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Mesoscopic theory of the Josephson junction
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We derive a mesoscopic theory of the Josephson junction from nonrelativistic scalar electrodynamics. Our
theory reproduces the Josephson relations with the canonical current phase relation acquiring a weak second
harmonic term, and it improves the standard lumped-element descriptions employed in circuit quantum electro-
dynamics by providing spatial resolution of the superconducting order parameter and electromagnetic field. By
providing an ab initio derivation of the charge qubit Hamiltonian that relates traditionally free qubit parameters
to geometric and material properties, we progress toward the quantum engineering of superconducting circuits

at the subnanometer scale.
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The Josephson junction (JJ), a circuit element comprising
two superconductors separated by a thin insulating region,
is a key element in modern quantum technologies, includ-
ing superconducting charge qubits for quantum computing
[1], Josephson parametric amplifiers for quantum readout [2],
and superconducting quantum interference devices for mag-
netometry [3]. The advantages of these technologies over
traditional electronic components stem from the JJ’s ability
to exhibit nonlinear dynamics driven by quantum tunneling of
superconducting charge carriers on a macroscopic scale [4].
Noteworthy manifestations of these nonlinearities include the
dc and ac Josephson effects [5], both of which arise from the
celebrated Josephson relations governing the flow of charge
through the junction [6].

The literature is replete with microscopic derivations of
the Josephson relations. In their simplest form, these theories
employ the well-known tight-binding Hamiltonian with a phe-
nomenological hopping parameter that determines the critical
current [7]. Various extensions have been considered via the
electromagnetic response functions of the Bardeen-Cooper-
Schrieffer (BCS) theory [8,9], but the complexity introduced
by vast microscopic degrees of freedom has long posed a
challenge to the analysis of generalized time dynamics [5]. As
a consequence, further progress has historically relied on the
introduction of additional phenomenological parameters (e.g.,
the junction’s intrinsic capacitance), without insight into their
dependence on the JJ’s geometric form or photonic environ-
ment. We note that while more ab initio methods are possible,
they often rely on the calculation of a tunneling matrix with
an impractically large number of entries that nonetheless as-
sumes a phenomenological barrier strength.

Macroscopic derivations of the Josephson relations offer
a simpler alternative: in lieu of the many-body BCS ground
state used in microscopic derivations, these theories focus on
the superconducting order parameter central to the Ginzburg-
Landau (GL) theory [10,11]. The GL theory’s ability to model
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steady-state superconducting phenomena in inhomogeneous
domains holds promise for a geometrically informed descrip-
tion of the JJ, but its canonical form is not a dynamical one
[12]. Derivations employing a two-component order param-
eter (one per side of the junction) have accordingly turned
to Schrodinger’s equation for time dynamics. While simple,
this framework still requires a phenomenological Hamiltonian
coupling the two components [13], and the spatial partitioning
of the order parameter used therein forsakes any description of
its (or the electromagnetic field’s) spatial distribution.

Some progress has been made to remedy the aforemen-
tioned shortcomings in related systems, such as trapped
Bose-Einstein condensates via the Gross-Pitaevskii (GP)
equation [14—17], but the inability of both the BCS and GL
theories to effectively model inhomogeneous electrodynamic
phenomena in a unified domain poses a challenge in super-
conducting systems. With the rise of increasingly complex
superconducting circuitry in quantum devices, a mesoscopic
description of the JJ that captures its spatial characteristics and
interactions with electromagnetic surroundings is long over-
due. Here, mesoscopic refers not to the physical dimensions
of the JJ [18] but rather to a mean-field treatment of the order
parameter that (without resolving the microscopic BCS de-
grees of freedom) incorporates its nonlocal spatial variations
across superconducting and nonsuperconducting domains (a
feature typically absent in macroscopic GL-based models).

In this Letter, we present a mesoscopic theory of the JJ by
applying the theory of nonrelativistic scalar electrodynamics
to the superconducting order parameter at low temperatures
[19,20]. In doing so, we provide an ab initio derivation of the
Josephson relations that relates traditionally free parameters,
such as the JJ’s critical current and intrinsic capacitance, to
both geometric and material properties of the JJ. Focusing on
a simple, instructive geometry of coplanar superconducting
islands separated by vacuum, we predict a critical current that
decays exponentially with the separation length, along with a
correction to the canonical current phase relation (CPR) in the
form of a weak second harmonic term [21]. Finally, by de-
riving the charge qubit Hamiltonian from first principles, we
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connect to the framework of circuit quantum electrodynamics
(cQED) [22] in a way that relates crucial quantum informa-
tional parameters like the qubit anharmonicity to geometric
degrees of freedom. This approach provides a foundation for
the quantum engineering of superconducting circuits in more
general geometries.

