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Abstract
We study the nonequilibrium steady-state of interacting photons in cavity arrays as described by the
driven-dissipative Bose–Hubbard and spin-1/2XYmodel. For this purpose, we develop a self-
consistent expansion in the inverse coordination number of the array ( z1~ ) to solve the Lindblad
master equation of these systems beyond themean-field approximation. Our formalism is compared
and benchmarkedwith exact numericalmethods for small systems based on an exact diagonalization
of the Liouvillian and a recently developed corner-space renormalization technique.We then apply
thismethod to obtain insights beyondmean-field in two particular settings: (i)we show that the gas–
liquid transition in the driven-dissipative Bose–Hubbardmodel is characterized by large density
fluctuations and bunched photon statistics. (ii)We study the antibunching–bunching transition of the
nearest-neighbor correlator in the driven-dissipative spin-1/2XYmodel and provide a simple
explanation of this phenomenon.

1. Introduction

In recent years interacting photonic lattices have emerged as a versatile platform for the study ofmany-body
phenomena out of equilibrium [1–5]. First prototype quantum simulators have been realized experimentally
based on cavity and circuit QED technologies [6–12]. The increasing experimental interest in assembling cavities
to form lattices is also a strongmotivation to develop novel theoretical tools. The key object governing the
dynamics of such driven-dissipative systems is typically the Liouvillian superoperator [13], which describes the
dynamical evolution of the systemdensitymatrix ρ through amaster equation. Solving themaster equation
exactly is a formidable numerical task [14].While exact diagonalization and quantum-trajectory algorithms
[15–18] allow to successfully address this problem for small system sizes, large scale numericalmethods based on
matrix-product-states (MPS) [19–24] are typically limited to one dimension (1D). Recently developedmethods
such as the corner-space renormalization technique [25]may provide a promising alternative also in two
dimensions (2D). On the other hand, decouplingmean-field theory, which is correct in infinite lattice
dimensions, is a simple yet valuable tool to gain afirst insight into the qualitative physics at work. It has been
successfully applied to various latticemodels such as the Bose–Hubbard and Jaynes–Cummings–Hubbard
model [26–31] as well as related spinmodels [32–34]. Recent efforts to improve on themean-field
approximation include perturbative [35, 36], projective [37], cluster [38], variational [39] and equations-of-
motion approaches [40].

Here, we develop a systematic expansion around the decouplingmean-field solution of the Lindbladmaster
equation in powers of the inverse dimensionality parameter z1 (with z being the number of nearest neighbors
in a lattice). Such an expansion accounts for quantumfluctuations in a systematic way and provides access to a
whole new class of observables, i.e., spatial correlation functions. For systems in (quasi-) equilibrium,which are
fully described by theHamiltonian alone, the z1 expansion has a diagrammatic interpretation in terms of
linked-clusters andwas used to calculate the ground-state and elementary excitations of Fermi–Hubbard [41],
Bose–Hubbard [42] and Jaynes–Cummings–Hubbard [43]models. In the nonequilibrium context, this
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techniquewas employed in [44, 45] to calculate quenched dynamics of atoms in optical lattices and in [46] to
characterize the transition from low to high density phases in a driven, dissipative Rydberg system.

In this work, we expand on previous efforts by developing amethod to solve for the densitymatrix in a self-
consistent way.We calculate the nonequilibrium steady-state (NESS) of the driven-dissipative Bose–Hubbard
model (BHM) up to second order in z1 and show that the self-consistency condition substantially improves the
results by comparing to exact diagonalization (ED) in 1D and the corner-spacemethod in 2D.We then apply our
method to two specific problems: (i)we calculate the compressibility of the driven-dissipative BHMand show
that the photonic gas–liquid transition is characterized by largely enhanced density fluctuations with bunched
photon statistics; (ii)we study the antibunching–bunching transition of the driven-dissipative spin-1/2XY
model in 1D and 2D and provide a simple explanation based on a dimermodel.

The remainder of the paper is structured as follows. In section 2, we introduce twomodels for interacting
photons in cavity arrays, the driven dissipative Bose–Hubbard and the spin-1/2XYmodel. In section 3, we
discuss the self-consistent z1 expansion and benchmark ourmethod by comparingwith numerical results
based on ED and the corner-space renormalization technique. In section 4, we address the effects of site–site
correlations in the gas–liquid transition of the driven-dissipative BHM. In sections 5, we study the driven-
dissipative spin-1/2XYmodel to discuss the antibunching–bunching transition in one and 2D. In section 6we
summarize the results of the paper and provide an outlook for future work.

