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The expressive capacity for learning with quantum systems is fundamentally limited by the quantum sampling
noise incurred during measurement. While studies suggest that noise limits the resolvable capacity of quantum
systems, its precise impact on learning remains an open question. We develop a framework for quantifying
the expressive capacity of qubit-based systems from finite numbers of projective measurements, and calculate
a tight bound on the expressive capacity and the corresponding accuracy limit that we compare to experiments
on superconducting quantum processors. We uncover the native function set a finitely-sampled quantum system
can approximate, called eigentasks. We then demonstrate how low-noise eigentasks improve performance for
tasks such as classification in a way that is robust to noise and overfitting. We also present experimental and
numerical analyses suggesting that entanglement enhances learning capacity by reducing noise in eigentasks.
Our results are broadly relevant to quantum machine learning and sensing applications.

I. INTRODUCTION

Learning with quantum systems is a promising application
of near-term quantum processors, with several recent demon-
strations in both quantum machine learning (QML) [1–5] and
quantum sensing [6–8]. A broad class of such data-driven ap-
plications proceed by embedding data into the evolution of
a quantum system, where the embedding, dynamics, and ex-
tracted outputs via measurement are all governed by a set of
general parameters θ. Depending on the learning scheme, dif-
ferent components of this general framework may be trained
for optimal performance of a given task. Irrespective of the
scheme, however, the fundamental role of the quantum sys-
tem is that of a high-dimensional feature generator. Given
inputs u, a set of frequencies for the occurrence of different
measurement outcomes act as a feature vector to learn a func-
tion f(u) that minimizes the chosen loss function (see Fig. 1).
The relationship between the physical structure of the model
and the function classes that can be expressed with high accu-
racy, referred to as expressivity, is a fundamental question of
basic importance to the success of quantum models. Recent
results have begun to shed light on this important question
and provide guidance on the choice of parameterized quantum
models [9–16]. Yet when it comes to experimental implemen-
tations, the presence of noise is found to substantially curtail
theoretical expectations for performance [1–3].

Given an input u to a general dynamical system, we de-
fine its Expressive Capacity (EC) as a measure of the accu-
racy with which K linearly independent functions {f(u)} of
the input can be constructed from K readout features. This is
a suitable generalization to noisy systems of the Information

∗ These two authors contributed equally

Processing Capacity introduced in Ref. [17]. A central chal-
lenge in determining the EC for quantum systems is the fun-
damentally stochastic nature of measurement outcomes. Even
when technical noise due to system parameter fluctuations is
minimized as in an error-corrected quantum computer, there
is a fundamental level of noise, the quantum sampling noise
(QSN), which cannot be eliminated in learning with quantum
systems. QSN therefore sets a fundamental limit to the EC
of any physical system. Although QSN is well-understood
theoretically, a formulation of its impact on learning is a chal-
lenging task as it is strongly determined by the quantum state
of the system relative to the measurement basis, and is highly
correlated when entanglement is present. Consequently, the
impact of QSN is often ignored [18–21] (with a few excep-
tions [14, 22]), even though it can place strong constraints on
practical optimization [23] and performance [22]. In this ar-
ticle, we develop a mathematical framework to quantify the
EC that exactly accounts for the structure of QSN, providing
a tight bound for an L-qubit system under S measurements,
and illustrate how a mathematical framework for its quantifi-
cation can guide experimental design for QML applications.

Our work goes beyond simply defining the EC as a figure of
merit, however. In particular, we offer a methodology to iden-
tify the native function set that is most accurately realizable
by a given encoding under finite sampling. Equivalently, we
show that this defines a construction of measured features that
is optimally robust to noise in readout, thereby revealing how
such a quantum system can be optimally employed for learn-
ing tasks. Finally, while the strength of the EC lies in its gener-
ality, we provide numerical examples that suggest that higher
EC is typically indicative of improved performance on spe-
cific QML tasks. As such, the EC provides a metric whose op-
timization can be targeted for improved learning performance
in a task-agnostic and parameter-independent manner.

This strategy for defining the noise-constrained EC natu-

ar
X

iv
:2

30
1.

00
04

2v
1 

 [
qu

an
t-

ph
] 

 3
0 

D
ec

 2
02

2



2

Entangled 
system

Increased
samplingProduct

system

Input

         dimensional 
    input domain

Output            under finite samplingFeature generator

(a)

(b)

Individual function capacity:

Function approximation

features
(Probabilities)

Quantum system

Quantum annealers

Quantum Neural Networks/
Variatonal Quantum Algorithms

Quantum Kernel Methods

Target:

Learned Estimate:

Learned linear weights 

e.
g.

   
 -

Q
u

b
it

 s
ys

te
m

Computational basis measurement

FIG. 1. (a) Representation of the learning framework considered in
this work – inputs u are transformed to a set of outputs via a feature
generator, here implemented using a finitely-sampled quantum sys-
tem as shown in (b). Inputs are encoded in the state of a quantum
system via a general quantum channel U . Information is extracted
from the quantum system via projective measurements in the com-
putational basis. The geometric structure of the quantum sampling
noise in the high-dimensional measured feature space can strongly
depend on the encoding, and the degree of entanglement generated
upon parametric evolution. The learning scheme discussed in the
present work optimally leverages the geometric structure of corre-
lated noise. This framework describes a wide range of practical
quantum systems, from quantum circuits used in QML, to quantum
annealers exhibiting continuous evolution, and beyond, all defined by
general parameters θ. As shown in (a), learned estimates for desired
functions are constructed via a trained linear estimator w̃ applied to
K measured observables X̄ of the quantum system, with a resolu-
tion limited by quantum sampling noise with finite shots S. Capacity
then quantifies the error in the approximation of a target function via
this scheme.

rally focuses on accessible noisy output features under a spec-
ified measurement scheme, as opposed to unmeasured degrees
of freedom. This makes the EC an efficiently-computable
quantity in practice, as we demonstrate using both numerical
simulations and experiments on IBM Quantum’s supercon-
ducting multi-qubit processors [24]. Our work also identifies
enhancement in measurable quantum correlations as a general
principle to increase the EC of quantum systems under finite
sampling.

II. LEARNING WITH QUANTUM SYSTEMS

The most general approach to learning from data using a
generic quantum system is depicted schematically in Fig. 1.
A table with symbols and abbreviations used in the text can
be found in Appendix A. For concreteness, we detail a specific
realization for L-qubit systems that are measured projectively,
which will be analyzed in the remainder of this work. Any
learning scheme begins with embedding the data u through a
quantum channel parameterized by θ acting on a known initial
state, ρ̂(u;θ) = U(u;θ)ρ̂0. For an L-qubit quantum system,
for example, we consider ρ̂0 = |0〉〈0|⊗L.

Any computation must be performed using outputs ex-
tracted from the quantum system via measurements in a

specified basis parameterized by K operators {M̂k}, k =
0, · · · ,K − 1. For a projectively measured L-qubit system,
the measurement basis is defined by the K = 2L projectors
M̂k = |bk〉〈bk| corresponding to measurement of bitstrings
bk. A single measurement or “shot” yields a discrete out-
come b(s)(u) for each observable: if the outcome of shot s
is state k, then b(s)(u) ← bk. Measured features are then
constructed by ensemble-averaging over S repeated shots:
X̄k(u) = 1/S

∑
s δ(b

(s)(u), bk). Hence X̄k(u) in this case
is the measured frequency of occurrence of the bitstring bk in
S repetitions of the experiment with the same input u. These
measured features are formally random variables that are un-
biased estimators of the expected value of the corresponding
observable as computed from ρ̂(u): explicitly,

limS→∞X̄k(u) ≡ xk(u) = Tr{M̂kρ̂(u;θ)}, (1)

so that xk is the quantum mechanical probability of occur-
rence of the kth bitstring.

In QML theory, it is standard to consider the limit S →∞,
and to thus use expected features {xk(u)} for learning. How-
ever, for any practical implementation, measured features
{X̄k(u)} must be constructed under finite S, in which case
their fundamentally quantum-stochastic nature can no longer
be ignored. This quantum sampling noise, like any other
source of noise, can unsurprisingly limit the EC. Completely
unlike classical noise sources however, the statistics of quan-
tum sampling noise are strongly determined by the state of
the quantum system itself. This leads to a rich noise structure
that changes dramatically based on, for example, the entan-
glement of the generated quantum state, as depicted in Fig. 1.
In this work, we exactly account for this structure of quantum
sampling noise to quantify its fundamental impact on EC. By
further leveraging the complexity and quantum state depen-
dence of sampling noise, we provide a practical, experimen-
tally applicable methodology that maximizes the capacity for
learning functions using finitely-sampled quantum systems,
and also avoids overfitting in ML tasks.

We begin by observing that X̄ are samples from a multino-
mial distribution with S trials and K = 2L categories, which
can be decomposed into their expected value and an input-
dependent sampling noise:

X̄(u) = x(u) +
1√
S
ζ(u), (2)

where ζ(u) is a zero-mean random vector obeying multino-
mial statistics. As discussed in Appendix B and C, what
makes quantum systems special is the fundamental relation-
ship between the noise ζ(u) and the ‘signal’ x(u). Pre-
cisely, the covariance Σ(u) of ζ(u) depends on the gen-
erated quantum state: Σkk′(u) = Tr{M̂kM̂k′ ρ̂(u)} −
Tr{M̂kρ̂(u)}Tr{M̂k′ ρ̂(u)}. This quantum covariance of the
measured observables therefore comprises non-linear func-
tions of the signal x(u) itself; at a given S, we will show
that this allows for more information to be extracted from sys-
tems with more quantum correlations between observables.
Note that ζ can be straightforwardly modified to include other
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noise sources, such as gate or measurement errors (see Ap-
pendix B 2), with 1/

√
S then interpreted as a general noise

strength. However our focus here remains on quantum sam-
pling noise and its fundamental role in learning with quantum
systems.

The use of such a quantum system for the learning of func-
tions under finite sampling is then depicted schematically in
Fig. 1. For a target function f(u), an approximation fW (u)
is obtained via a linear (for reasons clarified shortly) esti-
mator applied to readout features under finite S, fW (u) =
W · X̄(u), where X̄ = (X̄0, . . . , X̄K−1)T . To quantify
the fidelity of this approximation, we introduce the capac-
ity [14, 17, 20] to construct the target function as the minimum
achievable (normalized) mean squared error between the tar-
get and its estimate:

C[f ] = 1− min
W∈RK

Eu[|f(u)− fW (u)|2]

Eu[|f(u)|2]
. (3)

In the above, Eu refers to the expected value with respect to an
input distribution p(u) over a compact input domain, which
can be continuous or discrete: Eu[f ] ≡

∫
du p(u)f(u) '

1
N

∑
n f(u(n)) for i.i.d. sampling obeying u(n) ∼ p(u) for

all n ∈ [N ]. Minimizing error in the approximation of
f(u) by fW (u) over the input domain to determine capac-
ity thus requires finding w̃ = argminWEu[|f − fW (u)|2]
(via a resource-efficient pseudoinverse). This capacity is con-
structed such that 0 ≤ C[f ] ≤ 1.

The choice of a linear estimator and a mean squared er-
ror loss function may appear restrictive at first glance, but the
generality of our formalism averts such limitations. For ex-
ample, the use of a linear estimator applied directly to readout
features precludes classical nonlinear post-processing of mea-
surements; however, this is simply to ensure the calculated
capacity is a measure of the quantum system itself, and not of
a classical nonlinear layer. Importantly, our formalism is gen-
eral enough to incorporate such processing in a calculation
of capacity, via a simple redefinition of readout features X̄ .
Hence the use of a linear estimator does not necessarily lose
generality. Secondly, while higher-order loss functions may
be used, the mean squared loss effectively describes the Tay-
lor expansion of a wide range of loss functions (see Appendix
C 5).