Throughout the text, we employ Einstein notation with the
Minkowski metric 1, = diag(+, —, —, —),,. In accordance
with convention, we use the Greek alphabet to index both tem-
poral and spatial components and the Latin alphabet for purely
spatial components. Our model for the superconducting order
parameter ¥ and electromagnetic four-potential A, is defined
by the Lagrangian for nonrelativistic scalar electrodynamics
under minimal light-matter coupling,

ihc LB .
L= 7(1// (DoY) — Y (Doy)™) — 2—(Di1ﬂ) Diyr
m
1 v .
- %Fﬂ F;w _AM.]Ma (1)

where D,, = 9,, + (ig/h)A,, is the gauge covariant derivative,
F,, =09,A, — 0,A, the electromagnetic tensor, j, the four-
current generated by nonsuperconducting (normal) charge
carriers, and ¢ and m the charge and mass of the super-
conducting bosons, respectively. The equations of motion
(EOM) arising from this Lagrangian couple Schrodinger’s
equation for the order parameter to Maxwell’s equations for
the four-potential

h2
iFlCD()W = —Z—DiDiw, (23-)
m

0 F" = po(J" +j"), (2b)

where J,, is the supercurrent, whose components are given by
Jo = cqly|> and J; = (ifig/(2m))(W*(Diyy) — ¥ (Divy )*).

We proceed by imposing two symmetries. First, we assume
translational symmetry in two of the spatial dimensions with
no normal current or vector potential (j; = A; = 0). Under this
assumption, the EOM reduce to

o P
iy = —%V +4qV |, (3a)
1
—VIV = vl + p). (3b)

where Gauss’s law [Eq. (3b)] is the only one of Maxwell’s
equations not automatically satisfied, and we have used the
shorthand V = cAp and p = jo/c for the electric potential
and background ionic charge density, respectively. Second, we
assume the background exhibits reflection symmetry in the
remaining spatial dimension p(—x) = p(x), which allows us
to identify time-independent solutions to Egs. (3) comprising
stationary parity states ¥ (—x) = ¥4 (x) € R and their self-
consistent electric potentials Vi (—x) = Vi (x).

While the following analysis only requires that p respect
these two symmetries, we focus on piecewise constant (jel-
lium) backgrounds taking values p = —gn; inside and p = 0
outside the material, with ng the bulk superconducting number
density. In this case, both ¥, and V. vary on a length scale

given by the healing length

ALAC
4’

with Ap, = /m/(uonsq?) the London penetration depth and
Ac = h/(mc) the Compton wavelength of the bosons [19]. See

Figs. 1(a)-1(d) for examples of {1 and V. solved numerically
in the presence of two superconducting islands of length a >
& separated by a vacuum region of length L, as summarized
by the shaded background in the inset of Fig. 1(e),

&=

“

p=—qny(O(x —L/2)) = O(x — (a+ L/2)])), (5)

with © the Heaviside step function.

We begin our dynamical analysis by assuming the wave
function may be represented as a linear combination of the
stationary parity states. This two-mode approximation is sum-
marized by the ansatz

Y= axOpe) =) aLr@OYLr®),  (6)
+ LR

where in the second equality of Eq. (6), we have introduced
a basis of wave functions localized to the left and right of the
axis of symmetry, which (with the convention ¥4 (c0) > 0)
are related to the stationary parity states by a 2D Hadamard
transformation:

@50 E) o
@)-sl )

An example of the left/right basis functions solved for a
finite island geometry is plotted in dashed/solid black curves
in the inset of Fig. 1(e). Plugging the ansatz [Eq. (6)] into
Schrodinger’s equation [Eq. (3a)] gives

zh@*) = A(S*), (8a)
Ay = % /W (V = V;)isdx, (8b)

with V"= [* |¥4|?dx = N/o the 1D normalization con-
stant, N the total number of bosons and o the cross-sectional
area of the system depicted in the inset of Fig. 1(e).
The indices i, j run over the signs =+. Equations (8) pro-
vide a full description of the dynamics in the two-mode
approximation, which may equivalently be expressed by
the left/right coefficients in the rotating frame &pr =

arexp(i [1_(Asy + A__)dt/(2h)),

. C;(R _ U K &R

(-G e -

Apy — A__
) s

U = A:l::F! (9C)

