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Non-Hermitian coupled-mode theory for incoherently pumped exciton-polariton condensates
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The generalized Gross-Pitaevskii equation (gGPE) is an effective phenomenological description for the
dynamics of incoherently pumped exciton-polariton condensates. However, a brute force numerical simulation of
the gGPE provides little physical insight into condensate formation under arbitrary pumping configurations, and
is demanding in terms of computational resources. We introduce in this paper a modal description of polariton
condensation under incoherent pumping of arbitrary spatial profile, based on eigenmodes of the non-Hermitian
generator of the linearized dynamics. A pump-dependent basis is then introduced to formulate a temporal
coupled-mode theory that captures condensate dynamics in the presence of all nonlinear interactions. Simulations
using a single set of modes for a given pumping and trapping configuration agree very well with a full integration
of the gGPE in diverse dynamical regimes, supporting the validity of this modal description, while also providing
a speedup in simulation times.
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I. INTRODUCTION

Exciton-polaritons, quasiparticles that arise from the strong
coupling of cavity-confined photons and excitons confined
in quantum wells, are effectively bosonic at low densities
and can undergo condensation under incoherent excitation
beyond a critical pump power [1–3]. A theoretical description
of the spatiotemporal dynamics of the associated condensate
order parameter can be obtained through a generalized Gross-
Pitaevskii equation (gGPE) introduced in Refs. [4,5]. While
the microscopic basis of such a description starting from a
quantum field theory still remains at large [6], as a phenomeno-
logical model its strength in describing many recent exper-
iments under various pumping and trapping conditions has
proven to be quite remarkable. Despite this success however,
this approach remains a computational simulation tool that is
often invoked a posteriori to justify experimentally observed
condensation dynamics [7–16]. Its limitation in providing
physical insight and predictive power is arguably due to a lack
of an associated modal description. In lasers, the projection of
the laser field on resonator modes generally provides valuable
insight into resulting spatial patterns of lasing modes in their
steady state, their thresholds, and frequencies. In addition,
a modal projection is typically computationally very efficient,
turning a coupled set of nonlinear partial differential equations
into a set of ordinary differential equations for which there are
many standard and powerful algorithms.

For trapped atomic gas systems, condensation typically
occurs in the ground state of the trapping potential. When
studying dynamics of trapped gases, the normal modes of
the trapping potential provide a suitable basis to project
the gGPE onto, resulting in a set of coupled (nonlinear)
ordinary differential equations for the dynamical projection
coefficients. The Hermitian nature of the Hamiltonian ensures
that a complete and orthogonal basis exists, while the energy
eigenvalues of the modes provide an organizing principle
that allows the proper truncation of the basis in the infinite
dimensional Hilbert space: one orders the modes according
to their energy and includes only modes with energies less
than a suitably chosen energy cutoff. One source of the
difficulty in arriving at a modal description appropriate for
the nonequilibrium condensate dynamics is that many recent

experiments employ large-area cavities (with the exception of
“0D polariton boxes” [2,17–23]) where the trapping of the
condensate in the plane is achieved via the finite extent of the
pump beam [see Fig. 1(a)]. In this setting the expansion of
the polariton field in resonator modes indexed by a discrete
set of quasimomenta is not very useful for two reasons. First,
the energy eigenvalues found through this procedure do not
provide a good truncation scheme because the condensation
can typically occur into a higher energy (= higher momentum)
state. Second, there is a net energy flux through the system,
from the pump to the reservoirs and a Hermitian description is
out of the question or can at best be approximate under ideal
conditions (of very high Q, spatially highly extended uniform
pump and a very large, translationally symmetric structure in
the plane).

Because of the above-stated conditions, in condensates that
are trapped optically (i.e., by a spatially patterned incoherent
pump beam [12,15,24–27]), it is often not clear what the
proper “energy levels” are that the excitations generated by
the pump may condense into. From the more traditional point
of view looking at the condensation in terms of momentum
modes, motivated by the approximate translational invariance
of the sample in the absence of the pump spot, condensation
into a complex spatial pattern may appear as condensation
into a linear superposition of momentum eigenstates. This
can often lead to the misconception that there is something
more profound taking place than condensation into a pure
momentum mode, such as synchronization.