To extend the notion of capacity to a task-independent mea-
sure of the expressivity of a physical system, we can eval-
uate the function capacity over a complete orthonormal set
of basis functions {f`}`∈N, equipped with the inner product
〈f`, f`′〉p =

∫ 1

−1
f`(u)f`′(u)p(u)du = δ``′ . The total Ex-

pressive Capacity (EC) is then CT ≡
∑∞
`=0 C[f`], which ef-

fectively quantifies how many linearly-independent functions
can be expressed from a linear combination of {X̄k(u)}. Our
main result, which is proven in Appendix C 4, is that the EC
for an L-qubit system whose readout features are stochastic
variables of the form of Eq. (2) is given by

CT (θ) = Tr

((
G +

1

S
V

)−1

G

)
=

K∑
k=1

1

1 + β2
k(θ)/S

. (4)

The first equality is written in terms of the expected feature
Gram and covariance matrices G ≡ Eu[xxT ] and V ≡
Eu[Σ] respectively; we later demonstrate that these expected
quantities can be accurately estimated under finite S sam-
pling. The second equality expresses the total capacity in
a finite-dimensional linear space, in terms of the eigenval-
ues {β2

k}k∈[K] satisfying the generalized eigenvalue prob-
lem Vr(k) = β2

kGr
(k). Inspecting this expression, we first

note that it is independent of the particular set {f`}`∈N cho-
sen, which would have required an evaluation over an infi-
nite set of functions and its numerical evaluation therefore
would be subject to inaccuracies due to truncation [17]. In-
stead, CT can be interpreted as the sum of capacities to con-
struct K individual functions living in an otherwise infinite-
dimensional function space; the identity of these special func-
tions is closely connected with the generalized eigenvectors
{r(k)}, and will be clarified shortly. Secondly, in the absence
of noise, limS→∞ CT = Rank{G} = K = 2L, provided no
special symmetries exist (see Appendix C 6). Such theoreti-
cal exponential growth in expressive capacity with L is often-
cited as a motivator for ML on quantum systems [14, 20, 25].
From the perspective of infinite-shot capacity, this also im-
plies that all L-qubit systems with K measured features are
equivalent, regardless of encoding. Such universality has also
been pointed out for classical dynamical systems subject to
zero input and output noise [17].

However, our expression for CT is also valid for any noisy
physical system, corresponding to finite S. In particular,
Eq. (4) shows that the EC of a qubit-based physical system
satisfies CT ≤ K at finite S, and can be fully characterized in
terms of the spectrum {β2

k}, which is ultimately determined
by parameters θ governing the physical system and embed-
ding via the Gram (G) and covariance (V) matrices. Related
characterizations of noise-constrained capacity have been at-
tempted for Gaussian quantum systems [22], but to our knowl-
edge no precise formulation exists that also encompasses non-
Gaussian systems such as qubit systems. Furthermore, from
the perspective of capacity, what makes one embedding or
physical system different from another is simply its ability to
accurately express functions in the presence of noise. Our
expression for CT thus provides a general, comprehensive,
and straightforward metric to assess and compare this capac-
ity across physical systems and their associated embedding
under finite S.

Furthermore, via the associated eigenvectors {r(k)}, our
analysis uncovers a finite set of orthogonal functions native
to a particular encoding that is maximally resolvable through
S measurements. This set of K orthonormal functions, the
eigentasks y(k)(u) =

∑
j r

(k)
j xj(u), can be estimated from

measured readout features as described in Appendix D 1. The
eigentasks characterize an ordered set of functions that can be
constructed with mean squared error β2

k/S, leading to a natu-
ral interpretation of β2

k as noise-to-signal (NSR) eigenvalues,
determined by fundamental sampling noise. As we will show,
this experimentally extractable information can be utilized for
optimal learning (with minimal degrees of freedom) with a
noisy quantum system.
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III. EXPERIMENTAL RESULTS

To demonstrate the above results in practice, we now show
how the spectrum {β2

k}, the EC, and eigentasks can all be
computed for real quantum devices in the presence of param-
eter fluctuations and device noise.

We emphasize at the outset that our approach for quantify-
ing the EC of a quantum system is very general, and can be
applied to a variety of quantum system models. For practical
reasons, we perform experiments on IBM Quantum (IBMQ)
processors, whose dynamics is described by a parameterized
quantum circuit containing single and two-qubit gates. How-
ever, as an example of the general validity of our approach,
in Appendix E we compute the EC for L-qubit quantum an-
nealers via numerical simulations, governed by the markedly
different model of continuous-time Hamiltonian dynamics.

On IBMQ devices, resource limitations restrict our compu-
tation of EC to 1D inputs u that are uniformly distributed,
p(u) = Unif[−1, 1], see Fig. 2(a). We emphasize that
this analysis can be straightforwardly extended to multi-
dimensional and arbitrarily-distributed inputs given suitable
hardware resources, without modifying the form of the Gram
and covariance matrices.

We are only now required to specify the model of the L-
qubit system in Eq. (1), which has been left completely gen-
eral thus far. The specific ansatz we consider is tailored to
be natively implementable on IBMQ processors; more gen-
eral ansatz can also be considered (see Appendix B). It con-
sists of τ ∈ N repetitions of the same input-dependent circuit
block depicted in Fig. 2(a). The block itself is of the form
Rx(θx/2)W(J)Rz(θz + θIu)Rx(θx/2), where Rx/z are
Pauli-rotations applied qubit-wise, e.g.Rz =

∏
lRz(θ

z
l +

θIl u). The entangling gate acts between physically con-
nected qubits in the device and can be written as W(J) =∏
〈l,l′〉 exp{−iJ2 σ̂zl σ̂zl′}.
Note that for this ansatz, the choice J = 0 (mod π) yields

eitherW = Î or σ̂z⊗ σ̂z , both of which ensure ρ̂(u) is a prod-
uct state and measured features are simply products of uncor-
related individual qubit observables – equivalent to a noisy
classical system. Starting from this product system (PS), tun-
ing the coupling J 6= 0 (mod π) provides a controllable pa-
rameter to realize an entangled system (ES). This control en-
ables us to address a natural question regarding EC of quan-
tum systems under finite S: what is the dependence of EC
and realizable eigentasks on J , and hence on quantum corre-
lations?

This calculation of EC requires extracting measured fea-
tures from the quantum circuit under input u, one example of
which is shown for the IBMQ ibmq perth device in Fig. 2(a),
for S = 214. For comparison, we also show ideal-device
simulations (no device noise), where slight deviations are ob-
served. The agreement with the experimental feature is im-
proved when the effects of gate and readout errors, and qubit
relaxation are included, hereafter referred to as “device noise”
simulations, highlighting the non-negligible role of device er-
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FIG. 2. (a) IBMQ Perth device and quantum circuit schematic for
EC calculation, and classification task in Fig. 3. Here τ = 3 lay-
ers, and random qubit rotation parameters are θx/zl ∼ Unif[0, 2π]

and θIl ∼ Unif[0, 10π]. On the right, the specific feature plotted is
X̄1(u) = P000001(u) for S = 214 shots. (b) Left panel: Device
NSR spectrum β2

k for ES, J = π/2 (blue crosses) and PS, J = 0
(brown diamonds). Ideal (solid) and device noise (dashed) simula-
tions are also shown. Note the agreement between device and simu-
lation, along with distortion from more direct exponential growth in
β2
k with k in the ideal case, due to device errors. Right panel: CT

vs. S calculated from the left panel. At a given S, the CT can be
approximated by performing the indicated sum over all β2

k < S. (c)
EC (top panel) and ETC (lower panel) under S = 214 from the IBM
device, and device noise simulations (dashed peach). Average met-
rics over 8 random encodings for device noise (solid peach) and ideal
(solid gray) simulations are also shown. The S → ∞ EC of these
encodings always attains the max{CT } = 64, indicated in dashed
red.

rors.

The measured features under finite S are used to estimate
the Gram and covariance matrices (see Appendix D), and to
thus solve the eigenproblem for NSR eigenvalues {β2

k}. Typ-
ical NSR spectra computed for two random encodings on the
device are shown in Fig. 2(b), for J = 0 (PS) and J = π/2
(ES), together with spectra from device noise simulations,
with which they agree well. We note that at lower k, the device
NSR eigenvalues are larger than those from ideal simulations,
due to device noise contributions. For larger k, device results
deviate from the pure exponential increase (with order) seen in
ideal simulations. The deviation is captured by device noise
simulations and can therefore be attributed to device errors.
The NSR spectra therefore can serve as effective diagnostic
tools for quantum processors and encoding schemes. More
examples will be provided later in the discussion.

The NSR spectra can be used to directly compute the EC of
the corresponding quantum device for finite S, via Eq. (4). As
a rule of thumb, at a given S only NSR eigenvalues β2

k . S
contribute substantially to the EC. An NSR spectrum with a
flatter slope therefore has more NSR eigenvalues below S,
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which gives rise to a higher capacity. Fig. 2(b) shows that the
ES generally exhibits an NSR spectrum with a flatter slope
than the PS, yielding a larger capacity for function approxi-
mation across all sampled S.

To more precisely quantify the role of entanglement and
quantum correlations in EC, we introduce the expected total
correlation (ETC) of the measured state over the input domain
of u [26, 27],

T̄ = Eu

[
L∑
l=1

S(ρ̂Ml (u))− S(ρ̂M (u))

]
, (5)

where ρ̂M is the measured state: ρ̂M (u) ≡∑
k ρ̂kk(u) |bk〉〈bk| and S is the von Neumann entropy (see

Appendix G). We now compute EC and ETC using S = 214

in Fig. 2(c) as a function of J , together with both ideal and
device noise simulations of the same. We note that product
states by definition have T̄ = 0 [28]; this is seen in ideal
simulations for J = 0 (mod π). However, the actual device
retains a small amount of correlation at this operating point,
which is reproduced by device noise simulations. This can be
attributed to gate or measurement errors as well as cross-talk,
especially relevant for the transmon-based IBMQ platform
with a parasitic always-on ZZ coupling.

With increasing J , T̄ increases and peaks around J ∼
π/2 (mod π); interestingly, CT also peaks for the same cou-
pling range. From the analogous plot of EC, we clearly see
that at finite S, increased ETC appears directly correlated
with higher EC. We have observed very similar behaviour us-
ing completely different models of quantum systems (see Ap-
pendix Fig. 5 [29, 30]). This indicates the utility of enhancing
quantum correlations as a means of improving the general ex-
pressivity of quantum systems.

However, we see that at finite S, even with increased quan-
tum correlations, the maximum EC is still substantially lower
than the upper bound of K = 64. Note that this remains true
even for ideal simulations, and over several random encod-
ings, so the underperformance cannot be attributed to device
noise or poor ansatz choice respectively. These results clearly
indicate that the resulting sampling noise at finite S is the fun-
damental limitation for QML applications on this particular
IBM device, rather than other types of noise sources and er-
rors.

IV. A ROBUST APPROACH TO LEARNING

While we have demonstrated the EC as an efficiently-
computable metric of general expressivity of a noisy quantum
system, some important practical questions arise. First, does
the general EC metric have implications for practical perfor-
mance on specific QML tasks? Secondly, given the limiting –
and unavoidable – nature of correlated sampling noise, does
the EC provide any insights on optimal learning using a par-
ticular noisy quantum system and the associated embedding?
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FIG. 3. (a) Device eigentasks for ES (left) and PS (right), con-
structed from noisy features at S = 210 and S = 214. (b) Clas-
sification demonstration on IBMQ Perth. Binary distributions to be
classified over the input domain are shown. (c) The classification
task can be cast as learning the likelihood function separating the
two distributions; this target function is shown in the upper panel.
Lower panels show the trained estimate of this target using outputs
from the ES and PS respectively, using KL = 36 eigentasks with
S = 214.

Our formulation addresses both these important questions
naturally, as we now discuss. Beyond being a simple figure of
merit, we show in the Appendix C that the EC is precisely the
sum of capacities to approximate a particular set of orthogonal
functions native to the given noisy quantum system: the eigen-
tasks. Crucially, these eigentasks ȳ(k)(u) =

∑
r

(k)
j X̄j(u) can

be directly estimated from a noisy quantum system via the
generalized eigenvectors {r(k)}, and are ordered by their as-
sociated NSR {β2

k}. We show a selection of estimated eigen-
tasks from IBMQ, for an ES (J = 5π/3) and PS (J = 0) in
Fig. 3(a). For both systems, the increase in noise with eigen-
task order is apparent when comparing two sampling values,
S = 210 and S = 214. Furthermore, for any order k, eigen-
tasks for the PS are visibly noisier than the ES; this is con-
sistent with NSR eigenvalues for PS being larger than those
for ES, as seen in Fig. 2(b). This ability to more accurately
resolve eigentasks provides a complementary perspective on
the higher expressive capacity of ES in comparison to PS.

