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We investigate the dynamics of a microwave-driven Josephson junction capacitively coupled to a
lumped-element LC oscillator. In the regime of driving where the Josephson junction can be approximated
as a Kerr oscillator, this minimal nonlinear system has been previously shown to exhibit a bistability in
phase and amplitude. In the present study, we characterize the full phase diagram and show that besides a
parameter regime exhibiting bistability, there is also a regime of self-oscillations characterized by a
frequency comb in its spectrum. We discuss the mechanism of comb generation which appears to be
different from those studied in microcavity frequency combs and mode-locked lasers. We then address the
fate of the comblike spectrum in the regime of strong quantum fluctuations, reached when nonlinearity
becomes the dominant scale with respect to dissipation. We find that the nonlinearity responsible for the
emergence of the frequency combs also leads to its dephasing, leading to broadening and ultimate
disappearance of sharp spectral peaks. Our study explores the fundamental question of the impact of
quantum fluctuations for quantum systems which do not possess a stable fixed point in the classical limit.
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In superconducting quantum circuits, the Josephson
junction (JJ) is a lossless nonlinear element that provides
critical functionality for various quantum information
processing tasks [1–3], from gate operations to readout
and amplification, made possible by controlling JJ dynam-
ics via its embedding circuit and effective drive. For
instance, under strong coupling and weak excitation (rel-
ative to the intrinsic nonlinearity), JJ-based artificial atoms
have enabled cavity QED implementations [4–9] that have
been extensively discussed using open Jaynes-Cummings
or Rabi models in single [10] and multimode regimes [11].
However, applications employing JJs under strong excita-
tion conditions, for readout [12–14] and quantum-limited
amplification [15–19], require an understanding of dynami-
cal instabilities that sensitively depend on the model of
nonlinearity employed [20,21].
Here we investigate the dynamics of a shunted JJ when

capacitively coupled to a microwave-driven linear resona-
tor. The dynamics of such a system under strong driving
have been theoretically [10,22] and experimentally [12]
studied in the context of a high-power read-out scheme, and
are found to exhibit a bistability between two states with
distinct phase and amplitude. In the adiabatic regime where
mode coupling is weaker than losses, the coupled system
maps to a single coherently driven Kerr oscillator with
renormalized parameters, exhibiting precisely this bistabil-
ity [13,23–25]. However, we find that in the strong-
coupling regime the nonlinear mode acquires a retarded
self-interaction mediated by the linear mode, which
changes the classical phase diagram dramatically: for
certain drive and detuning ranges the system may have
no stable fixed points, a phase not exhibited by the single

coherently driven Kerr oscillator [26]. In this dynamical
regime, nonzero frequency instabilities emerge as limit
cycles, yielding discrete, equally spaced comblike spectra
in the frequency domain.
Such comb formation in coherently driven microreso-

nators [27–31] and incoherently pumped mode-locked
lasers [32,33] is often understood as an instability towards
symmetric sideband growth via four-wave mixing, in an
underlying resonator geometry supporting multiple spatial
modes [34,35] and a distributed nonlinearity (while excep-
tions have been discussed as well [36–38]). Our results
indicate that the minimal manifestation of Kerr-mediated
comb formation is embodied in a Kerr oscillator coupled to
a linear oscillator.
While limit cycles [39,40] and their modification under

classical noise [38,41] have been extensively studied in
classical systems, they are far less explored in the deep
quantum regime [42,43] accessible to the lumped-element
JJ circuit discussed here. Using master equation and phase-
space simulations, we investigate the fate of comblike
spectra as the nonlinearity is tuned from weak to strong
(equivalently, high to low mode occupation at the insta-
bility threshold), so that the system moves from an
expected semiclassical regime towards a well-defined
quantum regime where a single photon can in principle
trigger the comb instability. We find that while the non-
linearity, together with strong enough coupling to the
linear mode, is necessary for limit cycles to emerge, this
very nonlinearity introduces quantum noise that dephases
the limit cycle; for weak noise, the dephasing time
typically scales inversely with the strength of the
nonlinearity.
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Model.—The model we study is realizable in lumped-
element setups [Fig. 1(c)], as well as JJ-embedded trans-
mission-line resonators [44]. We assume that the non-
linearity of the junction can be approximated by its lowest
order Kerr nonlinearity. The resulting model described
by the Hamiltonian Ĥ ¼ Ĥa þ Ĥb þ Ĥg þ Ĥd (See
Supplemental Material [45]) then is generic, consisting
of a driven linear oscillator a (frequency ωa) coupled to a
nonlinear oscillator b (frequency ωb) [Fig. 1(a)]. Ĥd ¼
ηðâþ â†Þ describes the drive (strength η) in the frame
rotating at the drive frequency ωd. The corresponding drive
frame Hamiltonians of the modes are Ĥa ¼ −Δdaâ†â and
Ĥb ¼ −Δdbb̂