Clearly, the appropriate set of modes have to be closely
related to the geometry of the pump beam. However, the
reservoir polaritons generated by the pump act not only as an
energetic barrier but also as a source of gain for the condensing
polaritons. One is then led to conclude that the appropriate
set of modes are subject to a complex-valued potential that
is pump-dependent. An approach to the description of the
condensate dynamics in terms of the modes of a non-Hermitian
operator was introduced in Ref. [28], and the insight and
predictive power it provides was demonstrated in recent exper-
iments [26,27]. The method presented in Ref. [28] is limited
to capturing the steady-state dynamics of the gGPE (when
such exists). Many interesting dynamical phenomena, such
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FIG. 1. (a) Schematic diagram of pumped microcavity with
embedded semiconductor quantum wells, under incoherent pumping.
(b) Schematic representation of the mechanism that populates the
exciton reservoir under incoherent pumping. (c) Pump profile and
normalized intensity for uniform pump in 1D. Dashed lines indicate
the pump boundary ∂P , beyond which the pump intensity per unit
area, Pf (r), is zero. The region enclosed by this boundary is defined
as the pump region P .

as condensate synchronization [29–31] and self-pulsing, or
transient dynamics, remain beyond the reach of this approach.
The goal of the present work is to discuss a non-Hermitian
coupled-mode theory to address this shortcoming.

While a complete non-Hermitian basis can be consistently
defined to project the gGPE on, a more subtle question
concerns the associated organizing principle that will provide
the most effective truncation scheme. There is no unique way
of doing this, but we show here that there is a set of pump modes
associated with the unsaturated pump (reservoir) distribution
in the absence of polariton interactions, which provides
maximal physical insight. Pump modes are a set of non-
Hermitian modes that parametrically evolve with the pump
strength parameter P . This is physically sensible because the
stronger the pump the higher are the barriers of the potential
generated by the deposited exciton reservoir (which we assume
to be immobile). We show that the members of this set are
analytically connected to the exact condensate modes in the
absence of nonlinear interactions and gain depletion; we refer
to the latter as linear threshold modes (LTMs). LTMs therefore
provide the organizing principle that is required to effectively
truncate the pump modes. Eigenvalues of the associated
non-Hermitian dynamical evolution operator provide insight
into the cumulative gain the associated patterns experience
and their associated condensation energies (frequencies) and
thresholds.

The condensation process appears then as an instability
of the fluctuation patterns described by the pump modes. In
fact, the first member of the set of pump modes provides the
exact threshold, frequency, and spatial distribution of the first
condensing mode. We show subsequently that this approach
can be extended far into the strong-pumping regime where
nonlinear interactions dominate the dynamics. The pump
modes provide a suitable basis for an efficient projection
of the full condensate wave function, with time-dependent
coefficients, forming the foundation for the nonlinear temporal
coupled mode theory (TCMT) that we introduce in this
paper. The TCMT can accurately capture condensate and
reservoir dynamics in the presence of all nonlinear effects and
interactions, whether a steady state exists or not. By decoupling
the computation of the spatial modes from the temporal
evolution of the system, the operative equations of the TCMT
are reduced to a set of coupled ordinary differential equations

(ODEs). This provides computational advantages, and should
be particularly advantageous for geometries in more than one
dimension. Most importantly, simulation results using the
TCMT agree very well with a full integration of the gGPE
using a split-step symplectic integrator (SSI). This places our
modal theory on sound footing as an appropriate description
of nonlinear condensate dynamics under incoherent pumping.

The rest of this paper is organized as follows: in Sec. II,
after a brief review of the standard mean-field description of
incoherently pumped polariton condensates, we introduce the
linear threshold modes (LTMs) to discuss condensation in
an arbitrary pump-field and resonator geometry. In Sec. III
we use this modal description as an organization principle
to develop the pump basis, a non-Hermitian, pump-power
dependent basis; this functions as the basic building block
of our modal theory. Employing this basis, we derive a set
of dynamical equations that constitute the TCMT. Finally,
Sec. IV is reserved for numerical comparisons of the TCMT
with the SSI, for an all-optically trapped condensate, as well
as condensation in pumped microcavity systems, to highlight
agreement across various dynamical regimes.