2.Model

We investigate the steady-state of the coherently pumped and dissipative BHMdescribing photons hopping on a
lattice of nonlinear cavities with local coherent pump and decay. The latticeHamiltonian reads

H h
z

J a a
1

, 1
i

i
ij

ij i jå å= +
á ñ

( )†

h n Un n f a a1 2 . 2i i i i i i= -D + - + +( ) ( ) ( )†

Here, each site i is coherently pumpedwith strength f as described by the last term in hi, which is expressed in
terms of the bosonic operator ai and the associated number operator n a ai i i= † . In a frame rotatingwith the
drive frequency dw the cavity frequency is renormalized to d cw wD = - , whileU is the local Kerr nonlinearity.
The second term inH describes the hopping to znearest-neighbor cavities with amplitude J J ;ij = - the
additional factor z1 in(1) ensures that the bandwidth of the photon dispersion is J2 , independent of z, and
guarantees a regular limit z  ¥. The dissipative dynamics for the densitymatrix ρ is accounted for via
Lindblad’smaster equation,

H D ai ,
2

, 3
i

iår r
k

r= - + [ ] [ ] ( )

where D a a a a a a a2r r r r= - -[ ] † † † andκ is the photon decay rate. Thismodel can be realized in quantum
engineered settings using state-of-the-art superconductor [1, 2] aswell as semiconductor technologies [3]. In the
limit of large on-site nonlinearity (U  ¥), the double occupation of lattice sites is suppressed and the local
Hilbert space cutoff np (i.e., themaximal number of photons per site) can be restricted to unity (np=1). In this
regime, photon operators aremapped to spin Pauli operators ai is -with corresponding ground g 0i iñ = ñ∣ ∣
and excited state e 1i iñ = ñ∣ ∣ , where 0 1i iñ ñ∣ (∣ ) denote photon Fock states with zero (one)photons at site i.
Consequently, the BHMbecomes equivalent to the spin-1/2XYmodel (XYM)with theHamiltonian

H h
z

J
1

, 4
i

i
ij

ij i jå å s s= +
á ñ

+ - ( )

h n f . 5i i i is s= -D + ++ -( ) ( )

Here, dissipation is taken into account as in (3)with the collapse operator replacement ai is -.

3. Expansion in z1 and benchmarking

In the following, we describe a strong coupling expansion in powers of the inverse coordination number z,
whichwas originally developed to calculate the ground-state properties and elementary excitations of various
Hubbard-type latticemodels under equilibrium conditions [41–43]. Recently, such a z1 expansionwas also
carried out in the nonequilibrium context to study quenched dynamics of atoms in optical lattices [44, 45] as
well as dissipative Rydberg gases [46]. Here, wewill expand on these early efforts in the nonequilibrium context
and develop a self-consistent scheme, which is correct to second order in z1 .Wewill show that self-consistency
considerably improves themean-field approximation. It allows to systematically account for quantum
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fluctuations yielding quantitatively correct results in a large parameter range even for small lattice sizes.While
we focus here on the BHMandXYM, the technique is rather generic and applicable to awide range of driven,
dissipative latticemodels with limited range hopping.

We start by defining the reduced densitymatrices of one lattice site tri ir r= ¹ [ ], two lattice sites
trij ijr r= ¹ [ ], three lattice sites trijk ijkr r= ¹ [ ], etc. The trace tr i n, ,¹ ¼ sums over all photon states of all cavities

except those indexedwith the subscript. The few-site densitymatrices i n,...,r are represented in photon number
space and theirmatrix elements read, e.g., n mn m i i ii i

r r= á ñ∣ ∣ , n p m qn m p q i j ij i ji i j j
r r= á ñ∣ ∣ , where n p,i jñ ñ∣ ∣ etc

denote photon number states at site i, j etc. These density operators can be decomposed into connected and
factorizable terms, i.e., ij ij

c
i jr r r r= + , ijk ijk

c
ij
c

k ik
c

j jk
c

i i j kr r r r r r r r r r r= + + + + , etc. A systematic

expansion in powers of z1 can then be organized based on the hierarchy of correlations z1i i i
c s