K = (9b)

as derived in Appendix B.
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FIG. 1. Derivation of the Josephson relations begins by solving
the EOM [Egs. (3)] for the stationary parity states (a) ¥_ and (b) ¥,
along with their electric potentials (c¢) V_ and (d) V. in the presence
of a background charge density [Eq. (5)] representing the junction
geometry in (e) witha > § and o > & 2 1In the limit of small charge
imbalance, the wave function may be expressed in the left/right
basis [Eq. (7a)] shown in (e) as ¥ & (Y + €?r)/+/2. The EOM
then relate the current /, phase difference ¢, and voltage drop AV
across the junction via the Josephson relations in (e) with the critical
currents I » and the positions of the two electrodes measuring AV
uniquely determined by . and V.. The former is plotted (solid
lines) in (e), and the latter reduces to the two island centers for
a > &, as illustrated in (e). Extrapolation of the critical currents to
larger junction sizes is made possible with the quadratic fits plotted
(dotted lines) in (): |l | & [mcEo /(1olglAi)] explar 2(L/E)* +
b12(L/E) + c12) with a; = 0.000, by =~ —0.507, ¢; =~ 0.155 and
ay ~ —0.005, b, ~ —0.590, ¢, ~ —1.819.

We now evaluate the matrix elements K and U. This
requires first solving Gauss’s law for the electric potential

(Appendix C),
X [0¢]
V=L (P - I&le)f / [[v=&"ax"dx
€0 0 Jx +
1 x
+ Ve (x + ; (5 + RC(WE“R)>Vi, (10)

with V/, = limy 100 0,V the negated external electric field,
and then plugging in the result to yield the matrix elements
(Appendix D):

K = Kl + ZRC(&E&R)KL (113.)
K = ﬁf_w(|w_|2+ [ (Vo = Viodx,  (11b)

o= ﬁ/ /,ooﬂwf — WDV = Vidx,  (11o)

and
V! .d N

U= "T + ZTJU&RF —laP). (12a)

N2€0 00 px  poo -1

a="g [ [ | Tlwetiaravas| .

80' 0 0 X 4
(12b)
o0
= | xy.v_dx, (12¢)
Ny

with Cj the capacitance and d the effective dipole separation.
We postpone justification for these namings until later in the
text but nonetheless note that d is proportional to the transition
dipole moment between the stationary parity states and is thus
the expected figure of merit to couple to the external electric
field.

To derive an effective Hamiltonian for these dynamics,
we introduce the Madelung representation for the left/right
coefficients, the phase difference across the junction, and the
fractional population imbalance,

d R = JnLre ", (13a)
¢ =¢r—¢L, (13b)
n = ng — ngR, (13¢c)
in terms of which Eq. (9a) reads
hn = 2K+/1—n?sin @, (14a)
. 2Kncos ¢
hp = -2U — —, 14b
’ N (14
with the matrix elements given by
K =K + K>/ 1 —n?%cos g, (15a)
qVeud  ¢*Nn
U=—"FF"—-— . 15b
2 4G (1)

After the substitution ¢ = 27®P/Py and n = 2Q/Qyp, with
&y =h/q the flux quantum and Qp = gN the total su-
perconducting charge, these EOM are simply Hamilton’s
equations for the electric charge Q on the left (—Q on the
right) and magnetic flux & following from the Hamiltonian
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(Appendix E)
2
H=—dV/ 0+ 2Q—CJ — EjyJ 1 — (20/00)* cos 2 ® /D)
— 2Ep(1 — (2Q/Q0)*) cos*(2n ®/dy), (16)

with the Poisson bracket {®, 0} =1 and the Josephson
energies

E.—E,

EJ] = —NK1 = 77, (173)
NK2 E()O’ 2
Epn=-——=-7¢ IV(V —Vo)lidx, (17b)

where

(o]

