } that are used in standard
electrodynamics, we define the following coarse-grained flux
fields,

φ(e) =
∫

e
d
 · A, (12)

ψ (e) =
∫

e
d
 · ∇V, (13)

defined on the edges e of the lattices. One can think of the
fields φ(e) and ψ (e) as averaged projections of the vector
fields A and ∇V onto an edge e, respectively, but note that
these quantities are scaled by the length of the edge. Fig-
ure 2(a) illustrates the construction of a dual mesh and the
locations of the flux fields. DEC is a discretized version of
exterior calculus in which the derivative operation on each
lattice is the discretized exterior derivative and the mapping
between the two lattices is the discretized Hodge star [16].
DEC was originally developed for simplicial meshes [15] and
has been successful in modeling various systems of nonlinear
partial differential equations [17,33]. In this paper, we use
cubic dual meshes, which provide a more visually intuitive
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FIG. 2. (a) A dual-lattice cubical mesh is shown, in which the edges of the primal lattice M are in red, while the edges of the dual lattice
M† are in green. The fields ψ , φ, and � and the current density J are defined on the edges. (b) An edge e in M is orthogonal to a corresponding
face e† in M†. (c) A vertex v in the primal mesh corresponds to a cell v† in the dual mesh. (d) Illustration of how the identity ∇ × (∇V ) = 0
is naturally satisfied on the boundary of each face. (e) Similarly, the identity ∇ · (∇ × A) = 0 is also locally satisfied at each unit volume. (f)
The divergence operator applied to a vertex v corresponds to a sum (with the correct signs) of flux lines that pass through it. (g) The double
curl operator ∇ × ∇× applied to an edge e (shown in yellow) corresponds to a weighted sum of that edge with the surrounding edges in M. (h)
The ρ̄ field, defined on every edge e, is determined by averaging the values of ρ evaluated at the vertices that e connects. (i) An example of the
support volume of a primal edge. The primal edge is red, the dual lattice is green, and the support volume is purple. (j) To represent the action
of the gradient term ∇|A′|2 on an edge (colored yellow), |A′|2 needs to be defined at the two vertices vA and vB. To do so, the values of φ(e) at
the surrounding edges are needed, resulting in two sets of concurrent edges connected via the shared edge. The geometrical representation of
the pressure term is somewhat similar. The main difference is that scalar fields at vertices are in use instead of edge fields.

interpretation of DEC’s geometric constructions while still
yielding the same discretized equations. We will focus on
the aspects of DEC that are necessary for our physical prob-
lem, which is the formulation of light-matter interaction in
superconductors, and avoid discussing the full mathematical
structure of the theory.

Figures 2(b) and 2(c) demonstrate the dualities between el-
emental objects in the primal and dual meshes. At first glance,
the dual mesh construction may seem unnecessarily complex,
as traditional finite element methods only use one mesh.
However, as this section will show, the interaction between
the primal and dual meshes allows for compact descriptions
of differential operators. The dual mesh is also useful when
dealing with boundaries in systems with multiple materials.
In such cases, the primal mesh conforms to the interfaces
between objects, while the material properties can be defined
on the dual mesh to account for effective values attached
to edges on those interfaces [32]. Despite the complexity of
the geometric constructions involved in its dual-lattice for-
mulation, the authors believe that the benefits of using DEC
outweigh this complexity.

In DEC, vectorial quantities are projected onto oriented
edges of the grid [as seen in Eqs. (12) and (13)], while scalars
are attached to vertices. Since the rate of change of a scalar is
a vector field, and vice versa, this interconnectivity of primal
edges with primal vertices (and their duals) leads to a natu-
ral representation of differential operators. The discretization
of Maxwell’s equations can therefore be done as follows.

Consider a vector field F defined on the edges of the primary
lattice M; then

∫
v†

(∇ · F) dr3 =
∑
e|v∈e

A(e†)


(e)

∫
e

F · d
, (14)

where 
(e) is the length of the edge e and A(e†) is the area
of its dual face e†. Similarly, for an edge e ∈ M, the curl-curl
operator in the discrete flux language is given by

∫
e†

(∇ × ∇ × F) · da =
∑

e0∈∂ (e† )


(e0)

A(e†
0)

∑
e1∈∂ (e†

0 )

∫
e1

F · d
,

(15)

where ∂ (e†) and ∂ (e†
0) are the boundaries of e† and e†

0,
respectively. The graphical illustrations of Eqs. (14) and
(15) are shown in Figs. 2(f) and 2(g), respectively, while
detailed derivation of these equations are discussed in
Appendix A.

With the discrete forms of the divergence and curl-curl
operators, Maxwell’s equations can be written in terms of flux
fields. For F = ∇V , Eq. (14) yields the discrete version of
Gauss’s law,

∑
e|v∈e

A(e†)


(e)
ψ (e) = −Q(v)

ε
, (16)
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while substituting F = A in Eq. (15), we can rewrite Ampere’s
law in Eq. (5),

∑
e0∈∂ (e† )

∑
e1∈∂ (e†

0 )


(e0)

A(e†
0)

φ(e1) + με
A(e†)


(e)
φ̈(e)

= μI (e) − με
A(e†)


(e)
ψ̇ (e). (17)

Here I (e) = (A(e†)/
(e))
∫

e J · d
. Equations (16) and
(17) describe the evolution of the fields (φ(e), ψ (e)), which
are coarse-grained representations of (A,∇V ), under a given
source current I (e) and a charge distribution Q(v). In addition
to Eqs. (16) and (17), there are two additional equations which
serve as constraints on the fields that are given by

∇ × (∇V ) = 0, (18)

∇ · (∇ × A) = 0. (19)

These constraints, however, are automatically satisfied by the
very construction of DEC. Indeed, we can show this by inte-
grating the LHS of Eq. (18) over the area of an elemental face
f on the primal mesh,∫

f
(∇ × (∇V )) · da =

∑
e∈∂ f

∫
e
∇V · d


=
∑

i, j∈∂e|e∈∂ f

Vi − Vj

= 0, (20)

where ∂ f is the boundary of the face f , and ∂e is the boundary
of the edge e. A graphical illustration of Eq. (20) is shown in
Fig. 2(d), where we can see that the value of Vi at each vertex
of the face is counted twice, but with opposite signs. Similarly,
we can show that the constraint in Eq. (19) is satisfied by
doing a volume integral over a unit cubical cell,∫

c
∇ · (∇ × A)dr3 =

∑
f ∈∂c

∫
f
(∇ × A) · da

=
∑
f ∈∂c

∑
e∈∂ f

φ(e)

= 0, (21)

where the final sum is taken over the boundaries ∂ f of the
faces f that form the boundary of c, as shown in Fig. 2(e). The
automatic satisfaction of Eqs. (18) and (19), which alleviates
the need to impose these constraints manually, present an
advantage of DEC. One may find the dual mesh construction
of DEC similar to the Yee grid formulation [34] used in
the finite difference time domain (FDTD) method. The key
distinction of DEC is that here the fundamental variables
are the “small” integrals defined over edges for which the
coarse-grained dynamical equations are written. This is a de-
viation from FDTD and standard finite element schemes as
these methods attempt to model continuous differential equa-
tions by computing their continuous variables through spatial
and temporal discretization. Another advantage of our chosen
approach is that, due to finite spatial and temporal resolutions

of experimental apparatus, measured quantities are funda-
mentally coarse grained. Therefore, by directly formulating
a coarse-grained description of the electromagnetic problem,
our approach is appropriate for describing actual experimen-
tal measurements. This formulation is also computationally
efficient, as it does not require a finely discretized physical
domain to accurately conform with methods that are based on
continuous formulations.