II. LINEAR THRESHOLD MODES

In this section, we discuss the first step towards a full
modal description for the gGPE through the pump basis.
The linear threshold modes (LTMs) introduced in Sec. II B
will provide a scheme to index the pump modes that con-
stitute this basis; this discussion can be found in Sec. III A.
Before introducing the LTMs, we present a brief review of
the standard mean-field description of incoherently pumped
polariton condensates [6,32] to establish our notation and lay
the foundations for the analysis to follow.

A. Mean-field description of incoherently pumped polaritons

Inorganic exciton-polaritons (referred to as polaritons from
this point on) are quasiparticles of cavity photons and semicon-
ductor excitons generated for example when a semiconductor
quantum well is placed within a light-confining microcavity
[see Fig. 1(a)]. Polaritons with inorganic excitonic components
exhibit strong Coulomb-like repulsions with each other; as
such, these polaritons behave essentially like photons dressed
with a very light mass (typically 10−4me) and interactions. The
strong interactions make for a nontrivial many-body problem;
the standard first method of analysis is therefore a mean-field
treatment of the interactions based on the Gross-Pitaevksii
equation [33], first developed for the study of condensates of
trapped gases.

Different from the case of trapped gases is the need
to account for polariton losses and hence for continuous
pumping to overcome these losses. The pump generates a
reservoir of high energy excitons with population density
nR(r,t) that scatter continuously into lower energy polaritons;
this amplification must overcome losses for a condensate
phase to be possible [see Fig. 1(b)]. Then, the generalized
Gross-Pitaevskii equation (gGPE) for the condensate wave
function �(r,t) [4,6,32] is,

i
∂

∂t
� =

[
− ∇2

2m
+ gRnR + g|�|2 + i

2
(RnR − γc)

]
�, (1)
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which takes the form of a nonlinear Schrödinger equation (we
set � = 1 throughout this paper). Polariton-polariton repul-
sions ∝g) and repulsion between condensate polaritons and
reservoir excitons (∝gR) are described as contact interactions,
and are treated at the mean-field level. Polariton systems expe-
rience continuous losses, as the photonic fraction of polaritons
leads to leakage from the confining cavity. This openness is en-
capsulated by the non-Hermitian parts of effective Hamiltonian
describing condensate evolution. Here, γc is the out-of-plane
(or mirror) loss and R the amplification rate for stimulated
scattering from the reservoir. Scattering of polaritons from this
reservoir into the condensate [34] overcomes losses beyond a
critical pump power, and a condensate forms [see Fig. 1(b) for a
schematic].

The exciton reservoir also evolves dynamically as the
condensate forms, and therefore the reservoir density nR(r,t)
has its own governing equation [4]:

∂

∂t
nR = Pf (r) − γRnR − RnR|�|2. (2)

The first term accounts for the generation of the exciton
reservoir by an external pump. We define a pump region P
as being enclosed by the minimal boundary ∂P beyond which
the pump intensity vanishes; see Fig. 1(c) for an example
in a one-dimensional system. The spatial pump profile f (r)
is unit normalized over this pump region, so that the pump
strength parameter P is the total number of excitons generated
within P per unit time. The term proportional to the scattering
rate R accounts for the depletion of the reservoir population
as polaritons scatter into the condensate. Any losses from
mechanisms other than scattering into the condensate (e.g.,
exciton recombination losses) are given by γR .

The full dynamics of incoherently pumped polaritons are
therefore described by the set of coupled nonlinear partial
differential equations (PDEs), Eqs. (1) and (2). Solving this
system requires an integration over a spatiotemporal grid.
The standard approach is to employ a symplectic split-step
integrator (SSI) based on separate real and momentum space
evolution, and while this technique has proven useful, it has
some significant shortcomings. First, and most importantly, a
full integration of the coupled PDEs using a SSI provides
little general information about spatiotemporal condensate
dynamics beyond the results that are directly simulated. The
simulations also bear computational difficulties: spatiotem-
poral integration of PDEs is much more resource-consuming
than the integration of ordinary differential equations (ODEs),
while the use of fast Fourier transforms (FFTs) in the SSI
algorithm forces spatial periodicity onto a system where there
may be none. This can introduce computational artifacts
unless a large enough spatial domain is used, which incurs
significant computational slowdown and/or limited spatial
resolution.