o0 EO ) h2 )
Eﬂ:ZU/ SIVVL" + —— Ve |” Jdx  (18)
_ 2 2m

are the energies of the stationary parity states, studied here
[19] through the lens of electrohydrostatics. That Cj repre-
sents a capacitance is now manifest by the second term in
the Hamiltonian, which takes the canonical form Q> /(2Cy)
of a capacitive charging energy, and that d represents an
effective dipole separation is now manifest by the first term
in the Hamiltonian, which takes the canonical form pV,,, of
an electric dipole potential energy with the effective dipole
moment p = —Qd. That the coupling K; (and therefore Ej;)
scales with the energy splitting of the stationary parity states
has been recognized in recent analyses of trapped BECs
[23], though the energies considered here receive contribu-
tions from both the electromagnetic and matter fields. The
functional forms for the energies in Eqgs. (17) manifest their
respective signs. Assuming v, has zero nodes, ¥_ has one,
and their energies increase with the number of nodes, then
the signs of all parameters are determined, Cj, d, Ej; > 0 and
Ej, < 0, which in the absence of an external electric field,
determines the ground state of Eq. (16):

0,0) —En < 4Ep
(s, @) = (0, 4+ arccos (—ﬂ>) —Ey > 4Ey,. (19)

4E;
A derivation of the functional forms in Egs. (17) and (18),
along with a proof of Eq. (19), is given in Appendix F. For
all separation lengths L separating the large islands a > &
considered in Fig. 1, the numerically obtained values of Ej; »
correspond to the trivial ground state. The doubly degenerate
nontrivial ground state, known in the literature as the ¢ JJ,
is a leading candidate for on-chip phase batteries and has
been experimentally realized in superconductor-ferromagnet-
superconductor junctions [24,25]. It is not surprising that we
find a trivial ground state for the simple geometry considered
here, though further study is needed to determine if a ¢ JJ can
be produced from more complex geometries.

We proceed by analyzing the Hamiltonian in the limit of a
small charge imbalance by expanding H up to second order in
0:

H~HY +HYD + H®, (20a)
HO = —Ey cos 2 ®/Dg) — Ey cos (4w d/Dy), (20b)

HY = —av/ 0, (20c)

@) 1 4Ey,  2FE;
HY = —+—+—cos(2n<l>/<l>o)
2CJ Qo Q

+4g—f cos (47 d /qao)) 0. (20d)

0
The EOM arising from H® is the first Josephson relation
with a second harmonic CPR:
. 2nE 4 E
I=-0="""ginQrd/d) + —2

0
~—— ~——
I I

sin (4w ®/Dy).

2

As shown in Fig. 1(e), for large islands a > &, the mag-
nitudes of both critical currents I.;, decay with increasing
separation length L, and for L >> &, the first term in Eq. (21)
dominates the second (|l.2/l.1| < 1), thus reproducing the
celebrated sinusoidal CPR. Inclusion of H produces the
second Josephson relation

4V}, = AV, (22)

where AV is the voltage drop measured from an electrode
positioned at x = —d /2 to one positioned at x = d/2, a con-
sequence of Eq. (10) with |&.|? ~ |&r|*>. We recover the
traditional interpretation of the second Josephson relation
by noting that for large islands a > &, we may approxi-
mate Y4 (x > 0) = \/p/q = d =~ L+ a [Egs. (5) and (12¢)]
to identify AV (the voltage drop from the left island center
to the right) as the voltage drop across the junction. With
the same approximation, the capacitance reduces to Cj &
€00 /(L + 3a/2) [Eqgs. (5) and (12b)], which for sufficiently
large a and/or L, causes the first term in H® to dominate the
rest. To second order in Q, the Hamiltonian is therefore readily
quantized,

A~ 2% QAV — Eyj cos(2n ®/Dg) — Ey cos(4n D/ Do),
(23)
with the canonical commutation relation [ﬁD, Q] =ih. We

note that for L >> a, the capacitance reduces to that of two
parallel plates separated by a distance L, as expected, and
for L > &, the final term in Eq. (23) may be dropped, thus
producing the charge qubit Hamiltonian and laying the foun-
dation for cQED.