The resolvable eigentasks of a finitely-sampled quantum
system are intimately related to its performance at specific
QML applications. To demonstrate this result, we consider
a concrete application: a binary classification task that is
not linearly-separable. Samples u(n), n ∈ [N ], obeying the
same distribution p(u) for u ∈ [−1, 1] as considered for the
EC evaluation, are separated into two classes, as depicted in
Fig. 3(b). A selection of Ntrain = 150 total samples - with
equal numbers from each class - are input to the IBMQ device,
and readout features X̄(u(n)) are extracted using S = 214

shots. A linear estimator applied to these features is then
trained using logistic regression to learn the class label associ-
ated with each input. Finally, the trained IBMQ device is used
to predict class labels of Ntest = 150 distinct input samples
for testing.

This task can equivalently be cast as one of learning the
likelihood function that discriminates the two input distribu-
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tions, shown in Fig. 3(c), with minimum error. The set of up
to KL eigentasks ȳ(k)(u), where KL ≤ K, serves as the na-
tive basis of readout features used to approximate any target
function using the quantum system. The noisier eigentasks of
the PS therefore limit the accuracy with which it can be used
to learn the target, in comparison to the ES. This is clear from
the learned estimates shown in Fig. 3(c), using an equal num-
ber of KL = 36 eigentasks to ensure a fair comparison. The
higher approximation capacity translates to improved classi-
fication performance, as we show via the training and testing
classification accuracy in Fig. 4(a) for both ES and PS. We
plot both as a function of the number of eigentasks KL used
for learning, from which it is clear that the maximum testing
accuracy using the ES exceeds that of the PS.

However, using eigentasks ordered by NSR reveals even
more about learning using noisy quantum systems, and pro-
vides a path towards optimal learning. While intuition sug-
gests that using more eigentasks can only be beneficial,
weights learned when training with noisier eigentasks may
not generalize well to unseen samples. For example, using
all eigentasks (KL = K) yields a test accuracy far lower than
that found in training. The observed deviation is a distinct
signature of overfitting: the optimized estimator learns noise
in the training set, and thus loses generalizability in testing.
Crucially, an optimal number of eigentasks clearly emerges,
around KL ' Kc(S) = maxk{β2

k < S}, for which the NSR
eigenvalue is closest to S. Eigentasks k > Kc typically con-

tribute more ‘noise’ to the function approximation task than
‘signal’. Excluding these eigentasks therefore limits overfit-
ting without adversely impacting performance.

Fig. 4(b) also shows the classification accuracy as J is var-
ied, where we highlight the striking similarity with Fig. 2(c):
encodings with larger quantum correlations and thus higher
expressive capacity will perform generically better on learn-
ing tasks in the presence of noise, because they generate a
larger set of eigentasks that can be resolved at a given sam-
pling S. The NSR spectra and eigentasks therefore provide
a natural truncation scheme to maximise testing accuracy,
avoiding overfitting without any additional regularization (see
also Appendix H and I).

V. DISCUSSION

We have developed a straightforward approach to quan-
tify the expressive capacity of any qubit-based system in the
presence of fundamental sampling noise. Our analysis is
built upon an underlying framework that determines the native
function set that can be most robustly realized by a finitely-
sampled quantum system: its eigentasks. We use this frame-
work to introduce a methodology for optimal learning using
noisy quantum systems, which centers around identifying the
minimal number of eigentasks required for a given learning
task. The resulting learning methodology is resource-efficient
and robust to overfitting. We demonstrate that eigentasks can
be efficiently estimated from experiments on real devices us-
ing a limited number of training points and finite shots. We
also demonstrate across two distinct qubit evolution ansätze
that the presence of measured quantum correlations enhances
expressive capacity. Our work has direct application to the
design of circuits for learning with qubit-based systems. In
particular, we propose the optimization of expressive capacity
as a meaningful goal for the design of quantum circuits with
finite measurement resources.
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Appendix A: Table of Symbols and Abbreviations

Abbreviations
NISQ Noisy Intermediate Scale Quantum

(Q)ML (Quantum) Machine Learning
QSN Quantum Sampling Noise
VQC Variational Quantum Circuits
PS Product System
ES Entangled System
EC Total Expressive Capacity, CT

ETC Expected Total Correlation, T̄
Symbols and notation

S Number of shots
N Number of inputs
L Number of qubits
K ≡ 2L, number of measured features
u Input
θ Quantum system parameters
ρ̂ Generated quantum state
M̂k Measured observable
W Output weights (can be untrained)
w̃ Optimal learned output weights on S-finite readout data
L Loss function
bk Label for eigenstate of M̂k

b(s) Measurement outcome for shot s
xk Expected features Tr{M̂kρ̂}
X

(s)
k Observed bit in shot s
X̄k Empirical observed feature 1/S

∑
s δ(b

(s), bk)
ζk Noise part in X̄k

G Gram matrix of expected features {xk}
V Expected covariance matrix of random variable X(s)

k (u)
R Noise-to-Signal matrix
β2
k Eigen-NSR

y(k) Principal feature
r(k) Combination coefficients in y(k) =

∑
k′ r

(k)

k′ xk′

ȳ(k) ≡
∑

k′ r
(k)

k′ X̄k′ , noisy eigentask
ξ(k) ≡

∑
k′ r

(k)

k′ ζk′ , noise part in ȳ(k)

Ôk ≡
∑

k′ r
(k)

k′ |bk′〉〈bk′ |, optimal measurement basis
ρ̂M ≡

∑
k ρ̂kk(u) |bk〉〈bk|, post-measurement state

Kc(S) Cutoff index where β2
k reaches S

(̃ · )N Quantity obtained from finite N sampling data
(̃ · ) Large N limit, that is limN→∞ (̃ · )N

TABLE I. Table of notations.

Appendix B: Feature maps using quantum systems

1. Details of input encodings into quantum systems

In the main text, we introduce the idea of encoding inputs into the state of a quantum system via a parameterized quantum
channel, reproduced below:

ρ̂(u;θ) = U(u;θ)ρ̂0 (B1)

Our analysis of EC presented in this work does not depend on the precise details of the quantum channel U . For practical
calculations, however, we have to consider concrete models, about which we provide more details in this section.
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To describe these models, we begin by first limiting to 1-D inputs as analyzed in the main text; generalizations to multi-
dimensional inputs u are straightforward. Then, we write Eq. (B1) in the form

ρ̂(u;θ) = B(u;θ)ρ̂0B†(u;θ) (B2)

In the main text, we have considered a model for dynamics of an L-qubit quantum system that is natively implementable on
modern quantum computing platforms: namely the ansatz of quantum circuits with single and two-qubit gates. In this case,
which we refer to as the circuit ansatz (or C-ansatz for short), the operator B(u;θ) takes the precise form

B(u;θ) =

[
Rx
(
θx

2

)
W(J)Rz

(
θz + θIu

)
Rx
(
θx

2

)]τ
(C-ansatz) (B3)

For completeness, we recall thatRx/z are Pauli-rotations applied qubit-wise, e.g.Rz =
∏
lRz(θ

z
l + θIl u), while the entangling

gate acts between physically connected qubits in the device and can be written asW(J) =
∏
〈l,l′〉 exp{−iJ2 σ̂zl σ̂zl′}. We empha-

size here again that τ ∈ N+ is an integer, representing the number of repeated blocks in the C-ansatz encoding. We note that
the actual operations implemented on IBMQ processors also include dynamics due to noise, gate, and measurement errors. As
discussed in the main text, the EC of a quantum system can be computed in the presence of these more general dynamics, and is
sensitive to the limitations introduced by them.

An alternative ansatz which we analyze in this SI, is where the operator B(u;θ) describes continuous Hamiltonian dynamics.
This ansatz is relevant to computation with general quantum devices, such as quantum annealers and more generally quantum
simulators. In this case, which we refer to as the Hamiltonian ansatz (or H-ansatz for short),

B(u;θ) = exp{−iĤ(u)t}, Ĥ(u) = Ĥ0 + u · Ĥ1 (H-ansatz) (B4)

Here t is a continuous parameter defining the evolution time; and Ĥ0 =
∑L
l,l′ J〈l,l′〉σ̂

z
l σ̂

z
l′ +

∑L
l=1 h

x
l σ̂

x
l +

∑L
l=1 h

z
l σ̂

z
l and

Ĥ1 =
∑L
l=1 h

I
l σ̂

z
l . The transverse x-field strength hxl = h̄x + εxl and longitudinal z-drive strength hz,Il = h̄z,I + εz,Il are all

randomly chosen and held fixed for a given realization of the quantum system,

εx,z,Il ∼ hx,z,Irms N (0, 1), (B5)

where N (0, 1) defines the standard normal distribution with zero mean and unit variance. We consider nearest-neighbor inter-
actions Jl,l′ , which can be constant Jl,l′ ≡ J , or drawn from Jl,l′ ∼ Unif[0, Jmax], where Unif[a, b] is a uniform distribution
with non-zero density within [a, b].

As an aside, we note that the C-ansatz quantum channel described by Eq. (B3) can be considered a Trotterization-inspired
implementation of the H-ansatz in Eq. (B4). In particular, if we set θx/z/I = hx/z/I∆ · τ , where t = ∆ · τ , and consider the
limit ∆ → 0 while keeping t fixed, Eq. (B3) corresponds to a Trotterized implementation of Eq. (B4). This correspondence is
chosen for practical reasons, but is not necessary in our analysis.

The parameterized quantum channel characterizes how information is injected into the quantum system and processed by it;
however, to probe information from the quantum system, one must apply an appropriate and feasible quantum measurement.
For extract information efficiently, we consider a wide family of observable M̂k: the only restriction of these observables is
that they must be a product of local observables, M̂k = ô1 ⊗ · · · ⊗ ôL, which mutually commute with each other (meaning
they are are simultaneously measurable). We consider two general schemes. The first one is the probability representation
ôl ∈ {|0〉〈0| , |1〉〈1|}, while the second is the spin moments representation, ôl ∈ {Î , σ̂z}; the former representation is used
throughout the main text. We will show below that these two readout schemes are equivalent up to a unitary transformation.

2. Extracting output features under finite sampling: expressions for features and covariances

Following evolution of the quantum system under the input-dependent Hamiltonian given by Eq. (B4), we extract certain
measurable observables that are used as outputs for any learning task. The form of observables is again chosen for compliance
with measurement protocols native to near-term quantum computing implementations: we consider Pauli z basis measurements
only (although this can be generalized easily). This means our algorithm has access only to diagonal terms in ρ̂(u). We abbreviate
vectors ~Mk, ~ρ(u) ∈ RK such that ( ~Mk′)k = (M̂k′)kk and (~ρ(u))k = ρ̂(u)kk. Then one can check for {+1,−1} readout:
~Mk · ~Mk′ = Kδjj′ , and the readout features can be expressed into dot product form xk(u) = Tr

{
M̂kρ̂(u)

}
= ~Mk · ~ρ(u). In
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QRC, we hope to make full use of all functions in family {(~ρ(u))k}k∈[K]
as readout features. The collection of all readout

features

x(u) =


x0(u)
x1(u)

...
xK−1(u)

 =


~MT

0
~MT

1
...

~MT
K−1

 ~ρ(u) =: U~ρ(u), (B6)

The orthonormality of { ~Mk}k∈[K] implies that U is unitary up to an overall constant (in fact, U =

(
1 1
1 −1

)⊗L
is the

Hadamard matrix [28]). This unitarity implies that the above transformation is information-preserving. In particularly, this
guarantees the ability to reconstruct the diagonal QRC density matrix elements (via tomography), ~ρ(u) = U−1x(u), simply
computing the required inverse via the numerically-robust relationship U−1 = 1

KU
T .

If each qubit has a readout error ε, that is, it will flip |0〉 ↔ |1〉. Then the transition probability of reading out |bk′〉 from |bk〉
will be εd(bk,bk′ )(1 − ε)L−d(bk,bk′ ) where d(bk, bk′) is the Hamming distance between bk and bk′ . Thus, readout errors can
furthermore be mathematically modeled by one more transition matrix (more precisely, a stochastic matrix):

x(u) = U

(
1− ε ε
ε 1− ε

)⊗L
~ρ(u). (B7)

The covariance of theX(u) ∈ {+1,−1}L (the random features for individual shot S = 1) can also be expressed easily:

V[X(u)] = U
(
diag(~ρ(u))− ~ρ(u) · ~ρ(u)T

)
UT (B8)

where diag(~v) is a diagonal matrix that has the elements of ~v as entries. To prove this expression, it suffices to verify that the
second order moments are entries

V[X(u)]k1k2 ≡ Tr
{
M̂k1M̂k2 ρ̂(u)

}
=

K−1∑
k=0

(M̂k1M̂k2)kk ρ̂kk(u) =

K−1∑
k=0

(U)k1k (U)k2k ρ̂kk(u) =
(
Udiag (~ρ(u))UT

)
k1k2

.