, , ,
1

s1 2
r =¼

-( ),
where s is the number of lattice sites in the connected densitymatrix i i i

c
, , , s1 2

r ¼ . In particular, ir is of order unity,

i.e., z1i
0r = ( ), ij

cr is of order z1 , and ijk
cr is of order z1 2. Such a scaling of correlations is known from the

Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy of statisticalmechanics [47], with the difference that it
here applies to lattice sites instead of particles. Starting from(3), we obtain the equation ofmotion for the
reduced densitymatrices up to order z1 2 [44, 45], i.e.,
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Above, we introduced the notation ij ij ji
S  = + , J a a ,ij ij i j r r= [ ]† and h D a, i 2i i i

BH r r k r= +[ ] ( ) [ ]
as in [44, 45]. In themean-field limit of infinite coordination number (z  ¥) all connected densitymatrices
are zero and one only needs to solve(6a), which is nonlinear and can havemultiple solutions.However, in order
to account for spatial correlations, one needs to evaluate the densitymatrix to higher order in z1 and also solve
the equations ofmotion for the connected densitymatrices. In afirst step, wemake use of the scaling hierarchy

z1i i i
c s

, , ,
1

s1 2
r =¼

-( ) and keep on the r.h.s of each equation only terms up to order z1 s 1- , where s is the
number of lattice sites in the connected densitymatrix on the lhsof each equation (i.e., we neglect the underlined
terms). The resulting systemof equations is then closed and can be solved numerically. Note, that in this case the
equations for the connected densitymatrices are linear and depend on the solution of the nonlinearmean-field
equation only parametrically.

In the following, we substantially improve this first approximation by keeping explicitly all underlined terms
to second order in z1 in the systemof equations above, i.e., by neglecting only the third order term in (6c)
( ijkk

cr~ ¢).We then solve the coupled systemof equations in a self-consistent way taking the following steps: (i)we
solve (6a) for ;ir (ii) the result is inserted into (6b) to obtain ;ij

cr (iii) ir and ij
cr are used to solve (6c) for ijk

cr . Note,

that (i)–(iii) correspond to thefirst step, whichwas explained in the previous paragraph. In order to implement
self-consistency we now explain the second step, i.e., (iv) insert ijk

cr back in (6b) and obtain an updated ;ij
cr (v)

plug ij
cr in (6a) and get a new ir . In (iv)–(v) all the underlined terms are kept. Starting from the updated ir , the

procedure (ii)–(v) is iterated till convergence is reached. This yields a solution of the hierarchy equations (6)
correct to second (2nd) order z1 2, i.e., with an error on the densitymatrix of order z 3 -( ).Without the steps
(iii)–(iv) the solution of the hierarchy equations is correct tofirst (1st) order z1 , i.e., with an error on the density
matrix of order z 2 -( ). Step (i) alone is correct to zeroth order and equivalent to aGutzwillermean-field (MF)
decoupling of the hopping term in theHamiltonian (1). The sequence of steps performed in this self-consistent
scheme is illustrated infigure 1(a).

Infigure 1(b)we showhow the numerical complexity of themethod scales with the number of lattice sitesN
and compare to an exact numerical solution of themaster equation. The size of the full Hamiltonian is given by
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M n 1p
N= +( ) and thus increases exponentially with the number of lattice sites (see blue dots infigure 1(b)).

An exact solution of themaster equation is then obtained bywriting the densitymatrix as a vector r of density
matrix elements with lengthM2 such that(3) can be rewritten as r r=˙ , where  is the corresponding
Liouvillian operatorwith dimension M M2 2´ . A diagonalization of the (non-hermitian) Liouvillian then
yields in general complex eigenvalues and eigenfunctions which fully determine the exact solution.

Let us now estimate the computational complexity of the z1 expansion assuming a translationally invariant
densitymatrix with periodic boundary conditions. In this case, (i) thematrix ir is site-independent and (ii) the
connected densitymatrices depend only on the distance between the sites. The solution of the nonlinear
equation (6a) remains site-independent, evenwhen the underlined term is included, i.e., its complexity does not
substantially depend on the number of lattice sites. Because of translational invariance, thematrix ir can be
rewritten as a vector whose lengthM2 is independent of the number of sitesN, i.e., M n 1p= +( ). The
remaining linear systemof equations, which has to be solved iteratively, takes the form bc cr r= +˙ , where 
is again the corresponding Liouvillian-type operator, b is a source term, and the vector cr contains thematrix
elements of the connected densitymatrices ij