To summarize the results of this Letter, we have provided
an ab initio derivation of the Josephson relations from the
theory of nonrelativistic scalar electrodynamics, a correction
to the canonical CPR in the form of a second harmonic term,
and a derivation of the charge qubit Hamiltonian that relates
traditionally free qubit parameters to the junction’s geometric
and material properties. Future theoretical work should con-
sider a gauge-invariant formulation of the analysis presented
here, the study of more complex geometries (which may pro-
duce a nontrivial ground state), and a numerical solution of
the full nonlinear partial differential equations [Egs. (3)] to
establish the regime of validity of the two-mode approxima-
tion [Eq. (6)]. We expect this approximation to be valid in the
large separation limit, where the stationary parity states are
nearly degenerate. Finally, while the 1D treatment considered
here reproduces many of the Josephson junctions’ well-known
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physical properties (e.g., the Josephson relations), micro-
scopic derivations predict that a spatially varying phase differ-
ence between extended junctions should obey the sine-Gordon
equation [26]. An analogous derivation from the present the-
ory would require relaxing the assumption of translational
symmetry in one direction, which we leave to future work.
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APPENDIX A: NUMERICS

In terms of the unitless variables,

Ve =\ by, (Ala)
/. = %Vi, (Alb)
V=¢vV, (Alc)
g=2X (Ald)
§
L= Ii (Ale)
3
the equations of state [Egs. (3) with ¢i = 0] read
(=V? +Vo)ye =0, (A2a)
2V, + [Ye? = (1% — L/2), (A2b)
with the boundary conditions
V(=) = Y+ (%), (A3a)
V(=) = Va(3), (A3b)
x11>nolo V(@) =1, (A3c¢)
Xlirgo Vi(x) =0. (A3d)

We solve these equations for 21 equally spaced separation
lengths spanning the range L € [0, 40] on a grid of size x €
[0, 100] with spacing dx = 0.25. Using a central finite differ-
ence scheme with second-order accuracy for the derivatives,
we convert the differential equations into a set of algebraic
ones and find their numerical solution via Netwon’s method.
All solutions converged to machine precision (ten decimal
places) using the findroot function from the mpmath library
in Python with the initial guess ¥+ = 1 and V.. = 0. Finally,
we compute the critical currents using the rectangle rule for
the integrals:

__lmcfcr -, N

I = 4[M0qki}/w<|w| 10 D)V — V),
(Ada)

Ic2=—§|:'zw§;:|/ (- = 15 D)V — Vi )d.

(A4b)

APPENDIX B: TWO-MODE APPROXIMATION

We derive the EOM in the two-mode approximation by
first plugging the ansatz [Eq. (6)] into Schrodinger’s equa-
tion [Eq. (3a)] and using Eq. (3a) for ¥4 to eliminate the
kinetic terms:

lﬁZaiwi = Z (—h—Vz + qV)awi

=q) (V= Vi)osys. (BI)
+

We then integrate against 4, whose orthogonality
/ fooo Y+ y¥_dx = 0 produces Eq. (8), and move to the rotating

frame & =arexp(i [ (Ayy + A__)dt/(2h)), where
Schrddinger’s equation reads
L(ay _ (K U (a
)6 6 -
—— ——

H

with the matrix elements given by Egs. (9b) and (9¢). A, _ =
A_. can be seen by dropping the odd contributions to the
integrands for A;;. The final step amounts to a simple basis
change,

<
N
Q- Q-
= =
N—
I
RS
Si=Sl-

L L L -
(e )E) e
2 NG
which after explicit matrix multiplication yields Eq. (9a).

APPENDIX C: ELECTRIC POTENTIAL

We compute the electric potential by first eliminating the
background charge density in favor of the stationary parity
states as follows:

-V (V -3 |&i|2vi>
+

1 ol .
= ;O(qlw|2 +ejo) - > laxl(qlyel* + cjo)

+
= i(w - D&iﬁwz)
€0 T
29 ..
= gRC(O{+(¥_)K/f+l/f_. (Cl)

In the first equality, we have used Eq. (3b); in the second
equality, we have used the fact that the probability amplitudes
sum to unity Y, |&@+|*> = 1; and in the third equality, we have
expanded v in the parity basis and canceled like terms. Up to
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an unphysical global phase, double integration yields

V= ——Re(~ ) / / Hl/fi(x”)dx”dx

+fOx+ ) @l Vs, (C2)
+

with f(¢) the constant of integration, which is related to the
boundary condition V. (¢) by

Vi) = £ - “IRet@a) f [Ty
|

1
wf (( ( + Re(@ R>)vi - v+)|w+|2 - (Xij (5 iRe(éz;i&R))vi - V>|w|2>dx

=2 / < (1ar > — o / / ]‘[mu”)dx”dx +vext<t)x>w+(x>x/f_<x>dx,

which after factoring out the terms that depend on the coeffi-
cients, yields Egs. (11) and (12).