With the aim of addressing these challenges, the next
sections will introduce an associated modal description of
polariton condensation under incoherent pumping. Such a de-
scription provides more insight into condensate formation and
dynamics under general pumping and trapping configurations,
and will also be shown to hold in the nonlinear regime.

B. Defining the linear threshold modes

In studying the condensate dynamics at a pump power
P as described by Eqs. (1) and (2), it is reasonable to first
consider the simplified problem of an unsaturated reservoir in
the absence of polariton interactions, i.e., we drop nonlinear
terms ∝|�|2 in Eqs. (1) and (2). This yields the linear problem:

i
∂

∂t
� =

[
− ∇2

2m
+ sPf (r) − i

2
γc

]
� ≡ HL(P )�. (3)

The dynamics of excitations under these conditions are entirely
determined by the linear, non-Hermitian operator HL(P ). We
have introduced the pump-induced potential s,

s = 1

γR

(
gR + i

2
R

)
, (4)

which encapsulates the effect of the pump-generated reservoir
in this linear regime: a repulsive potential and a source of gain,
with a spatial dependence given by the pump profile. We now
consider fluctuations ϕ(r) of this operator,

�(r,t) = ϕ(r)e−iνt . (5)

Substituting this ansatz into Eq. (3) immediately gives

HL(P )ϕn(r; P ) = νn(P )ϕn(r; P ), (6)

indicating that ϕ is an eigenmode of HL(P ), with eigenvalue
ν. In the general case, we choose the pump boundary ∂P
as circumscribing the minimal region that encompasses all
pump regions and trapping potentials; then, the polariton field
beyond ∂P will be outgoing only, carrying an outward flux of
polaritons that decays with distance from the pump region (due
to nonzero out-of-plane loss γc). While a boundary beyond ∂P
may also be chosen, the minimal choice is computationally
most efficient. The outgoing flux solution must be continuously
connected to the polariton field inside the pump region via a
boundary condition at ∂P . For concreteness, we will discuss
here the 1D case for which this condition can be written as

∂xϕn|∂P± = ±iq(νn)ϕ|∂P± , (7)

where q2(νn)/2m = νn + i
γc

2 is the outgoing (complex) wave
vector, and ± denotes the condition for the right and left
pump boundary respectively. An analogous condition can be
found in 2D as well. Restricting the computational domain to
within ∂P requires solving a non-Hermitian boundary value
problem that parametrically depends on P . The eigenvalues νn

are discrete and generally complex-valued. According to our
definition in Eq. (5), decaying solutions for such fluctuations
are confined to the lower complex plane; thus the positive and
negative imaginary parts of the eigenvalues represent the net
gain and loss respectively experienced by the corresponding
fluctuation with the spatial pattern ϕn, while the real parts
correspond to the associated mode frequencies. The physics
of the linear problem is built into these eigenvalues: generally,
as a function of an increasing value of P , the eigenvalues move
toward higher frequencies due to the increasing pump-induced
blueshift, while the imaginary parts of all eigenvalues become
less negative as the gain increases, flowing towards the real
line.

For a given P = Pn, one of the eigenvalues intersects the
real line, i.e., νn is real (the rest of the eigenvalues at this power
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are generally complex-valued); for a pump power infinites-
imally beyond Pn, the corresponding fluctuation ϕn(r; Pn)
becomes unstable, which describes the onset of condensation
in this formulation. It is possible to show that there are N

pairs [ωn = νn(Pn),Pn] for which the ωn are real-valued. Here
N is the dimension of the linear problem for which we will
present a systematic truncation scheme in later sections. We
refer to these modes as linear threshold modes (LTMs) and
index them in the order of increasing Pn, also introducing a
specific notation: ϕL

n ≡ ϕL
n (r; P L

n ,ωL
n ) is referred to as the nth

linear threshold mode (LTM), with linear threshold power P L
n

and real frequency ωL
n . The nth LTM is therefore a special

eigenmode of HL(P L
n ), with a purely real eigenvalue (on

account of it being at threshold) representing the condensation
frequency.