B. Coarse-grained formulation for the electrodynamics
of superconductors

In this section, we discuss a DEC formulation of the solu-
tion of Eqs. (10) and (11) that describes the electrodynamics
of superconductors. To this end, we introduce the coarse-
grained hybridized field �(e) defined as follows:

�(e) =
∫

e
d
 · A′. (22)

The use of this edge-based flux field in this work is partially
motivated by its connection to the gauge-invariant phase dif-
ference ϕ across a JJ, which serves as the foundation for the
lumped-element formulation of cQED [35]:

ϕ = θ2 − θ1 − q

h̄

∫ 2

1
d
 · A, (23)

with θ1 and θ2 being the phases of the condensate wave-
function at the two insulator-superconductor interfaces of the
junction. This is equivalent to the coarse-grained edge field
ϕ = − q

h̄

∫
A′ · d
 over a single edge spanning the insulator

of a JJ. It is generally believed that the interaction of the
JJ with its surrounding electromagnetic environment is fully
encoded in its critical current and the gauge-invariant flux ϕ.
DEC-QED generalizes this idea of coarse-grained encoding
to all of space using the definitions in Eqs. (13)–(22). This
allows us to extend the flux-based description of cQED to the
three-dimensional domain of the full system, thereby enabling
the generalization of techniques in one-dimensional cQED to
treat superconducting circuits in three dimensions. Looked at
from the prism of DEC-QED, one may explain the success
of cQED in describing JJ-based electrical circuits as follows:
From the point of view of accurately capturing the dynamics
of the coarse-grained fields across the entire 3D domain, it
is not necessary to resolve the microscopic details of light-
matter dynamics inside the JJ. On the other hand, should a
detailed study of microscopic dynamics within a JJ be desired,
or for more complicated junctions, DEC-QED can still capture
the dynamics by refining mesh density inside the junction (see
Sec. IV E for a detailed numerical analysis of the physics
of a JJ, and how coarse graining accurately captures results
captured by finer meshes).

Another motivation for coarse graining is the need for an
effective multiscale simulation technique. In a typical super-
conducting circuit, the JJs are the smallest structures, usually
a few nanometers in thickness, and hence orders smaller than
the capacitor pads (that can be on the order of millimeters).
The superconducting qubits are typically coupled to cavity
resonators that are much larger than the qubits in size. Per-
forming full-wave simulations of such a system is resource
intensive, especially if the spatial dimensions of JJs also need
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to be resolved. Therefore, the ability to bypass the need for
high resolutions through coarse graining makes the method a
powerful tool to study multiscale systems.

We now discuss the coarse-grained equations of motion
for superconductors. Consider, for simplicity, a uniform mesh
made up of 3D rectangular “brick” elements. To obtain dy-
namical equations for the coarse-grained fluxes and charges,
we evaluate Eq. (8) at a dual face e† by performing

∫
e† (8) · da

and evaluate Eq. (9) at a dual volume v† by performing∫
v† (9) · dV . The resulting discrete equations are

�̈(e) + 1

μ0ε0
�(e) + 1

μ0ε0λ
2
L

�(e) + q2

ε0m
δρ̄(e)�(e)

− q

2m

∂

∂t
�(e)2 + μ0ε0h̄2

2mq

∂

∂t
δρ(vv⊂∂e)

= 1

ε0


(e)

A(e+)
Isrc(e) (24)

and

V (v†)δρ̇(v) =
∑
e|v∈e

(
1

μqλ2
L

+ q

m
δρ̄(e)

)
A(e+)


(e)
�(e),

(25)
respectively, where V (v†) is the volume of the cell dual to
the vertex v. The curl-curl operator acting on A′ in Eq. (8) is
represented in Eq. (24) by the symbol , whose inspiration
comes from the geometric construction of the discrete oper-
ator acting on the coarse-grained field �(e) [see Fig. 2(g)].
The symbol δρ̄ represents the value of δρ determined along
an edge e, which is computed by averaging the values of δρ

at the end vertices of e [as shown in Fig. 2(h)]. The field ρ̄ is
introduced so that the nonlinear term ρA′ can be accurately
treated in our edge-based discretization scheme [36]. The
nonlinear term ∇|A′|2 is represented by the symbol acting
on �(e) · �(e†) [see Fig. 2(j)]. Finally, the quantum pressure

term ∇[∇2(
√

ρ )√
ρ

] is represented by the symbol acting on the
two vertices at the boundary of e. The dashed lines in the
symbol indicate that the quantities that go into this term are
the scalars at the boundary vertices of the edges, not the edges
themselves.

Equations (24) and (25) allow us to time-evolve the fields
(�(e), δρ(v)) at every edge e and every vertex v in the com-
putational domain, respectively. The discretization of time can
be done in a similar manner as in the standard FDTD method,
in which the time derivative term �̈(e) in Eq. (24) evaluated
at the nth time step is given by

�̈(e)|tn = �(e)tn+1 − 2�(e)|tn + �(e)|tn−1

t
, (26)

where t is the uniform time step, and tn = nt . Inserting
the discrete form for �̈(e) given in Eq. (26) into Eq. (24), the
value of the flux field at the next time step, �(e)|tn+1 , can be
found in terms of flux fields and charges at the current time
step. The propagation in time of δρ(v) according to Eq. (25)
follows a similar strategy.

Note that in Eqs. (24) and (25), we have split the charge
density ρ into the background part ρ0 and the fluctuation δρ,
but still keep all the nonlinear terms as in the full Eqs. (8)

and (9). Each of the nonlinear terms in Eq. (24) is treated
differently in DEC. The δρA′ term is a product of two enti-
ties occupying different regions in space, i.e., a scalar living
on primal vertices (δρ) with a vector field defined on edges
(A′). Therefore, the edge variable ρ̄ is introduced as a natural
solution to perform the product between a scalar and a vec-
tor. The nonlinearity in the ∇|A′|2 term, on the other hand,
comes from the dot product A′ · A′ of two vectorial quantities
that supposedly both live on edges, but the product needs to
produce a scalar that lives on vertices. One therefore need to
invoke the definition of a support volume. An example of a
support volume of a primal edge is shown in Fig. 2(i), while a
formal definition is given in Definition 2.4.9 of Ref. [15]. The
dot product defined on a support volume Vs(e) of an edge e is
then written as ∫

Vs

|A′|2dV = �(e) · �(e†)

= A(e†)


(e)
�(e)2. (27)

To find the dot product on each vertex (or equivalently, on
the dual volume) we then compute the sum over all the edges
attached to that vertex as follows:

|A′|2(v) = 1

V (v†)

∑
e⊃v

V (v†) ∩ Vs(e)

V (v†)

A(e†)


(e)
�(e)2.

(28)
The final form of ∇|A′|2 is therefore defined on each of the
primal edges e,∫

e
∇∣∣A′∣∣2

d
 = |A′|2(vB) − |A′|2(vA), (29)

where vA and vB are the boundary vertices of e. This operation
uses values of the field on the edges surrounding vA and vB,
as illustrated by the operator . Using Eqs. (24) and (25), it is
possible to analyze the dynamics of both material and electro-
dynamic degrees of freedom in any system of superconducting
structures with controllable accuracy. Finally, the treatment of
the quantum pressure term is rather straightforward, as one
only needs to apply a discrete Laplacian followed by a discrete
gradient operator. The bullets in the symbol indicate the
vertices involved in the action of this operator. In Eq. (24)
this operator acts on δρ instead of ρ, as we have made the
assumption that ρ0 is static and does not contribute to the
variation in time of the pressure term. Note that we can obtain
the discrete version of Eq. (10) simply by discarding the
discrete pressure term from Eq. (24). The graphical notations
that we introduced in Eq. (24) above serve both as geometrical
visualizations and shorthand notation for the more lengthy
mathematical representations of the operators involved. For
completeness, in Appendix A we also derive the full form of
these operators.

This full 3 + 1D flux-based formulation can be used to re-
produce the results of the 1 + 1D theory of a transmission line
[7,18] through an appropriate limiting procedure, as demon-
strated in Appendix B. The equation of motion for the flux
field in a one-dimensional (1D) waveguide whose longitudinal
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FIG. 3. The flux fields of the first ten modes, given by �y = ∫
B1 · dSxz = ∫

(∇ × a1) · dSxz, with a1 satisfying Eq. (31) are shown. The
system studied is a 40 × 40 cavity, in units of λL , surrounded by superconducting walls. The entire computational domain is subdivided into
2D rectangular bricks, and the resulting flux fields �y plotted here are the fluxes that thread through the individual rectangular pixels.

dimension is along x is given by

∂2
x �z − lc ∂2

t �z = 0, (30)

where �z(x) = ∫
ψ (ez(x))dt is the flux along the edge ez that

spans z, one of the transverse dimensions of the waveguide.
The capacitance c and inductance l per unit length depend
on the material properties and geometrical dimensions of the
waveguide. Notice that � i

z in Eq. (30) is indeed the usual flux
variable

∫
dt V used in lumped-element treatment of cQED.

Moreover, one can show that the flux through a unit cell in
the 1D discretization of the waveguide is the same as the
difference of � defined at the two nodes of a cellular inductor
in the lumped-element circuit. Therefore, from the full 3D
perspective we can have a correct physical interpretation for
the lumped-element-based circuit theory of a one-dimensional
transmission line. Detailed derivation of Eq. (30) from 3 + 1D
formulation and discussions on the equivalence between the
3D Maxwell formulation and the 1D transmission line circuit
theory is presented in Appendix B.