cr and ijk
cr . Here, the length of the vector cr isM2 with

M N n 1p
2 1= ´ +l l+( ) , where 0, 1, 2l = corresponds to the order of the expansion. Consequently, the

computational effort scales only polynomially with the number of lattice sites. Infigure 1(b), we compare the
dimensions of the Liouvillian operators for np=1. For example, the calculation of the XYMon a square lattice
with 7×7 sites would involve a very large Liouvillian operator with M 1015» , whichwould be far beyond
sparse EDmethods and even stochastic techniques based on quantum trajectories [15]whereM≈106 forms an
upper limit. On the other hand, the densitymatrix of such a large system can be easily computed using the
coordination number expansion to second order even on a standard laptop computer (e.g., see results in table 1).
If translational symmetry is broken, the complexity of themethod increases with
M N n 1p

1 2 1= ´ +l l+ +( )( ) , as one cannot assume that (i) thematrix ir is site-independent and that (ii) the
connected densitymatrices depend only on the distance between the sites.However, the increase in complexity
does not compromise the polynomial scaling ofMwith the number of lattice sitesN.

In table 1, we compare the z1 expansionwith (i) the EDmethod for a 1D chain and (ii)with numerical data
available for a 2D square lattice from the so-called corner-space renormalizationmethod (CM) developed in
[25]. TheCM is a numerical algorithmwhich uses the exact solution of themaster equation for a small lattice
and extrapolates it to larger system sizes. At each extrapolation step of the algorithm, two small lattices are
merged to form a larger one, while truncating the basis of the jointHilbert space to a small number ofmost
probable states (i.e., the corner-space). For better comparison, we chose the same parameters as in [25] for both
dimensions. Shown are results for the photon density

n a a a a 7i i= á ñ = á ñ ( )† †

and the second-order coherence (density–density correlator)

g t
a a a a

n
0 8

ij

i j i j2
2

= =
á ñ

( ) ( )( )
† †

Figure 1. (a) Illustration of the self-consistent scheme explained in detail in the text in order to solve the equation ofmotion system
(6). The solid blue (thin red) arrows indicate the procedure to obtain a lattice densitymatrix correct to second, 2nd (first, 1st) order in

z1 . (b) Scaling of the dimension of the Liouvillian operator M M2 2´ with the number of lattice sitesN, for the z1 expansion
(curves) and exact diagonalization (ED, symbols) for a systemwithmaximally one particle per site np=1. The scaling for larger np is
similar.
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describing instantaneous (zero time delay) correlations between sites i and j. The latter ismeasurable in a
Hanbury Brown–Twiss setup [48, 49]. The average in (7) and (8) is takenwith respect to theNESS of equation (6)
with 0r =˙ .

For the parameters considered in table 1, our self-consistent z1 expansion improves themean-field result
(MF) substantially and agrees well with the exact numerical findings in both dimensions. In 1D,wefind
quantitative agreementwith the exact result up to the second and the third decimal for weak tomoderate
hopping rates (J k~ ). Small discrepancies start to showup for larger hopping rates (J 3k~ , see rowsmarked
with an asterisk ∗ in table 1) and strong site to site correlations (g 2

01
2 ~( ) ). Such a behavior is expected as the z1

expansion treats the non-local hopping termperturbatively. In 2D, the comparisonwith theCMmethodworks
similarly well. The convergence of themethod after a few iteration steps is demonstrated exemplarily infigure 2.
The self-consistency scheme considerably improves the first and second order results of the z1 expansion and
converges rather fast. In the following two sectionswe apply this technique to study the gas–liquid transition in
the BHMand the antibunching–bunching transition in the XYM.

4. BHM: gas–liquid transition

In this section, we study the gas–liquid transition of photons as described by the driven-dissipative BHM
[28, 39, 50]. The gas (liquid) phase is characterized by low (high) photon densities of theNESS. The transition
between the two phases can be driven by the coherent pumpparameter f/U atfixed detuning UD . For a single
cavity, an exact solution provides a smooth crossover between the two phaseswhen the pump strength is

Table 1.Density n, on-site and nearest-neighbor correlators g j0
2( ) with j=0, 1 for the BHM. Shown are results obtained from the z1

expansion applied to a 1D arraywith 6 sites and cutoff np=2 (a) and to a 2D square lattice (b)with 4×4 sites (U 20k = , np=3), 3×3
sites (U 10k = , np=5), and 7×7 sites (U 1k = , np=4), where np is the local photon cutoff. The z1 results are comparedwith ED
in (a) andwith data from the corner-spacemethod (CM) [25] in (b).We have used the parameters 5kD = , f 2k = , and J 1k = . The
rowsmarkedwith an asterisk ∗ show results for a large hopping J 3k = where the agreement is less favorable.