C. Significance of linear threshold modes

Our discussion of LTMs above answers the question of how
to define condensate modes under incoherent pumping when
the confining geometry is determined entirely by the pump.
Furthermore, the LTM with lowest power threshold has special
meaning: it corresponds to the first unstable fluctuation of the
uncondensed � = 0 phase as the pump power is increased.
As such, it provides exactly the field distribution and the
frequency of the mode that is observed when condensation
first occurs. Beyond the corresponding threshold pump power,
P L

1 , nonlinear effects become important and the linearized
theory is no longer valid.

As such, the significance of LTMs beyond the lowest power
threshold LTM may not be immediately obvious, since these
are strictly speaking objects relevant to the linearized theory.
However, it can be shown that the linearized power thresholds
organize the LTMs into a hierarchy, which is directly related
to how efficiently each pump-confined mode utilizes the pump
for gain [27,28]. The n = 1 LTM has lowest power threshold
and is most efficient at utilizing the pump, the n = 2 mode
is second most efficient, and so on. Therefore, the LTMs
are in a quantifiable way the preferred spatial configurations
of polaritons under a given pumping configuration. We will
see next that it is possible to define a non-Hermitian pump-
dependent basis that can be used to efficiently project gGPE
on. The LTMs are then used to provide an efficient truncation
scheme for this basis.

III. NONLINEAR TEMPORAL COUPLED-MODE THEORY

In this section, we develop the central result of this
paper: a temporal coupled-mode theory (TCMT) for the fully
nonlinear, time-dependent problem of polariton condensation
under incoherent pumping. The first task is to determine an
appropriate basis for expansion of the nonlinear condensate
wave function; we will find that specific eigenmodes of HL(P )
that can be continuously connected to the LTMs provide such
a basis; we refer to these as pump modes and introduce them
next. Then, by making an expansion of the condensate wave
function in this basis, we derive the dynamical coupled-mode
equations, presented in Eqs. (24a) and (24b).

A. Pump basis

To derive a coupled-mode theory for Eqs. (1) and (2) that
can capture general time-dependent behavior, we must expand
the condensate wave function in a complete set of spatial
modes with time-dependent coefficients. Intuitively, an expan-
sion in eigenmodes of HL(P ) makes sense, since these modes
already take into account the complexity of the linearized
condensation problem for arbitrary pump profiles. However,
a consistent definition of this basis requires the generalization
of the problem to a two-parameter family of boundary value
problems (BVPs), for which we use the notation HL(P,�).
This BVP is defined by the same differential operator in Eq. (6),
but with the parametric boundary condition

∂xϕn|∂P± = ±iq(�)ϕ|∂P± . (8)

The solutions of this BVP describe self-sustained oscillations
of the condensate at (real) frequency �. Hence the set of ϕn’s
parametrically depends on two real parameters (P,�). Being
eigenmodes of the same non-Hermitian operator with the same
boundary condition, the modes {ϕn(r; P,�)} can be shown to
form a complete, biorthogonal basis, satisfying an orthogonal-
ity relation with an unconjugated inner product [35]:∫

P
dr ϕn(r; P,�)ϕm(r; P,�) = δnm. (9)

Note that the orthogonality relation differs from the usual
power orthogonality involving a conjugated inner product due
to the non-Hermiticity of the modes.

Next we use this basis to expand the full condensate wave
function in Eq. (1):

�(r,t) =
N∑

n=1

an(t)ϕn(r; P,�)e−i�t , (10)

where an(t) are time-dependent basis coefficients. Here, the
purpose of � is to provide an optimal rotating frame in
which to express the basis coefficients an(t). While there is
no unique way to choose this frequency, some choices yield
better results than others. In due course, we will present a
suitable optimization procedure.

We now address the more subtle question of an effective and
physically transparent truncation scheme for the expansion in
Eq. (10). For this we first make the following observation:
when P = P L

n and � = ωL
n , one member of the basis set

exactly coincides with the nth LTM, ϕL
n (r; P L

n ,ωL
n ). It can

further be shown that the eigenvalue flow as a function of
(P,�) is generally differentiable so that for a general (P,�)
one of the modes can be continuously connected to this
particular LTM. This provides then a very effective principle
to organize the modes (i.e., index them): the nth basis mode
is connected to the nth LTM. Recall that this LTM is the nth
most effective at utilizing the pump for gain. Thus a truncation
performed at a judiciously chosen upper cutoff will leave an
ordered basis of the first N optimal modes that experience gain
from the deposited exciton reservoir defined by f (r). We call
this so-truncated, ordered basis the pump basis. The N pump
modes that constitute this ordered basis are simply eigenmodes
ofHL(P,�) chosen such that they connect to the first N LTMs.