(B9)

Appendix C: Information capacity with quantum sampling noise

1. Definition of capacity for quantum systems with sampling noise

The function approximation universality (which will be formally stated in Appendix I), as a basic requirement of most neural
network model can be made concrete by defining a metric to quantify how well a given quantum system (generalizable to any
dynamical system) approximates general functions. Suppose an arbitrary probability distribution p(u) for a random (scalar)
variable u defined in [−1, 1]. This naturally defines a function space L2

p([−1, 1]) containing all functions f : [−1, 1] → R with∫ 1

−1
f2(u)p(u)du <∞. The space is equipped with the inner product structure 〈f1, f2〉p =

∫ 1

−1
f1(u)f2(u)p(u)du. A standard

way to check the ability of fitting nonlinear functions by a physical system is the information processing capacity [17],

C[f`] = 1− min
W`∈RK

∫ 1

−1

(∑K−1
k=0 W`kxk(u)− f`(u)

)2

p(u)du∫ 1

−1
f`(u)2p(u)du

, (C1)

where functions f`(u) are orthogonal target functions 〈f`, f`′〉p =
∫ 1

−1
f`(u)f`′(u)p(u)du = 0 for ` 6= `′. The total expressive

capacity is computing the limitation CT ≡
∑∞
`=0 C[f`], capturing the ability of what type of function the linear combination of

physical system readout features can produce. Dambre’s argument claims that the total capacity must be upper bounded by the
number of features CT ≤ K.

While Dambre’s result is quite general [17], it neglects the limitations due to noise in readout features, a fact that is unavoidable
when using quantum systems in the presence of finite computational and measurement resources. In this appendix section, we
will focus on the impact of fundamental quantum readout noise on this upper bound under finite sampling S. Given u and S,
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the quantum readout features X̄k(u) = 1
S

∑S
s=1X

(s)
k (u) are stochastic variables (where X(s)

k ∈ {−1,+1} are binary random
values). The expectation vector and covariance matrix of X̄(u) can be expressed in terms of ~ρ(u), the diagonal entries of the
density matrix (see Eq. (B8))

E[X̄(u)] ≡ x(u) = U~ρ(u), (C2)

E[X̄(u)X̄T (u)]− E[X̄(u)]E[X̄(u)]T ≡ 1

S
Σ(u) =

1

S
U
(
diag (~ρ(u))− ~ρ(u) · ~ρ(u)T

)
UT . (C3)

The dependence of readout features xk(u) on the input u can always be written in the form of a Taylor expansion,

xk(u) =

∞∑
j=0

(T)kju
j (C4)

where we define the transfer matrix T(θ) ≡ T ∈ RK×∞ that depends on the density matrix ρ̂(u), and in particular on
parameters θ characterizing the quantum system.

To determine the optimal capacity to compute an arbitrary normalized function f(u) =
∑∞
j=0(Y)ju

j using the noisy readout
features X̄(u) extracted from the quantum system, we need to find an optimalW such that

C[f ] = 1−
minW

∫ 1

−1

(∑K−1
k=0 WkX̄k(u)− f(u)

)2

p(u)du∫ 1

−1
f(u)2p(u)du

(C5)

By expanding the numerator of the right-hand side for a given, finite number of shots S, we find

∫ 1

−1

f(u)2p(u)du−
∫ 1

−1

(
K−1∑
k=0

WkX̄k(u)− f(u)

)2

p(u)du

= −
K−1∑
k1=0

K−1∑
k2=0

Wk1Wk2

∫ 1

−1

X̄k(u)X̄k2(u)p(u)du+ 2

K−1∑
k=0

Wk

∫ 1

−1

X̄k(u)f(u)p(u)du

≈ − 1

N

K−1∑
k1=0

K−1∑
k2=0

Wk1Wk2

N∑
n=1

X̄k1(u(n))X̄k2(u(n)) +
2

N

K−1∑
k=0

Wk

N∑
n=1

X̄k(u(n))f(u(n)). (C6)

where we have approximated the integral over the input domain by a finite sum in the limit of a large number of inputs N .
Next, note that if n 6= n′, then Xk1(u(n)) and Xk2(u(n′)) are independent random variables (thought not necessarily identically
distributed). The sums over N on the right hand side are therefore sums of bounded independent random variables. In the
limit of large N � 1, the deviation between stochastic realizations of these sums and their expectation values is exponentially
suppressed, as determined by the Hoeffding inequality. Then, with large probability, the sums over N may be replaced by their
expectation values,

∫ 1

−1

f(u)2p(u)du−
∫ 1

−1

(
K−1∑
k=0

WkX̄k(u)− f(u)

)2

p(u)du

≈ − 1

N

K−1∑
k1=0

K−1∑
k2=0

Wk1Wk2

N∑
n=1

E[X̄k1(u(n))X̄k2(u(n))] +
2

N

K−1∑
k=0

Wk

N∑
n=1

E[X̄k(u(n))f(u(n))]

= − 1

N

K−1∑
k1=0

K−1∑
k2=0

Wk1Wk2

N∑
n=1

(
xk1(u(n))xk2(u(n)) +

1

S
Σ(u(n))k1k2

)
+

2

N

K−1∑
k=0

Wk

N∑
n=1

xk(u(n))f(u(n))

≈ −
K−1∑
k1=0

K−1∑
k2=0

Wk1Wk2

∫ 1

−1

(
xk1(u)xk2(u) +

1

S
Σ(u)k1k2

)
p(u)du+ 2

K−1∑
k=0

Wk

∫ 1

−1

xk(u)f(u)p(u)du. (C7)

The first approximation above comes from the Hoeffding inequality, where terms that are dropped are proportional to 1/
√
N .

In going from the second to the third line, we have used Eq. (C3). The final expression is obtained by rewriting sums over u as
integrals, with an error proportional to 1/

√
N once more. Thus we can say the original integral in Eq. (C5) is approximately

equal to Eq. (C7) to O(1/
√
N).
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The first term in Eq. (C7) does not depend explicitly on the function f(u) being constructed, and introduces quantities that are
determined entirely by the response of the quantum system of interest to inputs over the entire domain of u. In particular, we
introduce the Gram matrix G ∈ RK×K as

(G)k1k2 =

∫ 1

−1

xk1(u)xk2(u)p(u)du =

∞∑
j1=0

∞∑
j2=0

(T)k1j1

(∫ 1

−1

uj1+j2p(u)du

)
(T)k2j2 ≡ (TΛTT )k1k2 (C8)

where in the second line we have also introduced the generalized Hilbert matrix Λ ∈ R∞×∞ as

(Λ)j1j2 =

∫ 1

−1

uj1+j2p(u)du. (C9)

Secondly, we introduce the noise matrix V ∈ RK×K ,

(V)k1k2 =

∫ 1

−1

Σ(u)k1k2 p(u)du =

∫ 1

−1

(xk(u)− xk1(u)xk2(u))p(u)du ≡ (D)k1k2 − (G)k1k2 (C10)

for index k satisfying M̂k = M̂k1M̂k2 . Here we have also introduced the second-order-moment matrix D ∈ RK×K such that
(D)k1k2 =

∫ 1

−1
xk(u)p(u)du. Then, the noise matrix simply defines the covariance of readout features, and is therefore given

by V = D−G.

The second term in Eq. (C7) depends on f(u) and can be simplified using the Λ matrix as well,∫ 1

−1

xk(u)f(u)p(u)du =

∞∑
j1=0

∞∑
j2=0

(T)kj1

(∫ 1

−1

uj1+j2p(u)du

)
(Y)j2 = (TΛY)k. (C11)

With these definitions, Eq. (C5) can be compactly written in matrix form as a Tikhonov regularization problem:

C[f ] = max
W

(
−W T

(
TΛTT + 1

SV
)
W + 2W TTΛY

YTΛY

)
= 1−min

W


∥∥∥Λ 1

2 TTW −Λ
1
2 Y
∥∥∥2

+ 1
SW

TVW

YTΛY

 . (C12)

The least-squares form ensures that the optimal value (argmin) w̃ ofW has closed form

w̃ =

(
TΛTT +

1

S
V

)−1

TΛY. (C13)

Substituting w into the expression for C, we obtain the optimal capacity with which a function f can be constructed, which
takes the form of a generalized Rayleigh quotient

C[f ] =
YTΛTT

(
G + 1

SV
)−1

TΛY

YTΛY
. (C14)

2. Eigentasks

Eq. (C14) defines the optimal capacity of approximating an arbitrary function f(u) =
∑∞
j=0(Y)ju

j . We can therefore
naturally ask which functions f maximise this optimal capacity. To this end, we first note that the denominator of Eq. (C14) is
simply a normalization factor that can be absorbed into the definition of the function f(u) being approximated, without loss of
generality. More precisely, we consider:

〈f, f〉p = 1 =
(
Λ

1
2 Y
)T (

Λ
1
2 Y
)

= YTΛY. (C15)

Then, we can rewrite the optimal capacity from Eq. (C17) as

C[f ] = YTΛ
1
2

(
QΛ

1
2 Y
)

(C16)
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Here we have defined the matrix Q ∈ R∞×∞ as

Q = B

(
I +

1

S
R

)−1

BT , (C17)

by introducing the matrix square root of G = G
1
2 G

1
2 , where G

1
2 ∈ RK×K . Then, R = G−

1
2 VG−

1
2 becomes the noise-to-

signal matrix, while the matrix B is given by

B = Λ
1
2 TTG−

1
2 , (C18)

The decomposition in Eq. (C17) may be verified by direct substitution into Eq. (C16). The ability to calculate matrix powers and
in particular the inverse of G requires constraints on its rank, which we show are satisfied in Appendix C 6.

We now consider the measure-independent part of the eigenvectors of Q, indexed Y(k), satisfying the standard eigenvalue
problem:

Q
(
Λ

1
2 Y(k)

)
= CkΛ

1
2 Y(k). (C19)

where k = 0, · · · ,K − 1. From Eq. (C16), it is clear that these eigenvectors have a particular meaning. Consider the function
y(k)(u) defined by the eigenvector Y(k), namely

y(k)(u) =

∞∑
j=0

Y
(k)
j uj , (C20)

which we will refer to from now on as eigentasks. Suppose we wish to construct the function y(k)(u) using outputs obtained
from the physical system defined by Q in the S → ∞ limit (namely, with deterministic outputs). At a first glance, before
we dive into solving the eigenproblem Eq.(C19), we do not know any relationship between y(k) and x(u).The rest part of this
subsection is aiming to prove that y(k) must be a specific linear combination of features x(u). Then, the physical system’s
capacity for this construction is simply given by the corresponding eigenvalue Ck, as may be seen by substituting Eq. (C19)
into Eq. (C16). Formally, the y(k)(u) serves as the critical point (or stationary point) of the generalized Rayleigh quotient in
Eq. (C14). Consequently, the function that is constructed with largest capacity then corresponds to the nontrivial eigenvector
with largest eigenvalue.

To obtain these eigentasks, we must solve the eigenproblem defined by Eq. (C19). Here, the representation of Q in Eq. (C17)
becomes useful, as we will see that the eigensystem of Q is related closely to that of the noise-to-signal matrix R. In particular,
we first define the eigenproblem of R,

R
(
G

1
2 r(k)

)
= β2

kG
1
2 r(k) (C21)

with NSR eigenvalues β2
k and corresponding eigenvectors r(k), which satisfy the orthogonality relation r(k′)TGr(k) = δk,k′ .

Here the r(k) is equivalent to be defined as the solution to generalized eigen-problem:

Vr(k) = β2
kGr

(k). (C22)

This is because Vr(k) = G
1
2 RG

1
2 r(k) = β2

kG
1
2 G

1
2 r(k) = β2

kGr
(k). The prefactor G

1
2 is introduced for later convenience.