The focus of this work is on the accurate numerical simu-
lation of 2D and 3D systems. In the subsequent sections, we
will provide several examples to demonstrate the ability of the
coarse-grained computational model to accurately capture the
known physics of superconducting materials interacting with
an electromagnetic environment.

IV. NUMERICAL RESULTS

A. Linear modes of the system

The computational model discussed in Sec. III can be read-
ily applied to the calculation of linear modes of the system.
The linear part of Eq. (10) in steady state is given by

∇ × ∇ × a1 −
(

μ0ε0ω
2 − 1

λ2
L

)
a1 = 0, (31)

where a1 is the spatial component of the linearized field
A′ = a1e−iωt + a∗

1eiωt (see Appendix D). The eigenmodes
of Eq. (31) can be computed using standard eigensolvers
after the discretization described in Sec. III is performed.
To demonstrate this, we calculate the eigenmodes of fields
trapped in a square cavity with superconducting boundaries,
as shown in Fig. 3. We assume translational invariance along
y so that the cavity is effectively 2D. The superconductor
surrounding the cavity has a characteristic penetration depth
λL. The resulting flux field �y normal to the 2D surface, given
by �y = ∫

B1 · dSxz = ∫
(∇ × a1) · dSxz, is shown in Fig. 3.

In the limit λL → 0, the eigenspectrum is discrete due to the
finite confinement of the field and is given by

Em,n = μ0ε0ω
2 = π2

L2
(m2 + n2), (32)

where L is the size of the cavity. In Table I we present the
eigenvalues of the first five modes when different values of
the ratio λ̃ = λL/L are considered. The eigenvalues converge
to the analytical values in Eq. (32) when λL decreases. The
numerically calculated values for when λL = 0 agree well
with the analytical values.

TABLE I. The values of L
√

Em,n/π for the first five modes of the
a1 field satisfying Eq. (31). The system studied is a cavity surrounded
by superconducting walls.

Mode λ̃ = 0.1 λ̃ = 0.03 λ̃ = 0.01 λ̃ = 0 λ̃ → 0 (analytical)

1 1.1578 1.0307 1.0055 1.0012 1.0
2 1.1441 1.0311 1.0055 1.0014 1.0
3 1.6789 1.4714 1.4242 1.4135

√
2

4 2.2713 2.0603 2.0106 2.0018 2.0
5 2.2719 2.0608 2.0112 2.0021 2.0
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2.5 Periods 5 Periods

FIG. 4. The �x and �z fields of a dipole inside a cavity sur-
rounded by superconducting boundaries. The dipole, denoted by the
blue arrow, oscillates in a wavelength of λ = 5, and the cavity size is
20 × 20. All lengths are in units of λL . The column on the left shows
the fields after 2.5 periods, while the column on the right presents the
fields after 5 periods.

B. Dipole source in a superconducting cavity

The formulation presented in Secs. II and III is specifically
designed for accurately capturing the dynamics of interactions
between the superconducting condensate field and electro-
magnetic fields. As an initial example, we consider the case
of an oscillating dipole source within a rectangular cavity
bounded by superconducting walls. In the discretized geome-
try, the dipole is modeled by a current flowing along a vertical
line that is formed by connected edges and is terminated by
two vertices carrying the dipole charges ±Q(t ) = ±Q0(1 −
cos(ωt )). This choice of time-dependent dipole charge en-
sures that at t = 0 the system is completely unexcited and that
conservation of sourced charges is guaranteed at all times. The
time dynamics of this dipole-cavity system is shown in Fig. 4,
where a snapshot of the coarse-grained fields �x and �z is
plotted at two different times. The notations �x and �z denote
the edge fields defined in Eq. (22), now evaluated at the x-
oriented edges ex and z-oriented edges ez of the square lattice,
respectively. The size of the cavity studied is 20 × 20, and the
oscillations excited by the dipole have a wavelength of λ = 5,
all in units of the penetration depth λL of the superconducting
boundary. From Fig. 4 we can see that at t = 2.5T , where
T = λ/c is the period of oscillation, the field has just reached
the boundaries of the cavity. At this point we start to see the
wave being reflected from the walls, with a small leakage into
the material. The use of hybridized generalized flux field �

in our formulation allows for a straightforward representation
of the light-matter dynamics both in the vacuum region and
inside the material. At t = 5T , when the reflected waves have
reached the dipole source, the electromagnetic pattern in the

I

n240 600

I M X

X-point

M-point

n

n
x

y

z

z 0

4

-4
-4 40

y 0

4

-4
-4 40 -4 40

z 0

4

-4

(a) (b)

(c) (d)

(e)

-4 4

4

-4
0

0y

x

X-point

M-point

n

n
xx

y

z

4

(d)

FIG. 5. (a) A schematic of the system studied: We consider a
superconducting cuboid under the influence of external time-varying
magnetic field created by a current loop wrapped around the su-
perconducting piece. The dependence in time of the current in the
external loop is also shown. (b) The current density J inside the
superconducting cuboid at the z = 0 plane and at time step n = 300.
(c) The current density inside the superconducting cuboid at time
step n = 300. The cuboid is 8 × 8 × 8 in units of λL . (d) The am-
plitude |J| over time at the symmetry points (X point and M point)
of the cuboid. (e) The charge fluctuation δρ on the surface of the
superconducting piece at n = 300: from left to right, the xz plane at
y = 4, xy plane at z = 4, and yz plane at x = 4 are shown. The green
dashed line corresponds to the external current loop viewed from the
side.

cavity is the result of interference of the waves generated
by the dipole and the reflected waves from the cavity walls.
Because there is no damping mechanism these oscillations
will reverberate indefinitely.

C. The Meissner effect

The formulation presented in this paper enables the simu-
lation of the time-dependent response of a superconductor to
an external magnetic field and the observation of the transient
stage of this magnetic repulsion. To demonstrate this, in Fig. 5,
we show the time-domain results of simulating the dynamics
of fields by solving Eqs. (24) and (25). The system of interest
is a piece of three-dimensional superconducting material in-
teracting with an external magnetic field created by a current
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loop [Fig. 5(a)]. The current in the loop exhibits a linear ramp
behavior over time initially, after which it remains constant
until the end of the simulation. As shown in Figs. 5(b) and
5(c), currents are generated inside the superconductor near the
surface to nullify the penetration of the field created by the
external loop. The hybridized field A′, along with the internal
current J [given by J ∼ ρA′ as shown in Eq. (2)], decays
towards the bulk of the material, which is consistent with the
Meissner effect [37].

As the current in the external loop enters the steady state,
so does the dynamics inside the superconductor. The de-
pendence in time of current densities at symmetry points
of the superconductor is shown in Fig. 5(d), where we
see the currents fluctuate around the steady-state values.
These oscillations will reverberate indefinitely because of
the lack of any dissipation mechanism. The generation of
a nonuniform supercurrent also brings about redistribution
of charges in the superconductor, particularly near the sur-
face. In Fig. 5(e), we show the charge distribution on the
surface of the superconductor. Due to the highly symmetric
object considered, there are symmetry points at which the
charge distribution remains neutral. This is most evidently
seen in the middle plot in Fig. 5(e), where the top view of
the upper surface of the superconductor is shown. We see
that the charge is neutral along the diagonals and along the
lines connecting the midpoints of opposite boundaries—all
are symmetry lines of a square. These oscillations are indica-
tive of a charge-density wave formation near the surface of the
superconductor.