To be able to make the connection between the pump modes
and LTMs, we need an efficient computational procedure for
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FIG. 2. (a) Trajectory of eigenvalues νn(P ),n ∈ [1,10] in the
complex plane as pump power is increased, for fixed outgoing
frequency � = ω1. The leftmost trajectory is for n = 1, the rightmost
for n = 10, and the arrow indicates the direction of flow. The real
axis projection of the nth trajectory is the real frequency, while the
imaginary axis projection is the loss or gain. (b) Plots of the LTMs for
n = 1 and (c) n = 5, respectively. The orange shaded region indicates
the uniform pump.

the LTMs, which we present now. For concreteness, we discuss
the case of a 1D uniform pump spot [see Fig. 1(c)]. We first
fix � that defines the boundary condition of our BVP through
Eq. (8). This is our best guess for one of the LTM frequencies.
Some typical eigenvalue trajectories with increasing pump
power P are shown in the complex-ν plane in Fig. 2(a).
For a low enough pump power, all calculated eigenmodes
have eigenvalues with negative imaginary parts; this is the
regime below condensation threshold, where any fluctuations
around the � = 0 state decay to zero for long times. As
the pump power is increased, the net loss decreases for all
modes, and the imaginary parts of all eigenvalues become
less negative, flowing towards the real line, while the real
parts move towards higher frequencies. As mentioned earlier,
these features of eigenvalue flow are a manifestation of the
pump-dependent physics in the linear regime, and hence hold
for general pump profiles (although the specific trajectories
may be more complicated). When the nth mode reaches
threshold and intersects the real line, it acquires a purely real
eigenvalue ωn, representing its frequency. If � is different
from ωn, the outlined procedure can be iteratively repeated
until this constraint is satisfied (additional practical details of
how to optimize this procedure can be found in Appendix B).
The procedure for connecting the eigenmodes of HL(P ) to the
LTMs is then a simple matter of overlap minimization at a
given (P,�), and is also described in Appendix B.

Lastly, we discuss the choice of � in Eq. (10), which
sets the boundary condition defining the pump modes via
Eq. (8). This has a simple interpretation: physically, � defines

the condensate frequency. Equation (8) simply ensures that
the pump modes obey the correct dispersion relation for an
outgoing, decaying polariton flux emanating from a conden-
sate with frequency �. Crucially, this condensate frequency
evolves with pump power due to the pump-induced potential
and polariton-polariton interactions, and so � = �(P ). By
imposing Eq. (8), the pump modes take this evolution into
account, a parametrization that proves crucial for accurate
simulation results. We also explicitly extract time evolution
at � in Eq. (10) to render the {an(t)} slowly varying, which
is efficient for numerical simulations. To determine �, we
employ a self-consistent procedure where we initially set
� = ωL

1 , namely the lowest threshold frequency determined
before. The TCMT equations to be discussed further below
are then solved. The most dominant frequency in the Fourier
transform of the amplitudes in the long-time limit is then used
to update �. In practice, this procedure is found to have very
good convergence properties.

The important outstanding question now is whether the
pump basis is suitable for the analysis of the full nonlinear
problem. To answer this, we will first derive the nonlinear
coupled-mode theory based on the expansion in Eq. (10). Tests
of this theory against a full simulation of Eqs. (1) and (2) will
determine the validity of our formulation.