Eq. (C21) then allows us to define the related eigenproblem(
I +

1

S
R

)−1

G
1
2 r(k) =

(
1 +

β2
k

S

)−1

G
1
2 r(k) (C23)

Next, we note that Q is related to the matrix in brackets above via a generalized similarity transformation defined by B,
Eq. (C17). In particular, BTB = G−

1
2 GG−

1
2 = I ∈ RK×K , while we remark that BBT 6= I since it is in R∞×∞. This

connection allow us to show that

Q
(
BG

1
2 r(k)

)
= B

(
I +

1

S
R

)−1

BTBG
1
2 r(k) =

1

1 + β2
k/S

BG
1
2 r(k). (C24)

Comparing with Eq. (C19), we can now simply read off both the eigenvalues and eigenvectors of Q,

Ck = 1
1+β2

k/S

Λ
1
2 Y(k) = BG

1
2 r(k)

}
=⇒ Y(k) = TTr(k) (C25)
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where we have used the definition of B from Eq. (C18). The functions defined by the eigenvectors Y(k) are automatically
orthonormalized:〈

y(k1), y(k2)
〉
p

=
(
Λ

1
2 Y(k1)

)T(
Λ

1
2 Y(k2)

)
= r(k1)TG

1
2 BTBG

1
2 r(k2) = r(k1)TGr(k2) = δk1k2 . (C26)

3. Noisy eigentasks from readout features

We can now also discuss the interpretation of {β2
k} for a physical system - in this case a quantum circuit - for which {r(k)} are

known. Consider a single run of the quantum system under finite shots S, which yields a single instance of the readout features
X̄(u). We can simply read off that an noisy version of the kth eigentask, ȳ(k)(u) can be constructed as

ȳ(k)(u) =

K−1∑
k′=0

r
(k)
k′ X̄k′(u) (C27)

which is equivalent to requiring the output weights W = r(k).The corresponding set of noisy function is also orthogonal, this
is because Vr(k) = β2

kGr
(k) implies r(k)TVr(k′) = β2

kδk,k′ and hence

〈
ȳ(k1), ȳ(k2)

〉
p

= r(k1)T

(
G +

1

S
V

)
r(k2) =

(
1 +

β2
k

S

)
δk1k2 (C28)

This equation can be further decomposed into two parts. Let the linear transformation of noise ξ(u) by defining ξ(k)(u) =∑K−1
k=0 r

(k)
k′ ζk′(u)

Eu[y(k1)y(k2)] =
〈
y(k1), y(k2)

〉
p

= r(k1)TGr(k2) = δk1k2 , (C29)

Eu[ξ(k1)ξ(k2)] =
〈
ξ(k1), ξ(k2)

〉
p

=
1

S
r(k1)TVr(k2) =

β2
k1

S
δk1k2 . (C30)

It means that the combination {r(k) ∈ RK}k∈[K] not only produces orthogonal eigentasks {y(k)(u)} for signal, but also induces
a set of orthogonal noise functions {ξ(k)(u)}.

If the quantum circuit can be run multiple times for a given S, multiple instances of X̄(u) can be obtained, from each of
which an estimate of the kth eigentask ȳ(k)(u) can be constructed. The expectation value of these estimates then simply yields

E[ȳ(k)(u)] =

K−1∑
k′=0

r
(k)
k′ E[X̄k′(u)] =

K−1∑
k′=0

r
(k)
k′ xk′(u) = y(k)(u) (C31)

If we have access to only a single instance of X̄(u), however, and thus only one estimate ȳ(k)(u) (as y(k)(u) and ȳ(k)(u)
depicted in Fig. 7), it is useful to know the expected error in this estimate. This error can be extracted from Eq. (C12). In
particular, requiring Y(k) = TTr(k), we have∥∥∥Λ 1

2 TTr(k) −Λ
1
2 Y(k)

∥∥∥2

+ 1
Sr

(k)TVr(k)

Y(k)TΛY(k)
=

1

S
r(k)TVr(k) =

β2
k

S
. (C32)

This mean squared error in using ȳ(k)(u) to estimate y(k)(u) over the domain of u decreases to zero for S → ∞ as expected,
since the noise in X̄ decreases with S. However, β2

k defines the S-independent contribution to the error. In particular, this
indicates that at a given S, certain functions with lowers NSR eigenvalues β2

k may be better approximated using this physical
system than others. We present in Fig. 7 the measured features X̄ , the eigentasks y and their S-finite version ȳ in a 6-qubit
Hamiltonian based system. The associated eigen-NSR spectrum, expressive capacity, and total correlations are also depicted for
both ES J 6= 0 and PS J = 0.
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4. Expressive capacity

Given an arbitrary set of complete orthonormal basis functions f`(u) =
∑∞
j=0(Y`)ju

j ,

〈f`, f`′〉p =
(
Λ

1
2 Y`

)T (
Λ

1
2 Y`′

)
= δ``′ . (C33)

The total capacity is independent of the basis choice

CT (S) =

∞∑
`=0

C[f`] =

∞∑
`=0

YT
` Λ

1
2

(
Λ

1
2 TT

(
TΛTT +

1

S
V

)−1

TΛ
1
2

)
Λ

1
2 Y`

= Tr

(
Λ

1
2 TT

(
TΛTT +

1

S
V

)−1

TΛ
1
2

)
= Tr

((
G +

1

S
V

)−1

G

)
=

K−1∑
k=0

1

1 +
β2
k

S

. (C34)

5. Estimation in case of nonlinear functions after linear output layer

Usually, instead of taking the linear transformation W · X̄ , the training process can involve some complicated nonlinear
activation functions or classical kernel, which may also be fed into a non-quadratic nonlinear loss function afterwards. These
two processes can be unified to be σNL(X̄(u)) with any smooth function σNL. In this subsection, we show how to translate our
result obtaining from quadratic nonlinear function Eq. (C5) into a more general loss function with form of

L = Eu[σNL(X̄)] (C35)

Now let us first transform all noisy measured features {X̄k} into the naturally orthogonal basis of signal {y(k)} and noise {ξ(k)}.

X̄k′(u) ≡
K−1∑
k=0

Γk′k(y(k)(u) + ξ(k)(u)), (C36)

such transformation of Γ ∈ RK×K must uniquely exist, this is because all K of {r(k)} are linearly independent. Recall
Eq. (C30) claims that Eu[ξ(k)] = 0 and Eu[ξ(k)ξ(k′)] = β2

kδkk′/S, we can deal with the nonlinearity by taking the quadratic
expansion, where , we get

L = Eu[σNL(X̄)] = Eu[σNL(Γȳ)] = Eu

[
σNL

(∑
k

Γ0,k(y(k) + ξ(k)), · · · ,
∑
k

ΓK−1,k(y(k) + ξ(k))

)]

≈ Eu[σNL(Γy)] +

K−1∑
k=0

Eu
[
∂σNL

∂y(k)
ξ(k)

]
+

1

2

K−1∑
k1=0

K−1∑
k2=0

Eu
[

∂2σNL

∂y(k1)∂y(k2)
ξ(k1)ξ(k2)

]

= Eu[σNL(Γy)] +
1

2

K−1∑
k1=0

K−1∑
k2=0

Eu
[

∂2σNL

∂y(k1)∂y(k2)
ξ(k1)ξ(k2)

]
, (C37)

where the first order terms vanish due to Hoeffding inequality again. We then make a further approximation of Eq. (C37) by
replacing the ξ(k1)ξ(k2) with its u-average Eu[ξ(k1)ξ(k2)] = δk1k2β

2
k1
/S:

L ≈ Eu[σNL(Γy)] +

K−1∑
k=0

β2
k

S
·Eu

[
∂2σNL

(∂y(k))2

]
. (C38)

In fact, any of the second terms can be further simplified by chain rule: L ≈ Eu[σNL(Γy)] +
∑
k
β2
k

S ·Eu[(ΓT∇2
xσNLΓ)kk].

The approximation in Eq. (C38) is rough, but it still gives us a sufficient reason to do the following manipulation: for optimized
L , the dependence on y(k) with β2

k/S > 1 will be strongly suppressed in large-N limit, hence we can pre-exclude the eigentasks
whose β2

k/S > 1.

Let us use one typical example, the widely used logistic regression in classification, to illustrate our argument here. As what
we will introduce in Appendix I, the target function is the conditional probability distribution f(u) := Pr[u ∈ C1|u] in such
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classification model (see Eq. (I4)), and then there is one more layer of softmax and cross-entropy function acting on linear
map L = Eu[H(f(u), σ(W · X̄(u)))] where σ is sigmoid function (e.g. softmax function σ(z) = 1/(1 + exp(−z))), and
H(p, q) = −p ln q − (1 − p) ln(1− q) is the cross-entropy. Especially, any linear combination of {X̄k} can be translated into
linear combination

W · X̄(u) ≡
K−1∑
k=0

Ωk · (y(k)(u) + ξ(k)(u)), (C39)

Again, such vector Ω = ΓTW must also uniquely exist. For any σNL = g(W ·x), one always have ΓT∇2
xσNLΓ =

g′′(Ω ·y)ΩTΩ:

L ≈ Eu[H(f, σ(Ω ·y))] +

(
K−1∑
k=0

β2
k

S
Ω2
k

)
·Eu[σ(Ω ·y)(1− σ(Ω ·y))] . (C40)

It helps us read from the prefactor β2
k/S induces a natural regularization on Ωk in loss function, in addition to the S-infinity

term limS→∞L = Eu[H(f, σ(Ω ·y))]. We will leave the detailed discussion of this important application in Appendix H and
Appendix I.

6. Proof that the Gram matrix G is full rank

Recall that before we analytically find the eigenvectors of Q, we first show that the matrix G is invertible. It comes from that
all K readout features {xk(u)}k∈[K] being linear independent is entirely equivalent to the full-rankness of the corresponding
Gram matrix Rank(G) = K. Thanks to the linearity of readout, we can show such linear independence by contradiction.
Suppose on the contrary there exists coefficients {ck}k∈[K] such that

K−1∑
k=0

ckxk(u) = Tr

{(
K−1∑
k=0

ckM̂k

)
U(u)ρ̂0

}
= 0. (C41)

However, this means that the quantum observable
∑K−1
k=0 ckM̂k is a zero-expectation readout-qubit quantity for any state U(u)ρ̂0

under arbitrary input u, which is impossible. This shows the linear independence. Furthermore, we then argue that it ensures G
has no non-trivial null space. This is because that any {ck}k∈[K] will satisfy

K∑
k1,k2=1

ck1ck2(G)k1,k2 =

∫ 1

−1

(
K∑

k1=1

ck1xk1(u)

)(
K∑

k2=1

ck2xk2(u)

)
p(u)du =

〈
K−1∑
k=0

ckxk,

K−1∑
k=0

ckxk

〉
p

. (C42)

where the RHS is the norm of function
∑K−1
k=0 ckxk(u). The summation

∑K
k1,k2=1 ck1ck2(G)k1,k2 = 0 vanishes if and only

if function
∑K−1
k=0 ckxk(u) is a zero function. That is why the linear independence of features {ck}k∈[K] is equivalent to that

symmetric matrix G has no zero eigenvalues, namely Rank(G) = K. Numerically speaking, this relation always holds in
general as long as assuming this is for the case where N � K.

7. Simplifying the noise-to-signal matrix and its eigenproblem

We have shown that the problem of obtaining the eigentasks for a generic quantum system, and deducing its expressive
capacity under finite measurement resources, can be reduced simply to solving the eigenproblem of its noise-to-signal matrix
R, Eq. (C21). Note that constructing R = G−

1
2 VG−

1
2 requires computing the inverse of G. However, G can have small

(although always nonzero) eigenvalues, especially for larger systems, rendering it ill-conditioned and making the computation
of R numerically unstable. Fortunately, certain simplifications can be made to derive an equivalent eigenproblem that is much
easier to solve.