(a) 1D
n g00

2( ) g01
2( )

U k MF 1st 2nd ED MF 1st 2nd ED 1st 2nd ED

1 0.113 0.113 0.113 0.113 1.015 1.006 1.008 1.008 1.018 1.027 1.026

10 0.850 0.820 0.823 0.823 0.651 0.672 0.669 0.669 0.971 0.973 0.972

20 0.123 0.128 0.130 0.130 0.815 0.850 0.869 0.869 1.338 1.425 1.420

20* 0.076 0.104 0.148 0.137 0.870 1.111 1.226 1.257 1.986 2.210 2.241

(b) 2D n g00
2( ) g01

2( )

U k MF 1st 2nd CM MF 1st 2nd CM 1st 2nd CM

1 0.116 0.116 0.116 0.116 1.265 1.259 1.259 1.259 0.989 0.990 0.990

10 0.959 0.930 0.932 0.928 0.609 0.624 0.623 0.617 1.007 1.008 1.007

20 0.125 0.128 0.128 0.128 0.839 0.853 0.860 0.860 1.173 1.172 1.172

20a 0.077 0.089 0.099 0.099 0.888 1.052 1.170 1.179 1.521 1.715 1.63

a Results obtainedwith J 3k = .

Figure 2.Convergence of the nearest-neighbor correlator g01
2( ) as a function of the number of iterations for the self-consistent scheme

to second order in the z1 expansion, for the third (a) and fourth (b) row in table 1(a). The horizontal solid lines indicate the exact
value.
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increased [51]. In the lattice case, decouplingmean-field theory predicts that the gas–liquid crossover
transforms into a hysteretic transition beyond a critical value of the intercavity hopping J Jc= . The phase-
diagram in the f–J plane (atfixed detuning UD ) is shown infigure 3(a)with the critical point (blue) at Jc.
Interestingly, onefinds that the critical hopping Jc ismodulated as a function of the detuning UD and exhibits
a series of lobes, see figure 3(b). The lobe structure is amanifestation of a quantum commensuration effect which
favors the hysteretic transition over a smooth crossover whenever the drive frequency corresponds to am-
photon resonance at U m1 2+ D = [29].

Unfortunately, the lobe structure is particularly hard to calculate with exact numericalmethods, because it
requires a high single-cavity photon number cutoff np to capture the physics ofmulti-photon resonances. This is
why quantum trajectory simulations in [29]were initially limited to 6 sites. However, despite the small system
size, these simulations strongly substantiate themean-field prediction: below the critical point (J Jc< ),
trajectories of each cavity switch independently and at random times between gas and liquid states; this behavior
changes drastically beyond themean-field critical point (J Jc> ), where all cavities of the array switch
synchronously between gas and liquid phases.

In the following, we take a closer look at the gas–liquid transition and analyze compressibility and spatial
correlations of the steady-state beyondmean-field using the z1 expansion described in the previous section.
First, we study density fluctuations via the compressibility

K n g1 1 . 9
j

N

j

2 2

0

1

0
2 


å=

á ñ - á ñ
á ñ

= + -
=

-

( ) ( )( )

Here,N is the number of lattice sites, a ai i i = å † is the photon number operator and g
j0
2( ) is the second order

coherence (8). Figure 4(a) shows the compressibilityK as a function of drive f/U atfixed detuning
U1 2 4+ D = and hopping J U 0.1= , i.e., corresponding to a vertical cut left from the critical point at

J U0.18c » in figure 3(a). At weak drive f U 1 (gas phase), wefind K 1» as predicted by themean-field
approximation (solid line) and the z1 expansion. Consequently, the gas phase is well described by a spatially
uncorrelated, coherent state with g 1

j0
2 »( ) for all sites j. At large drive f U 1 (liquid phase), the prediction of

themean-field approximation, i.e., K 1 2» , also agrees well with the results obtained from the z1 expansion.
In fact, the value K 1 2» can be derived analytically from the single-cavity limit (J= 0), where
g m1 1