†b̂ − ðΛ=2Þb̂†b̂†b̂ b̂, respectively, with Λ > 0
being the strength of the nonlinearity, and the frequency
detunings defined as Δda=db ¼ ωd − ωa=b. The two oscil-
lators are coupled linearly, with Hamiltonian Ĥg ¼
gðâ†b̂þ b̂†âÞ. The system dynamics including damping
for both the linear (rate κ) and nonlinear mode (rate γ) are
then governed by the master equation _̂ρ ¼ −i½H; ρ̂�þ
κD½â�ρ̂þ γD½b̂�ρ̂, where D½ô� is the standard dissipative
superoperator D½ô�ρ ¼ ôρô† − 1

2
fô†ô; ρg.

We begin with the classical dynamics of the two-mode
system, obtaining operator equations of motion and making
the replacement (ðhâi; hb̂iÞ → ðα; βÞ. This yields

_α ¼ iΔdaα −
κ

2
α − igβ − iη

_β ¼ iΔdbβ −
γ

2
β þ iΛjβj2β − igα: ð1Þ

Note that Eqs. (1) are invariant if Λ → Λ=c and
ðα; β; ηÞ → ffiffiffi

c
p ðα; β; ηÞ, for c ∈ Rþ [45]. Physically, scal-

ing Λ → Λ=c and η →
ffiffiffi
c

p
η yields the same classical

dynamics, except with mode amplitudes scaled by
ffiffiffi
c

p
.

This simple Λ-dependence is not true of the quantum
dynamics, as we shall see later. Next, the linearity of mode
â and the coupling allows it to be integrated out exactly,
leading to an effective dynamical equation for the nonlinear
mode:

_β ¼ iΔdbβ −
γ

2
β þ iΛjβj2β þ gχaη½eðiΔda−κ

2
Þt − 1�

− g2
Z

t

0

dτFðτÞβðt − τÞ; ð2Þ

where the linear mode susceptibility χ−1a ¼ −iΔda þ κ=2.
The first line is the classical equation of motion for a
coherently driven Kerr oscillator; the drive term is ∝ gχa
since the linear mode is driven. More interesting is the term
in the second line, which describes the delayed self-
interaction of the nonlinear mode—mediated by the linear
mode—with a memory kernel FðτÞ ¼ e(iΔda−ðκ=2Þ)τ.
When FðτÞ decays rapidly relative to the timescale of

system dynamics (κ ≫ g), we may set βðt − τÞ ≈ βðtÞ
within a Markov approximation; this is also equivalent
to adiabatically eliminating the linear mode ( _α ≈ 0). We
then obtain an effective Markov regime equation for the
(long-time) dynamics of the nonlinear mode,

_β ¼ iΔ̃dbβ −
γ̃

2
β þ iΛjβj2β − η̃: ð3Þ

This is the classical dynamical equation for a renormalized
Kerr oscillator, with modified detuning Δ̃db ¼ ωd−
ðωb þ g2Δdajχaj2Þ, damping γ̃ ¼ γ þ g2κjχaj2 and drive
η̃ ¼ gχaη. Therefore, when the linear mode can be adia-
batically eliminated, the two-mode system behaves like an
effective Kerr oscillator [47].
From here, the classical fixed points ðᾱ; β̄Þ of the two-

mode system are found by setting _α ¼ _β ¼ 0, or, equiv-
alently, setting _β ¼ 0 in the Markov regime equation,
Eq. (3). The equation relating the fixed points jβ̄j2 to the
drive strength jηj2 is found to be the standard cubic
polynomial for a Kerr oscillator, with the modified param-
eters defined earlier [45]. The relationship is single valued
for Δdb > ΔMP

db but becomes multivalued for Δdb < ΔMP
db ,

defining a region of multiple fixed points; here the critical
detuning ΔMP

db ¼−ð ffiffiffi
3

p
=2Þðγþg2κjχaj2Þþg2Δdajχaj2 [45].