To begin, we first note that so far, we have placed no requirements on the specific form of measurement operators {M̂k}, and
thus the readout features xk(u) = Tr{M̂kρ̂(u)} are also unspecified. Our analysis thus far holds for any set of measurement
operators that describe a complete set of commuting observables. However, specific choices of measurement operators can
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simplify the form of the matrices G and V involved. In particular, if one chooses M̂k to be the projections onto the computational
basis, M̂k = |bk〉 〈bk|, then according to Eq. (B8), by setting U = I we have x(u) ≡ ~ρ(u), which we refer to as the probability
representation of readout features. Practically, the probability representation is native to measurement schemes in contemporary
quantum processors, and therefore minimizes the required post-processing of readout features obtained from a real device. More
importantly, although it is related to any other readout feature representation via a unitary transformation, the strength of the
probability representation lies in the fact that it renders the second-order moment matrix D diagonal. In particular,

(D)k1k2 =

{ ∑K−1
k=0 (G)kk1 , if k1 = k2

0, if k1 6= k2
(in probability representation of readout features) (C43)

Using V = D−G, we can rewrite the eigenproblem for R,

R
(
G

1
2 r(k)

)
= β2

kG
1
2 r(k)

=⇒ G−
1
2 (D−G)G−

1
2

(
G

1
2 r(k)

)
= β2

kG
1
2 r(k)

=⇒ G−1Dr(k) = (1 + β2
k)r(k) (C44)

Finally, considering the inverse of the matrix on the left hand side, we obtain the simplified eigenproblem for the matrix D−1G,

D−1Gr(k) = (1 + β2
k)−1r(k) ≡ αkr(k), (C45)

which shares eigenvectors with R, and whose eigenvalues are a simple transformation of the NSR eigenvalues β2
k . Impor-

tantly, constructing D−1G no longer requires calculating any powers of G, and when further choosing readout features in the
probability representation, it relies only on the inversion of a simple diagonal matrix D.

The matrix D−1G has significance in spectral graph theory, when interpreting the Gram matrix G as the adjacency matrix of
a weighted graph. This connection is elaborated upon in Appendix C 8.

8. Connections to spectral graph theory

Let us have a small digression to the graphic theoretic meaning of G and D−1G. Now we consider a weighted graph with
adjacency matrix G. In spectral graph theory, the matrix D−1G is exactly the random walk matrix associated with graph G, and
then the second order matrix D happens to be the degree matrix of this graph since (D)kk =

∑K−1
k′=0(G)kk′ . Then the eigentask

combination coefficient r(k) is precisely the right eigenvector of random walk matrix. Another concept associated with a graph
is I −D−

1
2 GD−

1
2 , the normalized Laplacian matrix of G, while the matrix D−

1
2 GD−

1
2 is always referred to be normalized

adjacency matrix in many literatures. The eigenproblem of normalized adjacency matrix can also be solved easily, because

D−
1
2 GD−

1
2

(
D

1
2 r(k)

)
= D

1
2 D−1Gr(k) = αk

(
D

1
2 r(k)

)
. (C46)

From perspective of spectral graph theory, roughly speaking, a reservoir with stronger ability to resist noise are those who has
more “bottlenecks” in graph G’s connectivity. The extreme case is supposing that αk = 1 (or 1− αk = 0) for all k. According
the basic conclusion in spectral graph theory, the normalized Laplacian matrix has K zero eigenvalues iff the graph G is fully
disconnected. This gives us the condition when noisy information capacity obtain its upper bound K: there exists a partition
{Domk}k∈[K] of domain Dom = [−1, 1] such that ρ̂kk(u) = 1 iff u ∈ Domk.

Appendix D: Spectral analysis based on finite statistics

While Eq. (C45) is a numerically simpler eigenproblem to solve than Eq. (C21), it still requires the approximation of G (recall
that D can be obtained from G) from readout features X̄(u) under finite sampling, due to the finiteness of shots S, the number
of input points N , and also the number of realizations of readout features for a given S. In what follows, we show how an
approximation G̃N of G can be constructed from finitely-sampled readout features, as relevant for practical quantum devices.
Secondly, we also describe an approach to obtain the eigentasks y(k)(u) and corresponding NSR eigenvalues β2

k that avoids
explicit construction of the Gram matrix, and is thus even more numerically robust.
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1. Approximating eigentasks and NSR eigenvalues under finite S and N

For practical computations, readout features X̄(u) from the quantum system for finite S can be computed for a discrete set
of u(n) ∈ [−1, 1] for n = 1, . . . , N . Labelling the corresponding readout features X̄(u(n)), we can define the regression matrix
constructed from these readout features,

F̃N ≡ (X̄(u(1)), X̄(u(2)), · · · , X̄(u(N)))T =

 X̄0(u(1)) · · · X̄K−1(u(1))
...

...
X̄0(u(N)) · · · X̄K−1(u(N))

 . (D1)

Here, F̃N ∈ RN×K , with subscript N indicating its construction from a finite set of N inputs, is a random matrix due to the
stochasticity of readout features; in particular it can be written as:

F̃N = FN +
1√
S

Z(FN ) (D2)

where (FN )nk = E[X̄k(u(n))] = xk(u(n)), and Z is the centered multinomial stochastic process, so that E[F̃N ] = FN .

Using this regression matrix F̃N , we can obtain an estimation of the Gram matrix and second order moment matrix, which
we denote G̃N and D̃N , and whose matrix elements are defined via

(G̃N )k1k2 ≡
1

N

N∑
n=1

X̄k1(u(n))X̄k2(u(n)) =
1

N
(F̃TN F̃N )k1k2 ≈

∫ 1

−1

X̄k1(u)X̄k2(u)p(u)du, (D3)

(D̃N )k1k2 ≡ δk1,k2
1

N

N∑
n=1

X̄k1(u(n)) ≈ δk1,k2
∫ 1

−1

X̄k1(u)p(u)du. (D4)

While the quantities G̃N and D̃N are computed from stochastic readout features, their stochastic contributions are suppressed
in the large N limit by the Hoeffding inequality for sums of bounded stochastic variables. In particular, we can define their
deterministic limit for N →∞, according to Eq. (C7), as

G̃ ≡ lim
N→∞

1

N
(F̃TN F̃N )k1k2 = G +

1

S
V = G +

1

S
(D−G), (D5)

D̃ ≡ lim
N→∞

D̃N = D. (D6)

Inverting the above expressions allow us to express the Gram matrix G and second-order moment matrix D in terms of the
estimates G̃ and D̃ computed using a finite number of shots S,

G =
S

S − 1
G̃− 1

S − 1
D̃, (D7)

D = D̃. (D8)

We see that to lowest order in 1
S , G ≈ G̃ and D ≈ D̃, which is what one might expect naively. However, we clearly see that

the estimation of G can be improved by including a higher-order correction in 1
S . This contribution arises due to the highly-

correlated nature of noise and signal for quantum systems: we are able to estimate the noise matrix G̃ and D̃ using knowledge
of the readout features, and correct for the contribution to G̃ and D̃ that arises from this noise matrix. We will see that this
contribution will be important in more accurately approximating quantities of interest derived from G, D.

To this end, we recall that our ultimate aim is not just to estimate G and D, but to solve the eigenproblem of Eq. (C45). Using
the above relation, we can then establish D̃−1G̃ = S−1

S D−1G + 1
S I, and write Eq. (C45) in a form entirely in terms of G̃ and

D̃,

D−1Gr(k) = (1 + β2
k)−1r(k),

=⇒ D̃−1G̃r(k) =

[
S − 1

S
(1 + β2

k)−1 +
1

S

]
r(k). (D9)
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FIG. 5. Eigen-analysis in L = 5 H-ansatz system by taking S = 102 shots on each of N = 104 samples, with true eigen-NSRs β2
k (black),

S-finite sampled β̃2
N,k (blue) and corrected (S · β̃2

N,k)/((S − 1) − β̃2
N,k) (purple). β̃2

k, the large N limit of β̃2
N,k is also plotted in red for

comparison. The data correction is necessary since all β̃2
N,k are below the S = 102, and the corrected data show much better performance

even if β2
k � S. The estimated line (in purple) are cutoff at k = 25 since all sampled β̃2

N,k after that are larger the S − 1 so that they are not
correctable.

Note that the final form is conveniently another eigenproblem, now for the finite-S matrix D̃−1G̃:

D̃−1G̃r̃(k) = (1 + β̃2
k)−1r̃(k) ≡ α̃kr̃(k), (D10)

whose eigenvalues and eigenvectors can be easily related to the desired eigenvalues β2
k and eigenvectors r(k) of Eq. (C45).

Following some algebra, we find:

β2
k =

S

(S − 1)− β̃2
k

· β̃2
k = β̃2

k +

∞∑
j=1

β̃2
k

(
1 + β̃2

k

)j ( 1

S

)j
, (D11)

r(k) = r̃(k). (D12)

From Eq. (D11), we see that to lowest order in 1
S , β2

k ≈ β̃2
k . However, this expression also supplies corrections to higher orders

in 1
S , which are non-negligible even for β2

k < S, as we see in example of Fig. 5. In contrast, the estimated eigenvectors r̃(k) to
any order in 1

S equal the desired eigenvectors r(k) without any corrections.

Of course, in practice we do not have access to the matrices G̃ and D̃, as these are only defined precisely in the limit
where N → ∞. However, for large enough N , we can approximate these matrices to lowest order by their finite N values,
G̃ = G̃N +O

(
1
N

)
and D̃ = D̃N +O

(
1
N

)
. Then, the eigenproblem in Eq. (D10) can be expressed in the final form,

D̃−1
N G̃N r̃

(k)
N = (1 + β̃2

N,k)−1r̃
(k)
N ≡ α̃N,kr̃(k)

N , (D13)

where the eigenvalues β̃2
N,k, α̃N,k and eigenvectors r̃(k)

N in the large N limit must satisfy

lim
N→∞

β̃2
N,k = β̃2

k, lim
N→∞

α̃N,k = α̃k, lim
N→∞

r̃
(k)
N = r̃(k) ≡ r(k). (D14)

Here the invertibility of the empirically-computed matrix D̃N required for Eq. (D13) is numerically checked, based on which
we can establish a better numerical method in Appendix D 2.

Eq. (D13) represents the eigenproblem whose eigenvalues β̃2
N,k and eigenvectors r̃(k)

N we actually calculate. For large enough
N and under finite S, we can use these as valid approximations to the eigenvalues and eigenvectors of Eq. (D10). This finally
enables us to directly estimate the N,S →∞ quantities β2

k and r(k) using Eqs. (D11), (D12):

β2
k ≈

S · β̃2
N,k

(S − 1)− β̃2
N,k

=
1− α̃N,k
α̃N,k − 1

S

, (D15)

r(k) ≈ r̃(k)
N . (D16)
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FIG. 6. Estimating NSR eigenvalues and corresponding eigentask coefficients under finite statistics (N = 300, S = 1000) in a 4-qubit
H-encoding system, and comparison with theoretical value for N →∞, S →∞.

It is clear that the approximation of β2
k to lowest order will be an underestimate, as the contribution of order 1

S is positive. In
Fig. 6, we plot the estimated eigenvectors r̃(k)

N computed under finite statistics (N = 300, S = 1000, where these two numbers
are relevant for IBM quantum processors) in H-encoding, together with the N,S → ∞ eigenvectors r(k), and the estimated
eigenvalues.

2. Gram matrix-free construction to approximate eigentasks and NSR eigenvalues

If we consider Eq. (D13) and multiply through by D
− 1

2

N , the resulting equation can be written as an equivalent eigenproblem,

1

N
D̃
− 1

2

N F̃TN F̃ND̃
− 1

2

N

(
D̃

1
2

N r̃
(k)
N

)
= α̃N,k

(
D̃
− 1

2

N r̃
(k)
N

)
(D17)

where we have also written G̃N = 1
N F̃TN F̃N as in the previous section. Note that as written above, the eigenproblem is

entirely equivalent to obtaining the singular value decomposition of the matrix 1√
N

D̃
− 1

2

N F̃TN . This particular normalization factor
1√
N

D̃
− 1

2

N is different from the standard z-score of principal components analysis. To obtain the combination coefficients r(k),

let t(k) ∈ RK be the left singular vector of 1√
N

D̃
− 1

2

N F̃TN (which is also the eigenvector of 1
N D̃

− 1
2

N F̃TN F̃ND̃
− 1

2

N ≈ D−
1
2 G̃D−

1
2

in the large N limit). Then r(k) = D̃
− 1

2

N t(k) ∈ RK can be treated as the combination prefactor of M̂k, to obtain the observables

which correspond to the eigentasks. The merit of SVD analysis of 1√
N

D̃
− 1

2

N F̃TN is that we only need to work with a K-by-N

matrix of features F̃N , which is numerically cheaper than further constructing a Gram matrix 1
N F̃TN F̃N . We will explore more

about the usage of our technique in sense of PCA in Appendix H.
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FIG. 7. Eigen analysis in a 6-qubit H-ansatz system (with N = 5000 and S = 1000) forming a 1D ring. The Hamiltonian parameters are
chosen randomly with zero-mean and variance (hx

rms, h
z
rms, h

I
rms) = (20, 5, 5), and t = 5 (See Appendix B 1 for details). Coupling strength

is uniformly J 6= 0 (ES) or J = 0 (PS). (a) All 2L = 64 noisy features X̄k(u) and (b) noisy eigentasks ȳ(k)(u) = r(k) · X̄(u) for selected k
from the features in (a), as well as their expected values y(k)(u) = limS→∞ ȳ

(k)(u) = r(k) ·x(u) (black). (c) NSR spectrum β2
k and (d) CT

vs shots S for both ES and PS encodings. (e) CT at S = 105 and (f) ETC, T̄ (ρ̂M ) in representative random 6-qubit H-ansatz, as a function of
coupling strength J . The peaks of capacity and correlation coincide, around J ∼ hx

rms.