00
2 » -( ) and n m 2» at them-photon resonance [50].We conclude that the effect of the lattice

dimension ismarginal deep in the gas and liquid phase, where the physics is well described bymean-field theory.
However, the crossover region is characterized by strongly enhanced density fluctuations beyondmean-field. In
particular, quantum fluctuations due to z1 corrections in 1D aswell as 2D strongly increase the compressibility
with respect to themean-field result.We attribute these enhanced fluctuations to the impending bistable
behavior, see also [34]. Our z1 results are also consistent with the quantum trajectory calculations in [29],
which show that synchronization effects already appear below the criticalmean-field value Jc.

Making use of the z1 expansionwe also calculate the spatial correlation functions of theNESS for J Jc< .
Figure 4(b) shows results for the pair-correlator g

j0
2( ) in a 1D array for the drive strengths f/U indicated by the

arrows infigure 4(a). At the compressibility peak ( f U 0.35= , line B), we find that bunched correlations
(g 1

j0
2 >( ) ) extend further out in the lattice with a larger correlation length, signaling the crossover between gas

Figure 3. (a)Mean-field density n in color scale as a function of hopping J/U and drive strength f/U, illustrating the change from the
gas–liquid crossover at small hopping to the gas–liquid transition beyond the critical hopping Jc (blue point). The region bounded by
thewhite linesmarks the bistable region of themean-field theory (stripes refers to densities of gas and liquid). The vertical arrow
indicates the value J U 0.1= chosen infigure 4. (b)Boundary separating smooth fromhysteretic gas–liquid transitions as driven by
increasing the pump amplitude f, showing the quantum commensuration effect at successivem-photon resonances of the individual
cavities, i.e., when U m1 2+ D = assumes an integer value. Figure adaptedwith permission from [29].
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and liquid phases. This clustering of excitations is consistent with the coherent super-cavity formation as
revealed by the quantum trajectory simulations in [29]. Away from the compressibility peak (A andC) photons
at different sites aremostly uncorrelated. The symbols at j=0 indicate themean-field values of the on-site
correlator g

00
2( ), which significantly differ from the 1D results only at f U 0.35= (B, square). Similar outcomes

are obtained for the 2D lattice.We note, that the localHilbert space cutoff np (maximumphoton number per
cavity) required infigure 4 is np=6, whichwould imply a huge Liouvillian operator of size M 1021» in ED for
the 2D casewith 5×5 sites.

In summary, in this sectionwe have shownwith the z1 method that bunched site–site correlations extend
overmany lattice sites and largely enhance density fluctuations in the gas–liquid crossover regime of the driven-
dissipative BHM (1). The low computational cost of themethod allowed us to obtain insight for large lattices in
1D and 2D also in a regime of large photon numbers. Unfortunately, it is difficult to analyze the hysteretic
transitionwithin the z1 expansion since the self-consistent approach does not always converge in this region of
the phase diagram. In the next section, wewill rather focus on the strongly-correlated regimeU  ¥where the
BHM (1) ismapped to the spin-1/2XYM (4).

5. Spin-1/2XYmodel: antibunching–bunching transition

In this section, we investigate the driven-dissipative spin-1/2XYM in (4). In particular, we study the
antibunching–bunching transition of the nearest neighbor correlator as a function of the detuningΔ, whichwas
recently predicted in [52] using large scaleMPS simulations. In the following, we (i) provide a simple and
analytic explanation of the transition based on aminimalmodel of two coupled spins (dimer), (ii) reproduce
exact numerical results with the self-consistent z1 method to high accuracy and (iii) go beyond theMPS
method by also studying the 2D case.