D. Flux quantization

Flux quantization is another fundamental feature of su-
perconductors that can be observed in macroscopic devices
[38,39]. In this section, we will examine the time-dependent
behavior of the magnetic flux trapped in a nonsimply
connected superconducting object as it transitions between
quantized values under the influence of a smoothly varying
external magnetic field. The first object we consider is an
infinitely long, hollow, concentric superconducting tube with
a square cross section and a finite thickness. On the periphery
of the tube there is a slit where an insulator is placed to form
a Josephson junction [see the inset in Fig. 6(a)]. The primary
role of the junction here is to serve as an insulating region
where quasiparticles (normal electrons) are allowed to exist.
These normal electrons can then give rise to vortices that can
travel within this insulating channel. Due to the infinite length
of the tube, the fields are translationally invariant along that
dimension and the problem is effectively 2D. The quantization
of a fluxoid [40] in this case is given by

N�0 =
∮

A · d
 + � j, (33)

where the closed integral is performed in a loop inside the
interior of the superconducting tube, N is the number of flux
quanta in the loop, �0 is a flux quantum, and � j is the value
of � across the junction. Inside the tube a coil carrying a
current is placed. The current is controlled to increase linearly
over time from zero. The simulation domain is truncated at
a finite distance away from the system of interest, where
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FIG. 6. (a) The dependence in time of calculated fluxoid (in flux
quantum unit) trapped inside the superconducting loop. The top left
inset depicts the 2D geometry studied: an infinitely long supercon-
ducting tube that has a Josephson slit. The tube is 10 × 10 wide,
with a thickness of 2, all in units of λL . There is also a coil inside
the tube carrying a controlled time-varying current. The bottom right
inset shows the time dependence of the controlled current. (b) The
current densities Jy (upper plot) and Jx (lower plot) on the 2D plane
at time step n = 60. (c) The �x and �y fields at n = 60. (d) Charge
distribution δρ on a 2D plane at n = 60.

the Dirichlet boundary condition for perfect a superconductor
(i.e., At , the tangential component of A′, vanishes) is imposed.
The results of our time-domain calculation are presented in
Fig. 6. As shown in Fig. 6(a), when the current increases, the
flux trapped inside the tube follows a stepwise behavior, with
the steps residing approximately at integer multiples of flux
quanta. The value of � j , which is needed to determine the
trapped flux according to Eq. (33), is computed by summing
up the values of � [defined in Eq. (22)] on the edges along
a traversal line that connects the two junction-superconductor
interfaces.

In Figs. 6(b) and 6(c) we plot the density of supercur-
rent and the � field, respectively, inside the superconducting
tube. Within and near the junction there are currents both
in transversal and longitudinal directions with respect to the
junction. The transversal current shields the superconducting
bulk from the external field created by the coil, while the
longitudinal current is needed to transport the vortices with
normal electron cores between the inner and outer boundaries
of the tube to enable jumps in the quantized flux. The spatially
nonuniform dynamics near the junction also creates charge
imbalances, which are shown in Fig. 6(d).

Next we consider a variant of the previous geometry which
cannot be reduced to a two-dimensional domain. The setup is
similar to that of the infinite-tube case, with the only differ-

053704-9



PHAM, FAN, SCHEER, AND TÜRECI PHYSICAL REVIEW A 107, 053704 (2023)

JJ

I

n200

0

1

0
00205105 001

2

3

4

5

6

n

x

y

z

0

(a) (b)

(c) (d)

FIG. 7. (a) A schematic of the system studied: We consider a
superconducting loop with a finite thickness and a concentric coil
of finite length placed inside the hole. The superconducting piece
is 8 × 8 × 8 in size, while the current loop is 2 × 2 × 8, all in
units of λL . (b) The dependence in time of the current in the coil.
(c) The calculated fluxoid (in flux quantum units) trapped inside the
superconducting loop as a function of time step. (d) The density of
supercurrent inside the superconductor at time step n = 96.

ence that the lengths of the tube and the coil are now finite
[see Fig. 7(a)], which makes the problem fully 3D. Again we
observe the approximate quantization of flux in the SQUID
loop, as can be seen in Fig. 7(c). The current density is
shown in Fig. 7(d), where a highly nonuniform spatiotemporal
dynamics can be seen near the junction region. The DEC
equations are able capture the boundary-layer dynamics that
is otherwise difficult to capture.

We now turn to a more realistic geometry where flux quan-
tization is relevant. This is the case when the current source
is placed outside and next to the superconducting loop (the
inset in Fig. 8). The current in the loop creates magnetic flux
lines that would then enter the superconducting loop from
above through fringing fields and magnetically bias the loop
containing a weak junction. This geometry is relevant for flux-
biasing frequency-tunable Josephson-junction qubits [41,42].
We simulate a situation where the bias current is adiabatically
ramped up in a current loop adjacent to the qubit. A more
realistic scenario would involve an open current loop, which
we will consider in future work. The resulting flux in the
superconducting quantum interference device (SQUID) over
time is shown in Fig. 8, where we see a stepwise quantization,
accompanied by noise. The noise comes from various sources
that are not present in the previous case with a concentric
system, one of which is the interference due to flux lines
that reflect from the top and bottom boundaries of the com-
putational domain before entering the superconducting ring.
Another source of noise is field lines that penetrate the super-
conducting ring from the side near the coil, while the JJ is
also probed by the external EM field from various directions.
Due to part of the noise coming from the interference of fields
reflected from various boundaries, we suspect the noise will
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0 004 008
n
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n8000

JJ

FIG. 8. The calculated fluxoid (in flux quantum units) trapped
inside the superconducting loop over time. The top left inset de-
scribes the system studied: a superconducting loop that has a narrow
JJ slit. A second loop carrying a controlled current is placed next to
the primary loop. The dimensions of both loops in units of λL are
12 × 12 × 4, and the thickness of the superconducting loop is 4. The
linear dependence in time of the controlled current is shown in the
bottom right inset.

be mitigated if the computational domain is extended further
away from the coils and if a more refined mesh is used.

E. Dynamics of the Josephson junction

1. The Josephson current-phase relation

The presence of the Josephson junction in our simulations
so far in this paper has been done through a direct imposition
of the Josephson current-phase relation on the space occupied
by the junction. However, as discussed before, our adop-
tion of the coarse-grained hybridized field �(e) = ∫

e d
 · A′,
A′ = A − h̄

q ∇θ , as the fundamental field to express the equa-
tions governing the electrodynamics of superconductors was
motivated, in part, by its connection to the flux variable ϕ in
the definition of the Josephson phase across a junction. There-
fore, it should be possible to capture the Josephson effect from
the ab initio equations (10) and (11) of the hybridized field,
or their discrete versions, Eqs. (24) and (25). In this section,
we will demonstrate by way of analytical derivation and nu-
merical simulations how our equations contain the standard
physics of a Josephson junction and subleading corrections to
it.

Consider the first Josephson equation [43], which states
that the current flowing through a JJ is related to the gauge-
invariant phase ϕ across it through

J = Jc sin ϕ, (34)

where Jc is the critical current density in the junction. A
derivation of this relationship is provided below.

A JJ can be effectively modeled as an insulator sandwiched
between two superconducting electrodes, as schematically
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FIG. 9. A schematic of a Josephson junction with a 1D potential
profile.

shown in Fig. 9. The one-dimensional potential profile of a
bare JJ with a longitudinal length 2a is then given by

U (z) =
{

U0, |z| < a
0, |z| > a.

(35)

We assume that the current is directed along the z direction
and is uniform in space throughout the insulating region of the
junction. Therefore, A′ = A′(z)ẑ and ∇ × ∇ × A′ = 0, and
Eq. (8) applied to the insulating region of the JJ reduces to

ε0Ä′ + qJs − ε0q

2m

∂

∂t
∇∣∣A′∣∣2 + ε0h̄2

2mq

∂

∂t
∇

[∇2(
√

ρ )√
ρ

]
= 0.

(36)

In our model, the supercurrent uniformly flows from one side
of the junction to the other, and builds up charges at ±a,
where it contacts the superconducting electrodes. Therefore,
equivalently, one can also write Eq. (36) as follows:

ε0Ä′ + ∂2

∂t∂z

[
(z + a)Q(t ) − ε0q

2m
|A′|2

+ ε0h̄2

2mq

1√
ρ

∂2(
√

ρ )

∂z2

]
= 0, (37)

where Q(t ) is the charge built up at the boundaries of the
insulating region. To continue, we make the following as-
sumptions: First, we assume that fields vary adiabatically. In
other words, we work in the regime where the fields vary at a
rate slow enough for the assumption on adiabaticity is satis-
fied. The first term in Eq. (37) can therefore be neglected. We
also assume that the current is weak enough so that the charge
built up at the interfaces does not influence the distribution of
A′ and ρ in the insulator. This is equivalent to considering a
very thin insulator such that the change in electric potential
is negligible throughout its longitudinal dimension. With this
assumption, the first term in the brackets in Eq. (37) can be
neglected too. For the initial condition, we assume at t = 0
the junction is neutral everywhere, and, combining with the
assumptions already made, we arrive at

|A′|2 − h̄2

q2

1√
ρ

∂2(
√

ρ )

∂z2
= 0. (38)

From Eq. (38) and the definition of supercurrent in Eq. (2) we
obtain

y′′ − 1

y3
= 0, (39)

where y = √
ρ/α, with α = √

mJ/h̄|q|. Solving Eq. (39) with
boundary conditions ρ(−a) = ρ1 and ρ(a) = ρ2 we obtain

ρ(z) =
[

(ρ1 + ρ2) − 2
√

−4a2α4 + ρ1ρ2

4a2

]
z2

+ (ρ2 − ρ1)

2a
z + ρ1 + ρ2 + 2

√
ρ1ρ2 − 4a2α4

4
. (40)

The Josephson phase is then given by

ϕ = −2π

�0

∫
A′ · d
 = mJ

q2

∫ a

−a

dz

ρ
, (41)

with ρ given in Eq. (40). Solving Eq. (41) for α we get

α2 =
√

ρ1ρ2

2a
sin ϕ (42)

or

J = h̄|q|√ρ1ρ2

2ma
sin ϕ, (43)

which is exactly the form given by Eq. (34), with Jc =
h̄|q|√ρ1ρ2

2ma . Note that the Josephson current-phase relation can
also be obtained from the order parameter equation. For com-
pleteness, in Appendix C we also provide one such derivation,
as well as the discussion on how results obtained from the
two approaches are equivalent in the limit of a thin insulating
region, which is the limit we are interested in.