Appendix E: H-ansatz quantum systems: NSR spectra, expressive capacity, and eigentasks

In this section, we evaluate the EC for quantum systems described by the H-ansatz introduced in Appendix B 1, as an example
of how EC can be efficiently computed for a variety of general quantum systems, and is not just restricted to parameterized
quantum circuits. The results of the analysis are compiled in Fig. 7, and discussed below.

Fig. 7(a) presents the set of features {X̄k(u)} for typical L = 6 qubit ES and PS at S = 1000 with randomly chosen
parameters (referred to as encodings, see caption). The resultant noisy eigentasks {ȳ(k)(u)} and NSR spectra {β2

k} extracted
via the eigenvalue analysis are shown in Figs. 7(b) and 7(c) respectively. In the side-by-side comparison in Fig. 7(b), we clearly
see the J = 0 ansatz transitioning to a regime with more noise at much lower k than the J 6= 0 ansatz. This is reflected in
Fig. 7(c), the β2

k spectrum, having a much flatter slope for larger k (note the plot is semilog). Finally, Fig. 7(d) shows the EC of
both systems as a function of S. EC rapidly rises for small S for both systems, but the rise of the J = 0 system is steeper. After
a certain threshold in S, however, the ES grows more rapidly, approaching the upper bound 26 = 64 with S ∼ 108; in contrast,
the PS has a significantly lower CT .

For J → ∞ we also have T̄ = 0 because ρ̂0 = |0〉〈0|⊗L is an eigenstate of the encoding (ρ̂(u) = ρ̂0). This implies there
must be a peak at some intermediate J , which for both EC and ETC occurs when the coupling is proportional to the transverse
field J ∼ hx.

Our results elucidate the same kind of improvement, as can be observed when we consider how the EC C changes with J , and
compare it to the total correlation ETC T̄ , as shown in Fig. 7(f). For J → 0 we have a PS with T̄ = 0, whereas in the J → ∞
we also have T̄ = 0 because ρ̂0 = |0〉〈0|⊗L is an eigenstate of the encoding (ρ̂(u) = ρ̂0). This implies there must be a peak at
some intermediate J , which for both EC and ETC occurs when the coupling is proportional to the transverse field J ∼ hx. At
finite S, increased ETC is directly related to a higher EC.

Another interesting aspect is the clear trend seen in the maximization of EC around J ∼ hxrms for various hxrms, possibly
hinting at the role of increased entanglement around the MBL phase transition in random spin systems [30]. This trend is
consistent with results in quantum metrology – in general, the SNR obtained from averaging L uncorrelated probes scales as
1/
√
L. This scaling can become favorable in the presence of entanglement and other non-classical correlations, in which case the

scaling of the SNR can show up to a quadratic improvement 1/L [29]. For even larger J , we find that ρ̂(u) → ρ̂0 = |0〉〈0|⊗L,
which clearly reduces T̄ , but also CT as the quantum system state becomes u-independent.
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Appendix F: Scaling with quantum system size

An important question in quantum machine learning applications is the possible advantage of using larger quantum systems
for information processing. In this section, we present preliminary results of scaling with quantum system size. The left panel of
Fig. 8 shows EC vs L at select S values for H-ansatz, while the right panel shows two encodings in the C-ansatz device, as well
as their noisy simulations. In both plots, the dashed line indicates the S → ∞ result CT = 2L. We see that the EC increases
when adding more qubits into the Ising chain for the H-ansatz, or when increasing the number of circuit qubits L for the C-
ansatz. Note, however, that at any finite S the noise-constrained EC falls off the exponential bound for S → ∞. The dropoff
is particularly severe for the IBMQ device, where we are limited to just S ∼ 104, which significantly suppresses the EC even
for L = 7 qubits. Note, however, that even if one is well below CT = 2L due to this finite sampling constraint, increasing the
dimension of the quantum system is always an effective way to increase the EC, particularly when compared to the logarithmic
growth with S of Fig. 2 of Main Text.
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FIG. 8. (a) H-ansatz and (b) C-ansatz at finite S as a function of qubit number L. Various colours indicate different S values, with the S →∞
bound in dashed black. Individual noisy simulations are indicated in small and transparent dots, with their average as a thick line, and the EC
of the C-ansatz device for encoding 1 and 2 are indicated with ‘×’ and ‘+’ respectively.

Appendix G: Quantum correlation metrics

There is no one standard metric to quantify entanglement or correlation in a many-body state. The metric we introduce
here, the quantum total correlation, is a quantity inspired by the classical total correlation of L random variables (b1, · · · , bL),
that is

∑L
l=1 H(bl) − H(b1, · · · , bL). Using chain rule of Shannon entropy H(b1, b2, · · · , bL) = H(b1) + H(b2|b1) + · · · +

H(bL|b1, b2, · · · , bL−1)

L∑
l=2

H(bl)−H(b1, b2, · · · , bL) =

L∑
l=1

H(bl)−
L∑
l=1

H(bl|b1, b2, · · · , bl−1) =

L∑
l=2

I(b1, · · · , bl−1; bl) ∈ [0, L− 1], (G1)

we can see that the classical total correlation tells us how a set of random variables reveals information of each other. Similarly,
quantum total correlation can be defined as [26, 27]

T (ρ̂) =

L∑
l=1

S(ρ̂l)− S(ρ̂) (G2)

where S is von Neumann entropy and ρ̂l := Tr[L]\{l} {ρ̂} is the subsystem state at qubit l. Due to the subadditivity of von-
Neumann entropy

∑L
l=1 S(ρ̂l) ≥ S(ρ̂), we conclude that the quantum total correlation is non-negative, and is zero iff the state

ρ̂ =
⊗L

l=1 ρ̂l is a product state.

In this paper’s measurement scheme, the specific readout POVMs are the projectors onto the computational states
{|bk〉 〈bk|}k∈[K]. Thus, we are in particular interested in analyzing the post-measurement state ρ̂M (u) =

∑
k ρkk(u) |bk〉 〈bk|
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whose subsystems are correspondingly in states ρ̂Ml (u) = Tr[L]\{l}
{
ρ̂M (u)

}
. We compute the average quantum total correla-

tion over the input domain u with respect to the input probability distribution p(u):

T̄
(
ρ̂M
)

= Eu

[
L∑
l=1

S(ρ̂Ml (u))− S(ρ̂M (u))

]
= Eu

[
L∑
l=1

H(bl(u))−H(b1(u), · · · , bL(u))

]
(G3)

where the second equality comes from the diagonal nature of post-measurement state which reduces the quantum total correlation
to a normal classical total correlation.

The post-measurement quantum total correlation always reaches its maximum L − 1 when the diagonal terms of the state
is a GHZ-type state. Also as a comparison, for a W -state |W 〉 = 1√

L
(|10 · · · 0〉+ |01 · · · 0〉+ · · ·+ |00 · · · 1〉), then post-

measurement quantum total correlation T(|W 〉) is

L

(
−
(

1

L

)
log2

(
1

L

)
−
(
L− 1

L

)
log2

(
L− 1

L

))
− L

(
−
(

1

L

)
log2

(
1

L

))
= (L− 1) log2

(
L

L− 1

)
. (G4)

which is upper bounded by limL→∞ T (|W 〉) = 1
ln(2) ≈ 1.443.

Appendix H: Guidance from EC theory: principal component analysis with respect to quantum noise

Another fundamental use of the capacity spectrum analysis we propose is giving a natural truncation of eigentask. In machine
learning theory, the technique of projection of a high-dimensional data to a far lower subspace is called principal component
analysis. Within the computing architecture we are discussing, we are trying to use some K ′-dimensional data where K ′ � K
to approximate the original data as much as possible. More specifically, consider a given function f(u), we hope to find K ′

functions {G(k)(u)}k∈[K′] where G(k)(u) =
∑K−1
k′=0 g

(k)
k′ xk′(u) lies in the space spanned by measured features G(k)(u) ∈

Span{x}, such that the relative mean square error

min
W

Eu
[∣∣∣f −∑K′

k=1Wk

(∑K−1
k′=0 g

(k)
k′ X̄k′

)∣∣∣2]
Eu[|f |2]

(H1)

is much smaller as possible. According to Appendix C, the solution to {g(k)}k∈[K′] is exactly g(k) = r(k). Fig. 9 supplies a
concrete example of fitting linear function f(u) = u, by setting K ′ = 40 in a 6-qubit system (and thus K = 64).

−1.0 −0.5 0.0 0.5 1.0
Input u

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
6-qubit, 40 principal xk(u), with retrain

Combination of X̄k(u)

Combination of xk(u)

Target function f (u) = u

−1.0 −0.5 0.0 0.5 1.0
Input u

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
6-qubit, 40 principal y(k)(u), no retrain

Combination of X̄k(u)

Combination of xk(u)

Target function f (u) = u

FIG. 9. Projection onto 40-dimensional space spanned by 40 principal xk(u) vs. spanned by 40 principal y(k), in a 6-qubit H-encoding
system. The number of shots is fixed as S = 5000.

Fig. 9(a) shows the projection onto the space spanned by the dominant 40 readout features. Here, by “dominant” we mean
one can first train by least square regression to get an output weightw ∈ RK , and then select corresponding wk with the leading
K ′ largest w2

k ·Eu[|xk|2]. Then we need to use these K ′ features to retrain and obtain a new output weight w′ ∈ RK′ . In such
particular example, g(k) are some one-hot vectors where the index of 1 are chosen by the sorting K ′ largest w2

k ·Eu[|xk|2] as we
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described before. We can compare the the relative mean square error with the case of g(k) = r(k), the eigentasks. The latter one
shows an approximation function with conspicuously much smaller relative mean square error.

One fundamental question is: what will be an appropriate selection of K ′ in practice. In Appendix D we claim that those
β2
k has stronger noise than signal itself, which should be excluded when taking the linear combination of measured features (or

equivalently taking the linear combination of eigentasks). Namely we should defined the cut-off Kc(S) such that

Kc(S) = max
β2
k<S

k. (H2)

Based on this observation, we can further explore the trend of Kc(S) when qubit number L is scaled. As we showed in main
text. The eigen-NSR spectra growth much slower when L increases. Then the quantum system is able to provide much more
eigentasks with more signal than noise. Fig. 10(a) shows spectrum in H-encoding quantum system with size L = 3 ∼ 8 with
fixed hyperparameters. Notice that shot number S = 5000 here is not a larger number, which means that we cannot sample
enough shots so that features converges to its mean in 28 = 256 dimensional Hilbert space. But applying eigentasks analysis
in this example still shows a fast decay of relative error minW Eu[|f −∑Kc(S)

k=0 Wkȳ
(k)|2]/Eu[|f |2] until the fitting accuracy

saturates at L = 8.

FIG. 10. PCA for different ES H-encoding system size L = 3, 4, 5, 6, 7, 8 with fixed hyperparameters and S = 5000. (a) Eigen-NSRs
spectrum of different sized system. (b) Relative error minW Eu[|f −

∑Kc
k=1 Wkȳ

(k)|2]/Eu[|f |2] for fitting f(u) = u, where Kc can be read
out from (a). (c) Combination of Kc eigentasks

∑Kc(S)
k=0 wky

(k)(u) and noisy eigentasks
∑Kc(S)

k=0 wkȳ
(k)(u) in L = 5, 6, 7, 8 qubits system.