Dropping terms ∝ g2 arising from the linear mode yields
the standard result for a single driven Kerr oscillator.
Stability analysis.—To treat the memory term exactly we

perform a Laplace domain linear stability analysis around
the above fixed points; details can be found in Ref. [45].
Instability is determined by the dominant pole (pole with
largest real part) of the linearized dynamical matrix. For a
resonantly driven linear mode, Δda ¼ 0, an analysis of the
real and imaginary parts of the poles separately allows the
phase diagram to be mapped out entirely analytically; we
focus on this case from here on (for nonzero Δda, see
Supplemental Material [45]). Two distinct parameter
regimes are obtained, determined by the relative strength
of g and κ.
For g < κ=2, the typical phase diagram in η − Δdb space

is shown in Fig. 2(a). For Δdb > ΔMP
db , the system has only

one fixed point (FP), as discussed earlier; the stability
analysis indicates that this FP is always stable. For
Δdb < ΔMP

db , the orange hatched region emerges where
one of the system’s FPs is unstable, and the unstable pole
s has Im s ¼ 0. In this region, the typical curve relating jβ̄j2

FIG. 1. (a) Schematic representation of the two-mode system.
(b) Mode and drive frequencies. (c) Lumped-element circuit QED
implementation of (a).
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to η (S curve) is shown in the inset, with green (purple)
segments showing unstable (stable) FPs. The unstable FPs
coincide exactlywith the region of 3 total FPs; dynamically,
instabilities from the unstable branch settle into one of the
two stable fixed points at the same drive strength. This is
precisely the stability diagram of the modified Kerr
oscillator defined by Eq. (3).
Much more interesting is the case g > κ=2, for which the

phase diagram is shown in Fig. 2(b). We first consider
Δdb > ΔMP

db , where the classical equations admit only 1 FP.
We find that for Δdb above a minimum critical detuning
ΔLC

db ¼ −ð ffiffiffi
3

p
=2Þðγ þ κÞ, the single fixed point that exists is

never unstable (region 1). For ΔMP
db < Δdb < ΔLC

db (region
2), this is no longer the case. A typical jβ̄j2 − η plot in
region 2, Fig. 2(c), shows emergent unstable jβ̄j2 values
in green, where the system has only one, unstable FP,
hinting at the emergence of limit cycle solutions; this
regime is not possible for the single coherently driven Kerr
oscillator. The minimum and maximum unstable jβ̄j2 values
occur at drive strengths η− (open square) and ηþ (solid
circle), respectively. At these drives, the dominant pole
reaches the threshold of instability, now with nonzero
Im s ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − κ2=4

p ≡�Ω.
Note that for η > ηþ and η < η−, the system always has

at least one stable fixed point (lying on one of the upward
pointing purple segments). Also, in region 2, the unstable
green segments lie entirely in the drive range η− < η < ηþ.

However, with more negative detuning, the latter does not
remain so. ForΔdb < ΔMP

db (regions 3, 4), the S curve can be
multivalued, as seen in Fig. 2(d), and eventually further
deforms to Fig. 2(e), where unstable jβ̄j2 are not all
contained in the range η− < η < ηþ. Here, for η > ηþ
and η < η− the system now admits 3 FPs, of which only
one is stable (checkered purple). On the other hand, within
the range η− < η < ηþ (shaded green as before), all three
fixed points are unstable. This is clearly seen in Fig. 2(e):
only green segments of the S curve lie in the green shaded
region.
Furthermore, the range η− < η < ηþ is detuning depen-

dent; as Δdb becomes more negative, this region shrinks,
and vanishes when η− ¼ ηþ. We mark this as the terminal
boundary of region 3, which occurs at a critical detuning