Before considering large lattices in 1D and 2D, it is instructive to focus on a simplermodel consisting of a
dimer of two coupled, driven-dissipative spins, i.e., a systemdescribed by theXYM in (4)withN=2 sites and
the associated four basis states gg ge eg ee, , ,ñ ñ ñ ñ{∣ ∣ ∣ ∣ }. Figure 5 shows the photon amplitude (homodyne signal)

0f s= á ñ-∣ ∣ ∣ ∣and the nearest-neighbor correlator g
01

2
0 1 0 1 0 0

2s s s s s s= á ñ á ñ+ + - - + -( ) as a function of detuning kD
atfixed drive strength f 0.5k = and hopping J 1.85k = . The ED results (symbols) are qualitatively
reproduced by an approximate solution of themaster equation (3), whichwe have obtained by expanding the
densitymatrix elements perturbatively in powers of f k. For the homodyne signal we obtain forweak drive
powers

f

A f A

f J J

A1 2
1

4
1

2

2
10

2

2

2 2
f

k
»

+
+

D +
-

+ D⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟∣ ∣

( )
( ) ( )

Figure 4.CompressibilityK (a) versus drive f/U at the 4-photon resonance U1 2 4+ D = formoderate hopping J U 0.1= and
small dissipation U 20k = . Shown are themean-field (¥D) results as well as those of afirst-order analysis in z1 (see figure 1)
including site–site correlations ij

cr for an array of 15 sites (1D) and a square lattice with 5×5 sites (2D). In the gas–liquid crossover
region the compressibility exhibits amaximum,which is largely enhanced by site–site correlations. Panel (b) shows the pair-correlator
g j0

2( ) evaluated in the gas (point A in (a)) and liquid (C) phases aswell as in the crossover region (B). The on-site bunching at point A in

(b) is due to the resonance with the 4-photon transition, and quickly disappears when tuning away from resonance, where the on-site
correlator g 100

2 »( ) deep in the gas phase, see [29].
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and for the second-order correlation function

g
J J f

1
2

2 2

4
1

2

4
11

01
2

2 2

2

2 2k k
» +

+ D
D +

-
D +

⎛
⎝⎜

⎞
⎠⎟ ( )( )

with A J 2 42 2k= D + +( ) . The analytic results (10) and (11) correspond to the solid lines infigure 5.We
note that a quantitative agreement between analytic and exact results is achieved for smaller pump strength
f 0.2k . Simple algebra reveals that (11) changes from antibunched to bunchedwhen J 4D » - .
Interestingly, the splitting of the resonance peak in the homodyne signal occurs at a similar value. The resulting
antiresonant lineshape of the homodyne signal is a signature of photon blockade [53]. It is well known from the
Jaynes–Cummingsmodel [26, 54], where it is usually referred to as the ‘dressing of the dressed states’ [55] and
can be explained by the optical Bloch equations [56]. Such a nonlinear effect arises under strong pumping due to
the saturation of the transition between the ground and an excited state of the system. The antiresonance is
peculiar to the homodyne/heterodyne detection schememeasuring the photon amplitude f∣ ∣ rather than the
photon density n. The latter only exhibits power broadeningwhen the drive strength increases. Recently, the
properties of the antiresonance in coupled qubit-cavity arrayswas studied in [26].

We now argue that the antibunching–bunching crossover aswell as the antiresonance can both be
understood in terms of the relevant eigenstates of the dimermodel (inset infigure 5(b)): when the drive is
resonant with the symmetric superposition S ge eg 2ñ = ñ + ñ∣ (∣ ∣ ) , a saturation of the transition G Sñ  ñ∣ ∣
leads to the antiresonant shape in f∣ ∣ andmore antibunched correlations. A simultaneous excitation of both
spins is not possible (see level scheme in the inset named ‘AB’). Increasing the drive frequency beyond

J 4D = - allows to populatemore efficiently the excited state E eeñ = ñ∣ ∣ via a two-photon transition. This
leads to a bunching of excitations in neighbored cavities (inset named ‘B’). Note that the antisymmetric state
A ge eg 2ñ = ñ - ñ∣ (∣ ∣ ) is dark and does not couple to the drive.

We now increase the system size and discuss both phenomena in large lattice systems using the z1
expansion and ED. Infigure 6, we choose amoderate hopping J 1.85k = and vary the drive frequency kD .
Aswith the dimer, we observe a pronounced antiresonance in the photon amplitude f∣ ∣ together with a
changeover from antibunching to bunching in the correlator g

01
2( ). As already observed in table 1, the largest

deviations occur between theGutzwillermean-field-(MF, black dotted line) and thefirst-order results of the

Figure 5.Photon amplitude f∣ ∣ (a) and nearest-neighbor correlator g01
2( ) (b) for a dimer of two coupled spins as described by theXYM