APPENDIX E: HAMILTONIAN FORMULATION
In terms of the Madelung variables, the EOM read

i = _ 2Kk ¢h sin ¢, (Ela)

PR S in g, (E1b)

. 1 < ny >

¢r=—-|—-K |—cos¢p—U]}, (Elc)
h nr

. 1 ( ng >

or=—-(—-K.|—cosgp+U). (E1d)
h nr,

Subtracting Eqgs. (Ela) and (Eld) from Egs. (E1b) and
(Elc), respectively, yields Eqgs. (14), which may equivalently
be stated as EOM for the charge imbalance

0= 2”E“ (1 — (20/Q0)»)'"? sin 2 ®/dq)
S”E” (1 — (20/Q0)) sin (27 /dq) cos (27 D/ Do)
(E2)
and the flux
L , g
b = de + c
2En 2\-1/2
+ g, (20/Q0)(1 — (20/Qu)*)™ % cos (2 &/ by)
8E)
+ Q—(2Q/Qo)cos Qrd/dy). (E3)

Explicit calculation shows these are Hamilton’s equa-
tions ® = dpH and Q = —depH with H the Hamiltonian in
Eq. (16).

Eliminating f(¢) from Eq. (C2) in favor of V/,(¢) and rewrit-
ing the coefficients in the left/right basis produces Eq. (10).

APPENDIX D: MATRIX ELEMENTS

We begin by noting that while Eq. (10) is more compact
than Eq. (C2), it obfuscates the fact that the final term (the
sum) is even, while all other terms are odd, a property that is
manifest in Eq. (C2). By dropping all odd contributions to the
integrands for A;;, we have

(Dla)

(D1b)

APPENDIX F: GROUND STATE

We begin by casting Ej; » in a form that makes their signs
clear. Alternating application of Egs. (3) and integration by
parts yields

o oo
En=) 7 / (€V2Va +cjo) (V- — Vi )dx
+ —00
(o]
-y iE/ (E—0|VVi|2 - CjoVi>dx
— 2J.x\2

o (% vy 2 2 2
2| (SIVVaP + (@al? + € VPVe Ve )

| (Gr9vep = g s
-y [ (—°|VV L )d
= B ) + + + |ax
+
( A +—|Vwi|)

o (F1)

which is positive assuming the antisymmetric stationary parity
state has higher energy than the symmetric one, and

EJQ__—/ (—e0V2V_ + V2V )(V_ — Vi )dx

600

=0 |V<v_ — V)lPdx, (F2)
which is necessarily negative. The assumption that ¥4 has no
nodes and y_ has one (at the origin) implies ¥+ (x > 0) > 0.
Since the integrals in Egs. (12b) and (12c¢) depend only on
the stationary parity states evaluated at positive spatial co-
ordinates, the integrands (and therefore integrals) are strictly
positive, yielding Cy, d > 0. We seek the global minimum of
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the Hamiltonian (7., ¢.) in the absence of an external electric
field, which will coincide with the global minimum of

Hn, ¢)=n>— Ejv1—n2cos¢ —2Ep(1 — n)cos® ¢,
(F3)
where the scaled Josephson energies EJLZ = (2Gy /Qé)EJLz

have the same signs as the original ones Ej; ;. The global
minimum must satisfy 8¢I-_I (n4, ¢4) = 0, which implies

. Ey N
n,=1V sing,=0v ——=,/1—-nicos¢,. (F4)
4Ey,

The first condition in Eq. (F4) cannot be true, since
HO,7/2) < H(1,$)V¢. We must therefore have n, # 1.
The second condition in Eq. (F4) implies ¢, =0V ¢, = 7,

but aq%H (n,m) < 0Vn, so ¢, # . The remaining conditions
thus read

Ey
¢« € 10, £arccos | ————F—=] ¢- (F5)
4Ep /1 —n2
Noting that 8,H (n,0) = 0 = 8;H(n, 0) < 0, we must have
¢ = 0 = n, = 0. Moreover,

I:I(n + arccos (— En )) = Ej +n*  (F6)
' 4E]2\/ 1 —n? 8E12

is clearly minimized for n =0, so n, = 0 for all possible
ground states. The two possible ground state energies are
I:?(O, 0)_2 _EJI — 2E]2 and H(O, + arccos(—En/(4EJ2)) =
EJ21 /(8Ey,). The minimum of these two energies depends on
the ratio of Josephson energies as described by Eq. (19).
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