Δcrit
db ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔMP

db Þ2 þ 1
2
½ðΔMP

db Þ2 − ðΔLC
db Þ2�

q
[dashed orange

line in Fig. 2(b)].
For Δdb < Δcrit

db , region 4 begins where η− > ηþ. The S
curve typically looks like Fig. 2(f). Since at least one stable
fixed point always exists for η > ηþ and η < η−, and since
η− > ηþ in region 4, we easily conclude that at least one
stable fixed point (SFP) now exists for all driving strengths.
The green shaded region with 0 SFPs thus gives way to the
orange hatched region with 3 FPs, 2 SFPs. We note that
unlike ΔLC

db , which is a strict minimal detuning for insta-
bility, Δcrit

db is not a strict maximal detuning. Beyond Δcrit
db ,

limit cycle solutions can ostensibly still emerge, since
unstable fixed points with nonzero Im s still exist. However,
if excursions from these unstable fixed points are large
enough, the system can always find a stable fixed point to
settle into in this region.
Finally, as g → κ=2, Δcrit

db , ΔMP
db , ΔLC

db all become equal;
both green and purple regions shrink and eventually vanish,
such that for g < κ=2, only the orange hatched region
persists, and we recover the phase diagram in Fig. 2(a).
Dynamics in the unstable region can be studied numeri-

cally by simulating Eqs. (1). We calculate the steady state
power spectrum of the linear mode, Sα½ω� ¼ jFfαðtÞgj2,
where FfαðτÞg ¼ R∞

−∞ dτe−iωταðτÞ is the Fourier trans-
form. This quantity is of particular relevance for circuit
QED realizations of our model, where Sα½ω� is the power
spectrum of the resonator mode, which can be directly
monitored in experiments [48]. For each spectrum Sα½ω�,
the frequency spacing Δω is plotted in η − Δdb space in
Fig. 3, scaled byΩ. We find multifrequency limit cycles in a
region that has excellent agreement with the (green shaded)
analytic region of 0 SFPs. The spacing Δω is close to Ω
for Δdb ∼ ΔLC

db , but decreases as Δdb becomes more
negative; this reduction is observed for general parameters
in this system (see additional phase diagrams included
in Ref. [45]).
Quantum regime.—To study the modification of limit

cycle dynamics in the quantum regime, we employ both
master equation simulations and a stochastic approach

FIG. 2. Phase diagram in η − Δdb space. The possible phases
are listed in the top-left table. (a) Phase diagram for g < ðκ=2Þ
(here, g ¼ ðκ=4Þ). (b) Phase diagram for g > ðκ=2Þ (here,
g ¼ 2κ). (c) through (f) Plots of jβ̄j2 against η showing the
change in the S curve as Δdb is swept across the four dynamical
regions in (b). Green (purple) segments of the S curve depict
unstable (stable) jβ̄j2 values.
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based on the positive-P representation of the density matrix
ρ [49]. The latter allows access to normal-ordered operator
averages and correlation functions via a set of stochastic
differential equations (SDEs) for the independent complex
variables α⃗≡ ðα; α†; β; β†Þ:

dα⃗ ¼ A⃗dtþ
ffiffiffiffi
Λ

p
B ⃗dW: ð4Þ

The drift vector A⃗ describes deterministic classical evolu-
tion, equivalent to Eqs. (1). Then, by construction, any
quantum effects must appear as stochastic “noise” terms,
involving the vector of independent Wiener increments
d⃗W. The scale and nature of this noise is set by the matrix
B. In the absence of thermal noise (which we neglect),
B ¼ ffiffi

i
p

diagð0; 0; β; iβ†Þ is purely quantum in origin, and
depends on β; β† (as opposed to being constant for thermal
noise). Equations (4) are thus driven by multiplicative
noise. Crucially, the classical and quantum contributions

depend differently on the nonlinearity. Scaling Λ → Λ=c
and ðα⃗; ηÞ → ffiffiffi

c
p ðα⃗; ηÞ in Eqs. (4) leaves the classical drift

term unchanged as discussed earlier, but scales the sto-
chastic term by a ð1= ffiffiffi