(4). Each spin is coherently drivenwith strength f and decays with a rateκ. The panels display the dependence on drive frequency kD
atfixed hopping J 1.85k = and drive strength f 0.5k = , as obtained fromED (symbols) and an analytical f k expansion (solid
lines), see(10) and(11). In correspondence with the antiresonant behavior in f∣ ∣ (see also text) the nearest-neighbor correlator g01

2( )

undergoes an antibunching–bunching crossover. The vertical dotted linemarks the value J 4D = - where the correlator crosses
unity. The insets named ‘AB’ and ‘B’ illustrate the level schemes of the dimer and the relevant transitions depending on the value of the
detuning d cw wD = - .When the drive is resonant with the symmetric superposition state of the dimer (see also text) the correlator
is antibunched (‘AB’) and the homodyne signal f∣ ∣ exhibit an antiresonant shapewhen the transition G Sñ  ñ∣ ∣ starts to saturate; the
correlator becomes bunchedwhen the excited state of the dimer can be reached via two-photon transitions (‘B’). The antisymmetric
superposition state is dark and does not couple to the drive.
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expansion (1st, red dashed line). The latter reproduces the exact numerical datawell. This can be attributed to
the local nature of drive and dissipation, which limits correlation effects to a few lattice sites [24, 27]. In 2D, the
method captures the local photon amplitude f∣ ∣ as well as the nonlocal correlator g

01
2( ) more accurately than in

1D. The corrections to theMF results become smaller with increasing lattice dimension.We also performed
simulations in 3D (not shown), which confirm these general statements.

The insets infigures 6(a)–(d) display the dependence on the drive strength f atfixed drive frequency
JD = - . Again, we find excellent agreement between exact results and the z1 expansion in 2D.Note that in 1D

the expansion is slightly less accurate in describing site–site correlations. Panels (e)–(f) offigure 6 display the
hopping dependence of the observables in 2Dwhen the drive is kept resonant with the bottomof the photon
band ( JD = - ) as illustrated in the inset. Already at small hopping J 0.6k » theMF value of f∣ ∣ shown in (e)
deviates from the exact result, approximately when the nearest-neighbor correlator shown in (f) departs from
unity. The z1 expansion performs better in reproducing the correct local as well as the nonlocal observables up
to J 5k » , i.e., for roughly one order ofmagnitude larger values of J k.

In summary, we have demonstrated that the z1 expansion can reproduce the antibunching–bunching
transition in 1Dpreviously analyzedwith large scale computational techniques such asMPS [52]. Furthermore,
larger lattice dimensions (2D and 3D)—currently out of reach forMPS-based approaches—can easily and
accurately be studiedwith ourmethod.We have also provided a simple analytic argument based on a dimer
model of two coupled spins, which explains the physical origin of the antibunching–bunching transition.

6. Summary

In summary, in this paper we have developed a self-consistent scheme based on a z1 expansionwith the goal of
studying efficiently theNESS of correlated photons in cavity arrays beyond themean-field approximation.
Going to second order in the z1 expansion in 1D and 2D,we have included up to three-site correlations in our
analysis and have obtained accurate agreement with exact numericalmethods, particularly in the small to
moderate hopping regimes.We have studied two applications in the context of the driven-dissipative BHMand
XYM,which testify that this z1 expansion represents a valuable tool that confirms the qualitative correctness of
themean-field results and provides quantitative improvements on the theoretical predictions. The approach can
be easily applied to a large variety of nonequilibrium lattice systems and comeswith a remarkably low
computational cost, whichmakes it an appealing alternative to the few availablemethods for the simulation of
interacting open systems in large lattice dimensions.

Figure 6.Photon amplitude f∣ ∣ ((a), (c), (e)) and nearest-neighbor correlator g01
2( ) ((b), (d), (f)) for theXYM (4) on a 1D array of 9 sites

((a) and (b)) and a 2D (square) lattice of 3×3 sites ((c) and (f)). Panels (a)–(d) display the dependence on drive frequency kD at
fixed hopping J 1.85k = and drive strength f 1k = . The insets in (a)–(d) show the dependence on drive strength atfixed
frequency JD = - . The circles (crosses) in 1D (2D)mark the corresponding points in different plots. Panels (e) and (f) show the
observables as a function of hopping J k atfixed drive strength f 1k = when the drive frequency is kept resonant with the bottom
of the photon band ( JD = - ) as chosen in the inset. In all the panels, the curves correspond to different orders in the z1 expansion
while symbols are results fromED.
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