Next, we analyze the ab initio modeling of the Josephson
dynamics through the numerical solution of Eqs. (24) and (25)
in the slow dynamics regime. We model the Josephson junc-
tion by a sandwich made of two slices of superconductor with
a penetration depth λ1 and a piece of another superconductor
λ2 in between, where λ2 � λ1. The λ2 superconductor plays
the role of the insulating region in our model. The sandwich
needs to be thin so that its thickness is much smaller than its
lateral dimensions. We then excite the junction by placing it
in the gap between two sheets of conductor that are placed
parallel to the longitudinal axis of the Josephson sandwich,
as shown in the inset of Fig. 10(a). An external source of
magnetic field is created by ramping up the uniform current
on the sheets. To mimic an adiabatic process, the rate at which
the currents on the sheets are ramped up is chosen to be slow
compared to the plasma frequency ω j of the junction.

The dependence of current J on the phase ϕ across the
insulating region is reported for different rates at which the
currents on the conducting sheets increase in Fig. 10(a), where
we define α0 = 0.1ω j to be an arbitrarily slow rate of ramp.
The different J (ϕ) plots are compared with the ideal relation
sin ϕ. We see that slower rate leads to better agreement with
the sinusoidal dependence. This justifies the assumption we
made earlier about slow dynamics when deriving the Joseph-
son current-phase relation.

We also study the distribution of current and charge in
the junction during its interactions with external fields. As
seen in Fig. 10(b), the current flows rather uniformly inside
the insulator, a result that is largely due to our setup of the
problem, where thickness of the insulator is thin enough, and
the sheets of current are placed symmetrically on both sides of
the junction. In addition to the current in the insulator, there
are also surface currents that build up on the sides to screen
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FIG. 10. (a) The dependence of current in the insulating region on the phase ϕ. The blue curve is the ideal sinusoidal dependence, and the
other colors correspond to different ramping rates of external currents on the surrounding conducting sheets. The inset shows the geometrical
setup of the problem. For the two materials that make up the junction, we choose λ2 = 10λ1. (b) The distribution of current in the junction.
(c) The distribution of charge in the junction. All lengths are in units of λ1.

out external magnetic field from entering the superconduc-
tor. The charge distribution that stabilizes near the junction,
shown in Fig. 10(c), is the result of a uniform current that
flows across the insulator. Charge is therefore drawn from
one superconducting island and builds up at the other island,
resulting in identical charge distributions of opposite sign at
the two interfaces.

The imbalance of charge distribution, manifested through
the fluctuation of δρ on top of the uniform background ρ0,
happens mostly at material interfaces and vanishes quickly
away from boundaries. The impact of such fluctuations on the
overall dynamics of the system can be effectively captured
by our coarse-grained model. We computed the distribution
of charge around the insulating region with different levels
of discretization, indicated by the number of edges, N , used
to model the insulator part [see Fig. 11(a)]. To directly com-
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FIG. 11. (a) The distribution of charge around the insulating
region of the Josephson junction. The yellow shade is the insulator,
and the green shades are the superconducting islands. Each colored
plot corresponds to a different number of edges, N , along z used to
model the width of the insulating region. (b) The results obtained
from different levels of graininess are directly compared by grouping
the charge on vertices into “bins” of charges so that the graininess is
similar to what one would get in the N = 2 case.

pare the results obtained from different levels of graininess,
the computed charges in each case are lumped into “bins”
of charges so that the resulting distributions have the same
spacing as the N = 2 case [Fig. 11(b)]. The resulting values at
the insulator boundaries can then be thought of as the accumu-
lated charges due to the Josephson current. We observe a good
agreement between results obtained from grainy (N = 2, 4)
and more fine-grained calculations (N = 8, 16).

2. Josephson junction under finite-frequency driving

The hybridized equations also allow us to study plasma
oscillations of a junction. Consider a situation where the
junction is driven by an AC source. Performing the integral∫ 2

1 (8) · d
 across the insulating region of the junction, we
obtain

�0

2πc2

∂2ϕ

∂t2
= −μ0J − q

2mc2

∂

∂t

(
|A′|22 − |A′|21

− h̄2

q2

1√
ρ

∂2√ρ

∂z2

∣∣∣∣
2

1

)
. (44)

Combined with Eq. (2) we obtain

�0

2πc2

∂2ϕ

∂t2
= −μ0J − h̄2

2mc2q

∂

∂t

(
α4 1

ρ2
− 1√

ρ

∂2√ρ

∂z2

)∣∣∣∣
2

1

.

(45)

To proceed, we consider the distribution of the condensate
ρ in the insulator. At steady state, ρ = ρs, which is given by
Eq. (40) and is symmetric about z = 0 as seen in Fig. 12(a).
Now consider the situation where the junction is slowly driven
by an AC source, and at time t the condensate becomes im-
balanced as shown in Fig. 12(b). We consider a weak-driving
case so that the fluctuation of charge, δρ, introduced is small
(δρ � ρs). Based on the symmetries of ρs and δρ, we then
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(a) (c)(b)

FIG. 12. A schematic of condensate distribution in a Josephson
junction in (a) steady state, (b) AC driven, and (c) difference between
(b) and (a).

have the following properties:

ρs|1 = ρs|2, δρ|1 = −δρ|2,
dρs

dz

∣∣∣∣
1

= −dρs

dz

∣∣∣∣
2

,
dδρ

dz

∣∣∣∣
1

= dδρ

dz

∣∣∣∣
2

, (46)

d2ρs

dz2

∣∣∣∣
1

= d2ρs

dz2

∣∣∣∣
2

,
d2δρ

dz2

∣∣∣∣
1

= −d2δρ

dz2

∣∣∣∣
2

.

We now expand the terms in Eq. (45) to first order in δρ:

1√
ρ

∂2√ρ

∂z2
= 1

2ρ

∂2ρ

∂z2
− 1

4ρ2

(
∂ρ

∂z

)2

≈ 1

2ρs

[
d2ρs

dz2
+ ∂2δρ

∂z2
−

(
d2ρs

dz2

)
δρ

ρ0

]

− 1

4ρ2
0

[(
dρs

dz

)2(
1 − 2δρ

ρs

)
+ 2

dρs

dz

∂δρ

∂z

]
.

(47)

We can take advantage of the properties shown in Eqs. (46) to
obtain

1√
ρ

∂2√ρ

∂z2

∣∣∣∣
2

1

= 1

2ρs

[
d2ρs

dz2
−

(
d2ρs

dz2

)
δρ

ρs
+ δρ

ρ2
s

(
dρs

dz

)2

− 1

ρs

dρs

dz

∂δρ

∂z

]∣∣∣∣
2

1

. (48)

To proceed, we now consider the driving frequency to be in the
rf regime. Since the wavelength is of the order of millimeters,
many orders of magnitude longer than the typical size of the
insulator (a few nanometers), the electromagnetic field felt by
the junction is much smaller than the wavelength. Based on
this observation, we consider an ansatz for δρ in the insula-
tor, δρ = β(z, t )z, with the lowest order being β(z, t ) = β(t ).
This corresponds to the assumption that there is a weak and
slow AC drive that slightly tilts the distribution of the conden-
sate ρ. A natural question that arises is whether, instead of a
linear tilt, ρ should change sharply at the insulator interfaces.
This is indeed true, but the sharpness of ρ is exhibited in
the DC distribution ρs. The fluctuation δρ due to AC driving,
however, need not be sharp. The expansion of ρ into a static
part and a fluctuating smaller part δρ allows us to decouple

these two effects. We can then rewrite Eq. (45) as follows:

∂2ϕ

∂t2
= −

(
2πμ0c2

�0

)
J + 4πm

h̄q2ρ3
s

d (J2δq2)

dt

+ h̄2

2mc2qρs

d

dt

{[
1

ρs

(
dρs

dz

)2

−
(

d2ρs

dz2

)]
δρ2

ρs

− 1

ρs

dρs

dz

∂δρ

∂z

∣∣∣∣
2

}
, (49)

where δρ2 = δρ(a). Plugging in the ansatz for δρ, we get

∂2ϕ

∂t2
= −

(
2πμ0c2

�0

)
J + 4πma

h̄q2ρ3
2

d (J2β )

dt

+ h̄2

2mc2qρ2

{[
1

ρ2

(
dρs

dz

)2

−
(

d2ρs

dz2

)]
a

ρ2

− 1

ρ2

dρs

dz

}∣∣∣∣
2

dβ

dt
. (50)

We can relate the slope β(t ) to the number of additional
Cooper pairs, n, that accumulate at one side of the junction
(with the other side losing equal number n of pairs),

n = 1
8βa2AJ , (51)

where AJ is the cross-section area of the junction. The charge
conservation law reads

q
dn

dt
= JAJ , (52)

where J is the current density at the symmetry point z = 0,
which in lowest order can be taken to be equal to the DC
Josephson current given in Eq. (43). It is also convenient to
write the equation of motion in terms of n instead of δρ and
Eq. (50) becomes

∂2ϕ

∂t2
= −

(
2πμ0c2

�0

)
Jc sin ϕ + 32πmJ2

c

h̄q2aAJρ
3
2

(
sin2 ϕ

dn

dt

+ 2 sin ϕ cos ϕ
dϕ

dt
n

)
+ 4h̄2

AJmc2a2qρ2

{[
1

ρ2

(
dρs

dz

)2

−
(

d2ρs

dz2

)]
a

ρ2
− 1

ρ2

dρs

dz

}∣∣∣∣
2

dn

dt
. (53)

It is useful to introduce the definition of junction energy,
which is given by

E (t ) =
∫ t

0
Iv dt = Ej[cos(ϕ(0)) − cos ϕ], (54)

where Ej = h̄JcAJ/q and v = ∫ 2
1 d
 · E. Consider the follow-

ing term in Eq. (53):

∂ϕ

∂t
n =

(
q

h̄

∫ 2

1
d
 · E

)(
1

q

∫ t

0
Idt

)

= 1

h̄

( ∫ t

0
Ivdt − I

∫ t

0
vdt

)

= 1

h̄

(
E (t ) − I

h̄

q
(ϕ(t ) − ϕ(0))

)

= JcAJ

q
[cos(ϕ(0)) − cos ϕ − (ϕ(t ) − ϕ(0)) sin ϕ].

(55)
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FIG. 13. (a) The current density over time at the center of the
insulator. The blue curve corresponds to the resonant case, when the
junction is driven at its plasma frequency ωp, while the red curve
corresponds to when driving is off resonance. (b) Current density
when the junction is driven at resonance. Each color corresponds to
a different number of edges, N , along z used to model the width of
the insulating region.

Now combining all the pieces together, the equation of mo-
tion for ϕ is given by

∂2ϕ

∂t2
= −

(
2πμ0qc2

h̄
− 4h̄2

mc2a2q2ρ2

{[
1

ρ2

(
dρs

dz

)2

−
(

d2ρs

dz2

)]
a

ρ2
− 1

ρ2

dρs

dz

}∣∣∣∣
2

)
Jc sin ϕ

+ 32πmJ3
c

h̄aq3ρ3
2

sin ϕ[sin2 ϕ + 2 cos ϕ(cos(ϕ(0)) − cos ϕ

− (ϕ(t ) − ϕ(0)) sin ϕ)]. (56)

In Eq. (56), the terms on the first line represent the standard
Josephson plasma oscillation. The first term in the big bracket
on the right-hand side gives the standard Josephson plasma
frequency, while the second term in the bracket provides the
correction to that frequency. The term on the second line is a
correction beyond the standard Josephson plasma oscillation
featuring higher harmonics. Interestingly, these corrections
contain a term that is not periodic in the phase ϕ. Using
the same toy model for the JJ as the one used in calculations
above, we can simulate the resulting dynamics when the JJ is
driven by an oscillating field. We perform a frequency sweep
around the range that is expected to find the junction plasma
frequency. With a sampling rate of ω/ω ≈ 5% we found
that three choices of N ∈ {4, 8, 16} yield the same plasma fre-
quency ωp. The responses of the junction when driven at and
off resonance are compared and shown in Fig. 13(a), where
the current density over time at the center of the insulator
is plotted. The at-resonance current density computed using
different values of N is shown in Fig. 13(b), where we see
good convergence of the three curves.

V. DISCUSSION AND CONCLUSIONS

In this paper, we introduce a computational approach for
solving the equations that govern the dynamics of the or-
der parameter of three-dimensional superconducting materials
interacting with electromagnetic fields. To achieve this, we
solve the nonlinear Schrödinger equation, which describes the

dynamics of the order parameter, and the Maxwell equations,
which describe the dynamics of the electromagnetic fields.
While these equations have been previously written, the con-
tributions of this paper are as follows.

First, we present a systematic method for numerically solv-
ing the equations for the coarse-grained electromagnetic and
charge degrees of freedom. In this approach, we introduce a
method for compressing resources while maintaining accu-
racy for the coarse-grained fields. This is all that is needed
because, in any physical measurement, the acquired results
are always coarse grained. The meshing need not be finer than
the resolution of the readout channels or the size of the JJs.
This insight is helpful in the design of a cleverly employed
adaptive meshing strategy to reduce computational demand.
As such, this approach provides the first step towards a gen-
eral systematic method for optimizing the balancing between
accuracy and resources of the numerical solution of nonlin-
ear spatiotemporal partial differential equations. We hope to
demonstrate this further in future works.

Second, we provide equations that operate on gauge-
invariant hybridized variables of electromagnetic and charge
degrees of freedom. In general, the expression of the Maxwell
equations in terms of the electromagnetic fields E and B
render them manifestly gauge invariant. However, the quan-
tization of light-matter interactions typically relies on the
minimal coupling form through (A, V ) [44], in which the
gauge must be fixed. In this paper, we take a different ap-
proach and write the known minimal-coupling form of the
order parameter equation of a BCS superconductor in terms of
the fields (A′, ρ), which are manifestly gauge invariant. This
allows for the second quantization of these equations along a
similar vein as the standard approach [7,18] and in a gauge
invariant manner. We plan to address second quantization of
DEC-QED in future work.

Third, we present a set of discretized equations based on
DEC. These equations provide the geometric scaffolding nec-
essary for the numerical solution of the resulting equations,
ensuring stability and accuracy in the long term and over
large spatial regions. Without this scaffolding, the solution
of nonlinear equations can often display instabilities in the
long-time limit. By contrast, the methods introduced in this
paper may alleviate such issues.

Our analysis is missing a coarse-graining procedure in the
time domain, which is necessary for maintaining relativistic
invariance. In addition, further work is needed to improve
the coarse graining of the nonlinear terms and to under-
stand their impact on the numerical accuracy of the solutions.
These improvements will likely require the development of
new mathematical tools and techniques. Additionally, detailed
analysis of the numerical stability of the equations presented
is needed and will be left for future work.

Moreover, previous research in the context of 1 + 1D
cQED theory for transmission lines has shown that open
boundary conditions can be applied to second quantized
macroscopic fields in order to accurately capture radiative
losses to and thermalization with the electromagnetic vacuum
surrounding the finite volume [8,24]. In order to make DEC-
QED a useful tool for simulating the quantum dynamics of
3D superconducting devices, it is necessary to extend this
formulation to DEC-QED.
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APPENDIX A: MAXWELL OPERATORS IN TERMS OF
DISCRETE FLUX COORDINATES

We derive a discrete form of the divergence and curl-curl
operators that are suitable for our use of flux coordinates. For
a vector field F, an integral of ∇ · F over the volume of a cell
gives

∫
v†

(∇ · F)dr3 =
∫

∂ (v† )
F · da

=
∑

e†∈∂ (v† )

∫
e†

F · da

=
∑

e†∈∂ (v† )

〈F⊥e†〉e† · A(e†)

≈
∑
e|v∈e

〈F⊥e†〉e · A(e†)

=
∑
e|v∈e

A(e†)


(e)

∫
e

F · d
, (A1)

where A(e†) is the area of the face e†, 
(e) is the length
of the edge e, and F⊥e† is the component of F normal to
the face e†. Here 〈F⊥e†〉e† = 1

A(e† )

∫
e† F · da is the average

of F⊥e† over the area of e†. Similarly 〈F⊥e†〉e is the average
of the same field component over the edge e dual to e†. In
Eq. (A1) above, we have made an approximation by assuming
that 〈F⊥e†〉e† = 〈F⊥e†〉e. This procedure is formally called a
Hodge star operation, where there is a transformation of a field
living on the dual mesh to a field that lives on the primal mesh,
and vice versa [45]. The approximation comes in through the
discrete representation of the Hodge star. The error of this
operation converges in first order in the characteristic length
of the grid for scalar fields and in second order for vector fields
[46].