c
p Þ factor [45]. Hence, decreasing Λ

(c > 1; equivalently, increasing mode occupation) sup-
presses the relative impact of quantum dynamics, moving
the system closer to effectively classical evolution.
By varyingΛ and η according to the above scaling,we can

stay on fixed positions on the classical phase diagram (a) just
within the limit cycle region, and (b) just outside [see Fig. 4],
while modifying the stochastic dynamics. For regimes
of weak nonlinearity relative to the damping rates,
Λ ∼ ½0.001; 0.1�γ; κ, we find that Eqs. (4) may be simulated
controllably; here, modal occupations of Oð½102; 103�Þ
make master equation and even Monte Carlo simulations
unfeasible. For stronger nonlinearities Λ≳ γ, P representa-
tion SDE simulations run into notorious difficulties [50,51];
however, weaker excitation numbers then render density
matrix simulations tractable again [52]. Combining the two
methods yields a complete picture of dynamics as the
nonlinearity is increased to the quantum regime. The precise
scaling of stochastic terms with nonlinearity does depend on
the nonlinear model employed [43,53,54]; more generally,
our analysis may be regarded as a study of dynamics under
transition from high to low modal occupations. We analyze
again the linear mode power spectrum, using the Wiener-
Khinchin theorem: Sa½ω� ¼

R∞
−∞ dτe−iωτhâ†ðτÞâð0Þi. For

SDE simulations, the required correlation function is
determined via averaging, hâ†ðτÞâð0Þi ¼ limt→∞ð1=NsÞ×PNs

i¼1 α
†
i ðtþ τÞαiðtÞ, summing over at least Ns ¼ 105

trajectories for each calculation.
Within the limit cycle region [Fig. 4(a)], for the weakest

nonlinearity Λ ¼ 0.001γ, the spectrum appears close to the
classical result [Fig. 3(c)]. However, as the nonlinearity
becomes stronger, the peaks in the discrete spectrum
broaden. A weak-noise phase dynamics analysis [45]
indicates a phase diffusion time ∝ 1=Λ (equivalently, comb
peak linewidths ∝ Λ), with a proportionality coefficient of

FIG. 3. Numerically simulated phase diagram in η − Δdb space
for g ¼ 2κ > ðκ=2Þ. Surface plot shows spectral spacing Δω
obtained from Sα½ω�; the “island” of multifrequency solutions
overlaps perfectly with the analytically predicted unstable region
below (shaded green). Plots (a) through (c) show Sα½ω� at the
correspondingly labeled points on the phase diagram.

FIG. 4. jSa½ω�j, log scale, (a) within, and (b) outside the limit cycle region, as a function of increasing nonlinearity Λ from left to right.
Master equation (ME), SDE simulations (PP), and stable regime linearized spectra (Lin.) are shown.

PHYSICAL REVIEW LETTERS 120, 153601 (2018)

153601-4



order one determined by local properties of the limit cycle
attractor. Outside the unstable region [Fig. 4(b)], the
classical FP with mode occupations ðjᾱj2; jβ̄j2Þ is stable.
Fluctuations around this FP yield a quantum spectrum that
we determine analytically [45] using a linearized analysis
[47,49,55]; the result agrees well with Sa½ω� for weak
nonlinearities, but deviates as Λ increases and the fluctua-
tions are no longer small relative to ðjᾱj2; jβ̄j2Þ. For
intermediate Λ ¼ 0.1γ, we are able to compare SDE and
master equation simulations in both regions, finding very
good agreement.
Conclusion.—The driven, strongly coupled nonlinear

system of a Kerr oscillator and a linear mode admits a phase
with no classical SFPs. Here, classical dynamics features
limit cycles with sharp peaks in the mode spectra; however,
the quantum dynamics introduce dephasing due to the very
nonlinearity that gives birth to the limit cycles, broadening
and ultimately washing out these spectral peaks as Λ
increases, even if all other noise sources are absent. Our
study is relevant for on-chip microwave domain frequency
comb generation using quantum circuits with weak non-
linearities (realized in recent circuit QED experiments
[18,56,57]), and for further understanding stable operating
regimes of JJ-based nonlinear multimode circuit QED
systems.
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