B. Coupled-mode equations

The fundamental procedure for obtaining a coupled-mode
theory from the gGPE-reservoir equations [Eqs. (1) and (2)]
is simple: we expand the condensate wave function � in the
pump basis derived in the previous section [see Eq. (10)], and
then integrate out the spatial dependence to obtain dynamical
equations for the time-dependent expansion coefficients. This
section implements this procedure, while clarifying additional
subtleties that arise. However, before substituting the ex-
pansion for � in Eqs. (1) and (2), it is useful to rewrite
these equations in a more convenient form. First, we extract
explicitly the linear, time-independent part of the reservoir
density:

nR(r,t) = Pf (r)

γR

+ ñR(r,t). (11)

Our choice of “displacing” the reservoir density in this
way—an exact transformation—allows the gGPE, Eq. (1), to
be written in a particularly transparent form:

i
∂

∂t
� = HL(P )� + VNL(P )�, (12)

where the linear and nonlinear terms in the condensate
evolution are neatly separated; HL(P ) is the linear generator
introduced in Eq. (3) which encapsulates the complex pump-
induced potential and polariton loss, while the nonlinear
potential VNL(P ) is given by

VNL(P ) = [sγRñR(r,t) + g|�|2]�. (13)

VNL(P ) includes the real-valued polariton-polariton repulsion,
but also the nonlinear, dynamical effects introduced by
reservoir evolution, namely the saturating nonlinearity and
reservoir depletion, via ñR(r,t).
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Now, using the expansion of the condensate wave function
in Eq. (10), the nonlinear GPE can be cast as a set of coupled
equations for the time-dependent coefficients an(t). Since
the pump modes that constitute our basis of expansion are
eigenmodes of HL(P ), the linear part of Eq. (12) simplifies
greatly [cf. Eq. (6)]:

HL(P )� =
∑

n

an(t)νn(P )ϕn(r; P,�)e−i�t . (14)

The nonlinear potential VNL(P ) can also be easily written
in terms of the mode coefficients using the basis expansion.
Equations of motion for the basis coefficients an(t) can then
be extracted using the orthogonality of the basis functions at a
given pump power, as defined in Eq. (9). Multiplying through
by ϕm(r; P,�) and integrating over the pump region P leads
to the following equation for an(t):

i
dan

dt
= [νn(P ) − �]an + sγR

∑
m

Nnm(t)am

+ g
∑
mrs

Anmrsamara
∗
s . (15)

The first line includes exclusively the effect of the reservoir.
Here, the first term comes simply from the linear problem, and
encapsulates the physics of reservoir-induced gain and mirror
loss, as well as repulsion due to reservoir excitons. Indeed,
this physics is manifest in the dependence of the eigenvalue
νn(P ) on pump power, as has been discussed earlier: a positive
or negative imaginary part indicates gain or loss respectively,
while the real part indicates frequency and evolves with pump
power due to the repulsion-induced blueshift.

The second term describes nonlinear condensate-reservoir
interactions, which are expressed in terms of dynamical
reservoir “matrix elements” Nnm(t):

Nnm(t) =
∫
P

dr ϕnñR(r,t)ϕm. (16)

Crucially, the reservoir matrix elements are also dynamical
unknowns. Thus the set of Eqs. (15) cannot alone be solved
for the basis coefficients; as one might expect, it is necessary
to obtain the governing dynamical equation for the nonlinear,
time-dependent part of the reservoir density, ñR(r,t), which
can then be used to obtain an equation for Nnm(t). This is the
subject of the next section.

Before moving on, we note that the only term on the
second line describes polariton-polariton interactions within
the condensate, ∝g. The mode overlap matrix Anmrs modulates
the strength of interactions between different modes; it has the
form

Anmrs =
∫
P

dr ϕnϕmϕrϕ
∗
s . (17)

The overlap matrix elements are generally complex owing to
the non-Hermitian nature of the pump modes.

C. Reservoir dynamics

Recall that reservoir dynamics are governed by Eq. (2),
reproduced here for clarity:

∂

∂t
nR(r,t) = Pf (r) − γRnR − RnR|�(r,t)|2. (18)

The reservoir-condensate coupling here is a density-density
term, clearly of a different form compared to the reservoir-
condensate coupling that appears in the gGPE, Eq. (1). Thus
simply projecting Eq. (18) in its present form onto the pump-
dependent basis does not yield a closed set of equations for the
unknowns {an(t),Nnm(t)}. Before presenting a workaround,
we consider the regime of fast reservoir relaxation, where
Eq. (18) can be explicitly solved, and this problem does not
arise.