Next, for an edge e ∈ M, the discrete curl-curl operator is
given by∫

e†
(∇ × ∇ × F) · da =

∫
∂ (e† )

(∇ × F) · d


=
∑

e0∈∂ (e† )

∫
e0

(∇ × F) · d


=
∑

e0∈∂ (e† )

〈∇ × F〉e0 · 
(e0)

≈
∑

e0∈∂ (e† )


(e0)

A(e†
0)

∫
e†

0

(∇ × F) · da

=
∑

e0∈∂ (e† )


(e0)

A(e†
0)

∑
e1∈∂ (e†

0 )

∫
e1

F · d
.

(A2)

We also derive here the full form of the nonlinear terms
whose graphical representations are used in Eq. (24).

Consider an edge e bounded by the vertices [vA, vB] and

oriented from vA to vB; the action of the operator on |A′|2
evaluated at e is given by

∫
e†

∇∣∣A′∣∣2 · da = A(e†)


(e)
[A′|2(vB) − |A′|2(vA)]

= A(e†)


(e)

⎡
⎣ ∑

e0⊃vB

V (v†
B) ∩ Vs(e0)

V (v†
B)2

A(e†
0)


(e0)
�(e0)2 −

∑
e0⊃vA

V (v†
A) ∩ Vs(e0)

V (v†
A)2

A(e†
0)


(e0)
�(e0)2

⎤
⎦, (A3)

where Vs(e0) is the support volume of the edge e0 [15]. Similarly, the full form of the quantum pressure term evaluated at e is
given by ∫

e†
∇

[∇2(
√

ρ)√
ρ

]
· da = A(e†)


(e)

[∇2(
√

ρ )√
ρ

∣∣∣∣
vB

− ∇2(
√

ρ)√
ρ

∣∣∣∣
vA

]

= A(e†)


(e)

{
1

V (v†
B)ρ(vB)

∑
e†

0∈∂v†

A(e†
0)


(e0)

∑
v1∈∂e0

[
√

ρ(v1) − √
ρ(vB)]

− 1

V (v†
A)ρ(vA)

∑
e†

0∈∂v†

A(e†
0)


(e0)

∑
v1∈∂e0

[
√

ρ(v1) − √
ρ(vA)]

}
. (A4)
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FIG. 14. Discretization in a 1D waveguide.

APPENDIX B: THE REDUCTION TO THE 1 + 1D THEORY

In this section we show that the 1 + 1D theory of cQED
[7,18] can be recovered by considering a limiting case of the
full 3 + 1D flux-based electromagnetic theory. Specifically,
we seek to reproduce the equation of motion for the flux in
a 1D waveguide, which in standard cQED is usually derived
using the lumped-element circuit model. We will pay attention
to the derivation of the effective parameters of the 1 + 1D
reduced equations from the 3 + 1D formulation.

Consider a one-dimensional waveguide along x made up of
two parallel superconducting plates with a spacing d between
them in the z direction. We assume translational invariance in
material properties along y and assume there is no variation of
the fields in that direction. The discretization of space inside
the waveguide (plus the boundaries) is shown in Fig. 14. The
region between the plates can be assumed to be vacuum (or
air) with permittivity ε and permeability μ. Within this region
there are no superelectrons and hence the phase θ takes up an
arbitrary constant value. In our one-dimensional model, this
region is discretized by one layer of equally spaced vertical
edges that spans the entire x axis. The two superconducting
plates that form the top and bottom boundaries of the waveg-
uide are subdivided into finite horizontal edges. Charges Q±

i
are placed at the vertices on these plates, while fluxes �x,z are
defined on the edges. Equation (24), when applied to the ith
vertical edge, then reduces to

με∂2
t �i

z − ∂2
x �i

z +
(
�i+

x − �i−
x

) − (
�(i−1)+

x − �(i−1)−
x

)

2

x

= −μεψ̇ i
z, (B1)

where 
x is the spacing between two consecutive vertical
edges. We can further simplify the equation by assuming an
initial condition such that there is charge balance between
the upper and lower superconducting surfaces. Then charge at
nodes i+ and i− satisfies Q−

i = −Q+
i , meaning that the current

at the lower plane flows in opposite direction as the current in
the upper plane. Therefore, φi−

x = −φi+
x , and Ampere’s law

becomes

με∂2
t �i

z − ∂2
x �i

z − 2
(
�i+

x − �(i−1)+
x

)

2

x

= −μεψ̇ i
z. (B2)

Gauss’s law at the node Q+
i is given by

Q+
i

ε
= −
z


x

(
ψ i+

x − ψ (i−1)+
x

) + 
x


z
ψ i

z,

≈ 
x


z
ψ i

z, (B3)

where Q+
i is the charge per unit length along y, and we have

assumed that in the continuum limit, 
x → 0, the charge
distribution is smooth along x. Hence |ψ i+

x − ψ (i−1)+
x | � |ψ i

z|.
The supercurrent along x at the surface of the superconductor
is given by

Jx = − �x

μλ2
L
x

. (B4)

Differentiating in time Eq. (B3) and using Eq. (B4) to repre-
sent Q̇+

i = (J (i−1)+
x − Ji+

x )
z, we obtain

�i+
x − �(i−1)+

x


2
x

= εμλ2
L

d2
ψ̇ i

z. (B5)

Combining this with Eq. (B2), we get

με∂t
[
∂t�

i
z + ψ i

z

] − ∂2
x �i

z − 2με
λ2

L

d2
∂tψ

i
z = 0. (B6)

On the other hand, the wave equation for the electric field in
vacuum with no charge is given by

με∂2
t Ez − ∂2

x Ez = 0. (B7)

Performing (B6) − ∫
dt(B7), we get

∂2
x � i

z − 2με
λ2

L

d2
∂2

t � i
z = 0, (B8)

where � i
z = ∫

ψ i
zdt . For the system we are considering c =

Ly
ε
d and l = 2μλ2

L
Lyd , with Ly being the size of the waveguide in

the y direction. Therefore, Eq. (B8) is equivalent to Eq. (30).
We are also interested in the details in how our discrete

formulation of Maxwell electrodynamics relates to the trans-
mission line circuit theory in a physical sense. Consider the
flux through the ith cell in the xz plane,

ϕi = �i+
x + �i

z − �i+1
z − �i−

x ≈ �i+
x − �i−

x = 2�i+
x . (B9)

On the other hand, from Eq. (B5) we get

�i+
x − �(i−1)+

x


x
= εμλ2

L

d2

xψ̇ i

z = 1

2
∂2

x

( ∫
ψ i

zdt

)
= 1

2
∂2

x � i
z,

(B10)

where in the last expression above we have used Eq. (30).
From finite difference form at the LHS of the equation above
going to the continuum limit, we get

∂x�x = 1
2x∂

2
x � i

z. (B11)

Integrating both sides, we get

2�x = 
x∂x�
i
z = x�

i
z = � i

z − � i−1
z . (B12)

Combining with the result in Eq. (B9) the equation above
gives us

ϕi = � i
z − � i−1

z . (B13)

Therefore, the flux through a unit cell in the 1D transmission
line waveguide is equal to the difference of � defined at the
two nodes of a cellular inductor in the lumped-element circuit.
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APPENDIX C: DYNAMICS OF THE JOSEPHSON
JUNCTION

In this Appendix, we provide a derivation of the DC
Josephson effect starting from the order parameter equa-
tion [Eq. (1)]. We also show how the resulting equation is
equivalent to what was obtained in Sec. IV E, which starts
from the hybridized field equation in Eq. (24). We first solve
the order parameter equation for the condensate wavefunction
in the insulating region [−a, a] in the case of A = 0,V = 0.
Assuming an ansatz �(z, t ) = �(z)e−iEt/h̄ for the wavefunc-
tion, from Eq. (1) we get