Appendix I: Quantum-noise-PCA in classification problem

The highly nonlinear readout feature xk(u) should have Taylor expansion xk(u) =
∑∞
j (T)kju

j . Such complicated func-
tions will span a certain functional space. One fundamental question is what the limit of approximation ability based on the
architecture we proposed. Hereby we first show that this architecture under infinite sampling is capable of approximating any
continuous function on the domain [−1, 1] to arbitrary precision. Furthermore, the linearity of quantum moment readout and
complexity of quantum evolution will help us to understand why such a quantum system has capability to approximate a highly
nonlinear function, under finite and bounded computational resources. Exploring the capacity for function approximation under
finite measurement resources, as is done in the main text and Appendix C, highlights the fundamental limitations places by
quantum noise on computation using the QRC.
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FIG. 11. Function approximation by using y =
∑K−1

k=0 wkxk(u) (solid red lines) to approximate sine function and steep tanh function
(dashed purple lines) in a 5-qubit quantum annealing system, where Keff =

∑mmax
m=0

(L
m

)
depends on different quantum moment thresholds

mmax = 1, 2, 3, 4, 5. The hyperparameters are (Jmax; h̄x, hx
rms; h̄

I , hI
rms) = (1; 3, 1; 5, 2) in unit 1/t and no hz field. This simulation shows

that for some simple functions, it is sufficient to merely use lower order moments, e.g., mmax = 2 in sine function and mmax = 3 in steep
tanh function.
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FIG. 12. (Left) Distribution p0(u) and p1(u) for classes C0 and C1, respectively. (Right) The histogram of C0 and C1. Each class contains
5000 samples.

1. Function approximation universality

A very general question is that what type of functions can such a single-step quantum approximate. One conclusion which can
be drawn is the function approximation universality. That is, give any continuous function from space of continuous functions
on domain [−1, 1], i.e. φ ∈ C ([−1, 1],R), for any given error ε > 0, there always exists a function ϕ(u) = w ·x(u) such that

|ϕ(u)− φ(u)| ≤ ε (I1)

for any input u ∈ [−1, 1]. The proof is also employing the well-known Stone-Weierstrass theorem. For our particular ar-
chitecture, D = [−1, 1] is obviously a compact space, while point-separation can also be trivially fulfilled by a single qubit
system (L = 1). The subalgebra structure of the function family generated by quantum systems is automatically satisfied in
representation of moment in family of all product systems.

2. 1D classification as function approximation for noiseless measured features

In this section, we will show how the function approximation universality of architecture described in Appendix I 1 enables it
to perform – among others – paradigmatic machine learning tasks such as classification.
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FIG. 13. 1D classification as function approximation in a 5-qubit quantum system with full connectivity. The hyperparameters are
(Jmax; h̄x, hx

rms; h̄
I , hI

rms) = (1; 3, 1; 8, 5) in unit 1/t and no hz field. (Left) Testing accuracy as a function highest order mmax of mo-
ment feature. (Right) Conditional distribution Pr[u ∈ C1|u] (purple dashed line) vs. readout features σ(w ·x(u)) with mmax = 1, 2, 3, 4
(red solid line). mmax = 4 saturates the approximation accuracy.

Suppose two classes C0 and C1 of samples, each of which is generated from distributions p0(u) and p1(u) respectively. The
probability of occurrence of C0 and C1 are both 50%, and we simply let each class equally contain 5000 samples and thus
N = 10000 samples in total. Both distribution are artificially defined by summing several Gaussian distributions with different
amplitudes and widths together. Domain of both distributions are restricted in [−1, 1] and both distributions are also normalized.
Due to the overlap of two distributions, there is some theoretical maximal classical accuracy to distribution whether a given u
belongs to either C0 or C1.

During the training, we feed each sample u(n) (belonging to class Cc(n) ) into a 5-qubit quantum system. The quantum system
will be read out with Keff =

∑mmax

m=0

(L
m

)
different features {xk(u(n))}k∈[Keff ]. Then features of N sample forms the regressor

matrix. According to the standard supervised learning procedure, we simply train based on (x(u(n)), c(n)) by logistics regression
where one should minimize the cross-entropy loss

L (W ) =
1

N

N∑
n=1

[
− c(n)log

(
σ(W ·x(u(n)))

)
−
(

1− c(n)
)

log
(

1− σ(W ·x(u(n)))
)]

(I2)

where σ is the sigmoid function σ(y) = 1
1+e−y . A small L2 penalty λ‖W ‖2 (where λ = 10−6) is added to Eq. (I2) for

preventing overfitting. The optimalW is then simply the set of weights that minimizes this cost function,

w = argminW {L (W )} (I3)

We test the fidelity of learning the classification task by determining the accuracy of classification on a testing set formed
by drawing N = 10000 new samples (independent of the training set) as a function of the order of output moments extracted,
mmax = 1, 2, 3, 4, 5, corresponding to reading out Keff = 6, 16, 26, 31, 32 features respectively. The resulting testing accuracy
is plotted in the left panel of Fig. 13). We see that the testing accuracy converges to the theoretical maximal accuracy (dashed
green) with increase in readout features.

Importantly, one can show that this improvement in learning performance coincides with training of optimal weights w such
that the QRC is able to approximate the conditional distribution Pr[u ∈ C1|u] of the two classes with increasing accuracy (lower
error). To verify this, we first numerically compute all K = 32 readout feature functions x(u) of the system, by sweeping 500
equidistant values of u ∈ [−1, 1]. Effectively learning the conditional distribution means that σ(w ·x(u)) ≈ Pr[u ∈ C1|u]. It is
equivalent to use w ·x(u) to approximate the following function:

w ·x(u) ≈ σ−1(Pr[u ∈ C1|u]). (I4)

We therefore see that the function approximation universality property of the architecture discussed in Appendix I 1 enables its
use as a generic classifier.
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FIG. 14. (Left) The linear combination with sigmoid activation, that is the stochastic function σ
(∑Kc(S)

k′=1 wk′,Train(r̃
(k)
N · X̄Train)k′

)
(blue

line) and σ
(∑Kc(S)

k′=1 wk′,Train(r̃
(k)
N · X̄Test)k′

)
(red line), compared with the true conditional probability Pr[u ∈ C1|u] (black line). (Right)

Training accuracy and testing accuracy. They saturate the theoretical maximal accuracy as S reaches 104 ∼ 105. Their agreement shows the
quantum measurement noise serves well as a regularizer.

3. Solving classification problem by quantum-noise-PCA

Now we can solve the classification task above by using the quantum-noise princilpal component analysis we learn from
capacity analysis. Suppose a physical system with L = 5 qubits and ring connectivity, we choose the hyperparameter to be
J = 2, hxrms = hzrms = hIrms = 5 and t = 3. In this H-encoding scheme, we can obtain K = 32 measured features on each of
N = 105 samples {u(n)} (5000 in class C0 and 5000 in class C1). We emphasize here that the underlying marginal distribution
p(u) is no longer uniform here, and it will make both {β2

k} and {r(k)} very different.

Given the number of shots S ∈ [101, 105], we can still compute the empirical r̃(k)
N and estimating β2

k by using the correction
techniques we used in Appendix D. By comparing the estimated (1 − α̃N,k)/(α̃N,k − 1

S ) and S, we can figure out the cutoff
order Kc(S) and combination coefficients r̃(k)

N , based on which we can define a set of observables

Ôk =

K−1∑
k′=0

r̃
(k)
N,k′M̂k′ k = 0, 1, · · · ,Kc(S). (I5)

It is equivalent to say, by measuring Ôk, we can effectively obtain eigentasks r̃(k)
N · X̄Train. Then we can apply standard logistics

regression on those eigentasks as we did in Eq. I2. The only difference is we no longer need any regularization term as penalty
like λ‖W ‖2. The training procedure eventual yield wTrain ∈ RKc(S), together with r̃(k)

N and Kc(S).

Now we generate a totally new and independent set of u’s for testing purpose. By measuring Ôk, one get eigentasks
r̃

(k)
N · X̄Test. By plugging wTrain ∈ RKc(S)+1, together with r̃(k)

N and Kc(S) in training, we can achieve the testing accu-
racy. The agreement between training and testing accuracy show that the quantum measurement noise effectively works as a
regularizer, and do a pretty good job (see Fig. 14).

Appendix J: Finite sampling bound and uncertainty propagation

We conclude that the principle advantage brought about by entanglement in this sections. There we observe that for certain
inputs u (that depend on the input encoding) the measurement of an ES when mapped into the moment space can generate
distributions that can be highly anisotropic at finite S. While for PS these distributions are generally isotropic unless they are
close to the boundaries of the output domain (when the encoding produces outputs that are eigenstates of the measurement basis).
We observe that this trend is also present in the experimental system despite non-idealities. The origin of higher expressive
capacity at large S provided by ESs can be traced back to this basic feature. To be more specific, let M̂k = σ̂zl1 σ̂

z
l2
· · · σ̂zlm , and

X̄k(u) be empirical mean based on S sampling. Notice that the variance of X̄k is

Var[X̄k] =
1

S

(
〈(σ̂zl1 σ̂zl2 · · · σ̂zlm)2〉 − 〈σ̂zl1 σ̂zl2 · · · σ̂zlm〉2

)
=

1

S
(1− x2

k(u)). (J1)
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FIG. 15. NSR of ES vs PS in a 10-qubit quantum annealing system with shot number S = 1000 by feeding u = 1/2. The hyperparameters
are chosen to be (h̄x, hx

rms; h̄
z, hz

1,rms) = (8, 2; 3, 2) in unit 1/t. The purple and red colors correspond to coupling being switched on and off,
respectively; and the coupling hyperparameter in ES is Jmax = 2/t. For each m, the N = 30 dots are relative error x(r)

k (u)/xk(u) − 1 of
30 repetitions r = 1, 2, · · · , 30. The standard deviation of those relative errors (namely NSR) are also plotted. The ES NSR (purple stars) is
well fitted by O(1/

√
S) (purple dashed line) while the PS NSR (red stars) scales exponentially as O(2m/

√
S) (purple dashed line). We take

y-axis being log-scale, and one may find in these regime ES 1/SNR grows exponentially faster than PS NSR (red stars) and hence PS readout
scheme will be less powerful in sense of quantum sampling noise resistant.

By central limit theorem,

X̄k(u) = xk(u) + δk(u) = xk(u) +
1√
S
ζk(u), (J2)

where random sampling noise ζk(u) ≈
√

1− x2
k(u)ε and ε ∼ N (0, 1) is standard Gaussian. For quantum moment readout, the

amplitude of relative error is ∣∣∣∣ δk(u)

xk(u)

∣∣∣∣ ≈
√

1− x2
k(u)

x2
k(u)

1√
S
∝ 1√

S
. (J3)

For classical polynomial readout the amplitude of relative error is obtained by rule of uncertainty propagation∣∣∣∣ (xl1(u) + δl1) · · · (xlm(u) + δlm)− xl1(u) · · ·xlm(u)

xl1(u) · · ·xlm(u)

∣∣∣∣ ≈ ∣∣∣∣ δl1
xl1(u)

+ · · ·+ δlm
xlm(u)

∣∣∣∣
≈
(√

1− x2
l1

(u)

x2
l1

(u)
+ · · ·+

√
1− x2

lm
(u)

x2
lm

(u)

)
× 1√

S
∝ m× 1√

S
. (J4)

If there is no entanglement in quantum system, then the readout features for both quantum moment readout and classical poly-
nomial readout are the same 〈σ̂zl1 σ̂zl2 · · · σ̂zlm〉 = 〈σ̂zl1〉〈σ̂zl2〉 · · · 〈σ̂zlm〉. However, even if the expectations under infinite sampling
limit S → ∞ are the same, the measurement noise under finite sampling are still different. For classical polynomial read-
out, the scaling of still follows the simple additivity relation of uncertainty propagation in Eq. (??). But now the noise of
xl1(u) · · ·xlm(u) in quantum moment readout will be very strong, this is because xl1(u) · · ·xlm(u) is now close to zero, thus∣∣∣∣ δk

xk(u)

∣∣∣∣ ≈ 1

xk(u)

1√
S

=
1

xl1(u) · · ·xlm(u)

1√
S
∝ 2m × 1√

S
. (J5)
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