�(z, t ) = C cosh (κz) + D sinh (κz), (C1)

with κ =
√

2m(U0 − E )/h̄2. Assuming the time-dependent
boundary conditions �(−a, t ) = √

ρ1eiθ1 and �(a, t ) =√
ρ2eiθ2 for z = −a and z = a, respectively, we obtain

C =
√

ρ1eiθ1 + √
ρ2eiθ2

2 cosh (κa)
and D =

√
ρ2eiθ2 − √

ρ1eiθ1

2 sinh (κa)
. (C2)

The current density is then given by

J = qh̄κ

m
Im[C∗D] = qh̄κ

√
ρ1ρ2

m sinh (2κa)
sin(θ2 − θ1). (C3)

Defining

Jc = |q|h̄κ
√

ρ1ρ2

m sinh (2κa)
, ϕ = θ1 − θ2, (C4)

then we obtain the usual Josephson current equation, J =
Jc sin ϕ. If an EM field is present (A �= 0,V �= 0), then the
phase ϕ is given by Eq. (23). Now consider the limit κa � 1,
when the thickness a of the insulator is very small. Then
sinh(2κa) ≈ 2κa, and the critical current becomes

Jc = |q|h̄κ
√

ρ1ρ2

m sinh (2κa)
≈ |q|h̄√

ρ1ρ2

2ma
, (C5)

which is the same critical current obtained from our A′-field
formulation. Moreover, we can show that the condensate
wavefunction in Eq. (C1) reduces to the same limit as was
achieved in Eq. (40). From Eq. (C1), we have

ρ(z) = |�2| (C6)

≈ (CC∗ + DD∗)κ2x2 + (CD∗ + C∗D)κx + CC∗.

Using the results for C and D in Eq. (C2), we obtain a form
for ρ(z) that is exactly the same as Eq. (40). Therefore, we
have shown that the two approaches achieve the same results
for the Josephson current-phase relation.

APPENDIX D: PERTURBATIVE ANALYSIS
OF NONLINEAR EQUATIONS

The nonlinearities in Eqs. (10) and (11), which in most
cases can be treated perturbatively, can be addressed system-
atically by keeping track of the harmonic orders generated.
Considering a source term at frequency ω, we can make the
following ansatz for �A′:

A′(r, t )(1) = a0(r) + a∗
0 (r) + a1(r)e−iωt + a∗

1 (r)eiωt

+ a2(r)e−i2ωt + a∗
2 (r)ei2ωt , (D1)

where a0 and a2 refer to the amplitudes for 0 and 2ω fre-
quencies. |a1| � |a0|, |a2|, and the superscript on the LHS
denotes first-order nonlinear correction. We first consider the
dynamics of δρ. Since δρ appears only in the nonlinear term
of Eq. (10), it is sufficient to use only the leading term in the
ansatz of A′ in the equation for ρ. By doing so we obtain

δρ(r, t ) = 1

iωμqλ2
L

(−∇ · a1e−iωt + ∇ · a∗
1eiωt ). (D2)

Using Eq. (D2) and the ansatz in Eq. (D1), along with keeping
track of up to only first-order corrections, we can decompose
Eq. (10) into separate equations for a0, a1, and a2 by grouping
together all terms with the same harmonic order:

∇ × ∇ × a0 − 1

λ2
L

a0 − iq

mλ2
Lω

(∇ · a1)a∗
1 = 0, (D3)

∇ × ∇ × a1 +
(

μεω2 − 1

λ2
L

)
a1 = 0, (D4)

and

∇ × ∇ × a2 +
(

4μεω2 − 1

λ2
L

)
a2 − iq

mλ2
Lω

(∇ · a1)a1

− iμε
q

m
ω∇(a1 · a1) = 0. (D5)

In Eqs. (D3)–(D5) above, we have considered the case where
the density of normal electrons is negligible in the system, so
that σ = 0. Taking the divergence on both sides of Eq. (D4),
we get ∇ · a1 = 0. This is consistent with the fact that a1 is
the solution of the equation for A′ when only linear terms are
considered. In such case we have δρ = 0, which is consistent
with Eq. (11) for when the divergence of A′ vanishes. Equa-
tion (D4) can then be simplified to

∇2a1 +
(

μεω2 − 1

λ2
L

)
a1 = 0, (D6)

while the divergence term in Eq. (D3) and Eq. (D5) vanishes.
To have the first correction to Eq. (D4), the Laplacian term

in Eq. (4), which was neglected in the derivation of Eq. (10),
needs to be considered. Taking this term into account, we
obtain

∇ × ∇ × a1 +
(
μεω2 − 1

λ2
L

)
a1 + με h̄2

4m2
∇(∇2(∇ · a1)) = 0.

(D7)
Unlike Eq. (D6), Eq. (D7) does not lead to a divergence-free
a1, and the charge fluctuation δρ is nonzero in this case.
Taking the divergence on both sides of Eq. (D7) we obtain
an equation for g(r) = ∇ · a1:

(
μεω2 − 1

λ2
L

)
g + με h̄2

4m2
∇ · (∇(∇2g)) = 0. (D8)
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In the presence of a harmonic source μJsrce−iωt , one can solve
this equation for g. Let G(k) be the Fourier transform of g(r);
then a Fourier transform of Eq. (D8), with source included,
yields

(
μεω2 − 1

λ2
L

)
G(k) + με h̄2

4m2
k4G(k) = μF{∇ · Jsrc}, (D9)

which leads to

g(r) =
∫ ∞

−∞

μF{∇ · J}
μεω2 − 1

λ2
L

+ με h̄2

4m2 k4
eik·rdk. (D10)

To treat Eqs. (10) and (11) to second order, we first
consider the dynamical equation for δρ, with first-order cor-
rection included:

∂δρ

∂t
= 1

q
∇ ·

[(
1

μλ2
L

+ q2

m
δρ

)
A′

]
= 1

q
∇ ·

{[
1

μλ2
L

+ iq

ωμmλ2
L

(∇ · a1e−iωt − ∇ · a∗
1eiωt

)]
A′

}
, (D11)

which leads to

δρ(r, t ) =
{

1

qμλ2
L

∇ · (a + a∗
0 ) − i

ωμmλ2
L

[∇ · ((∇ · a1)a∗
1 ) − ∇ · ((∇ · a∗

1 )a1)]

}
t

+ i

2ωqμλ2
L

(2∇ · a1e−iωt − 2∇ · a∗
1eiωt + ∇ · a2e−i2ωt − ∇ · a∗

2ei2ωt ). (D12)

With the form of δρ shown above, the term δρA′ in Eq. (10), up to two lowest orders of correction, generates the extra terms
te±iωt and e±i3ωt . This suggests the following form for A′:

A′(r, t ) = a0(r) + a∗
0 (r) + a1(r)e−iωt + a∗

1 (r)eiωt + a2(r)e−i2ωt + a∗
2 (r)ei2ωt + a3(r)e−i3ωt + a∗

3 (r)ei3ωt

+ b1(r)te−iωt + b∗
1(r)teiωt , (D13)

where b1, a3 � a0, a2 � a1. With the emergence of the te±iωt terms, the system is prevented from going into a steady state.
Using the form in Eq. (D13) to rewrite Eqs. (10) and (11) we obtain the following equations:

∇ × ∇ × a0 − 1

λ2
L

a0 − iq

mλ2
Lω

(∇ · a1)a∗
1 = 0, (D14)

∇ × ∇ × a1 +
(

μεω2 − 1

λ2
L

)
a1 + i2ωμεb1 − iq

2mλ2
Lω

{
(∇ · a2)a1 + q

mω
[∇ · ((∇ · a1)a1)]a∗

1 + 2(∇ · a1)(a0 + a∗
0 )

− 2(∇ · a∗
1 )a2g} − iωμε

q

m
[(a0 + a∗

0 )a1 + a2 · a∗
1] = 0, (D15)

∇ × ∇ × a2 + g(4μεω2 − 1

λ2
L

g)a2 − iq

mλ2
Lω

(∇ · a1)a1 − iωμε
q

m
∇(a1 · a1) = 0, (D16)

∇ × ∇ × a3 + g(9μεω2 − 1

λ2
L

g)a3 − iq

2mλ2
Lω

g{(∇ · a2)a1 + q

mω
[∇ · ((∇ · a1)a1)]a1 + 2(∇ · a1)a2g} − i3ωμε

q

m
(a2 · a1) = 0,

(D17)

∇ × ∇ × b1 + g(μεω2 − 1

λ2
L

g)b1 − q

mλ2
L

[∇ · (a0 + a∗
0 )]a1 − iq2

m2λ2
Lω

[∇((∇ · a1)a∗
1 ) − ∇((∇ · a∗

1 )a1)]a1 = 0. (D18)
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