1. Fast reservoir relaxation

When the reservoir relaxation rate γR is fast compared to
other time scales of condensate evolution, namely mirror-loss
γc [for details, see Appendix E], the reservoir density is “en-
slaved” to the condensate evolution, and as such its dynamics
may be adiabatically eliminated. We can set ṅR(r,t) = 0 in
Eq. (2), which then yields a closed-form expression for the
reservoir density in terms of the condensate density |�(r,t)|2:

nad
R = Pf (r)

γR + R|�(r,t)|2 . (19)

If we now perform a displacement of the reservoir density as
introduced in Eq. (11), the nonlinear, time-dependent part of
the reservoir density ñad

R (r,t) takes the form

ñad
R (r,t) = − R

γR

[
Pf (r)

γR + R|�(r,t)|2
]
|�(r,t)|2. (20)

This term represents the depletion of the static reservoir
with increase in the condensate density, as evidenced by its
negative-definite nature. By making use of the expansion of
�(r,t) in the pump-dependent basis, Eq. (10), in the above
and substituting the result into Eq. (16), the reservoir matrix
elements Nnm(t) can be expressed in terms of the basis
coefficients an(t). Therefore, in the regime of fast reservoir
relaxation where Eq. (20) is valid, the full condensate dynamics
are given entirely by the evolution equations for the basis
coefficients, Eqs. (15), with Nnm(t) also expressed in terms of
these coefficients.

However, the appearance of |�|2 nonlinearly in the denom-
inator of Eq. (20) means that spatial integrals need to be com-
puted at every time step, which has significant computational
overhead. Much more restrictively, adiabatic elimination is
valid only when γR � γc. To allow the simulation of arbitrary
dynamical regimes, we now develop an approach that is not
handicapped by this restriction.

2. Full reservoir dynamics

To capture the full dynamics of the reservoir, we rewrite
Eq. (18) for the reservoir density so as to simplify the
reservoir-condensate coupling term. To do so, we make use
of the continuity equation that governs combined reservoir-
condensate evolution; its derivation from Eqs. (1) and (2) is
included in Appendix C, with the final equation given by

∂

∂t
|�|2 + �∇ · �j = RnR|�|2 − γc|�|2, (21)

where �j is the polariton current:

�j = i

2m
(� �∇�∗ − c.c.). (22)
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Dependences on (r,t) have been suppressed for clarity. The
left-hand side of Eq. (21) has the terms we expect from
the continuity equation for a closed system, while the terms
on the right are modifications due to the non-Hermitian
nature of the incoherently pumped condensate: increase in the
condensate density over time is due to stimulated scattering
from the reservoir (∝R), while population loss is primarily
attributed to out-of-plane or mirror loss (∝γc). The integral
form of Eq. (21) in the linear regime has been shown to yield
important insights into the gain optimization principle that
determines the lowest threshold condensate mode [27].

More importantly for the task at hand, Eq. (21) can also
be viewed as a constraint on the evolution of the product
of reservoir-condensate densities. Therefore, it allows us to
eliminate the product RnR|�|2 in favor of terms that depend
only on the condensate density, and not nR . Upon this
substitution, and the displacement transformation of Eq. (11),
the dynamical equation for the nonlinear, time-dependent part
of the reservoir density, ñR(r,t), becomes

∂

∂t
ñR = −γRñR − ∂

∂t
|�|2 − γc|�|2 − �∇ · �j . (23)

The final step is to project Eq. (23) onto the pump basis;
we again expand the condensate wave function �(r,t) in the
pump-power dependent basis, multiply through by ϕnϕm and
integrate over the pump region P to obtain an equation for the
reservoir matrix elements Nnm(t) (details of this derivation are
included in Appendix D). The resulting equation for Nnm(t),
together with Eq. (15) for the mode coefficients, are

i
dan

dt
= [νn(P ) − �]an + sγR

∑
m

Nnm(t)am

+ g
∑
mrs

Anmrsamara
∗
s , (24a)

dNnm

dt
= −γRNnm −

∑
rs

Anmrs

(
i[νr (P ) − ν∗

s (P )] + d

dt

)

× (ara
∗
s ) − R

γR

P
∑
rs

Bnmrsara
∗
s . (24b)

Equation (24b) for the reservoir matrix elements may seem
complicated, but the physics it represents is simply twofold:
reservoir depletion via scattering from the reservoir into
the condensate, rewritten using the continuity equation, and
all other reservoir loss mechanisms, encapsulated via γR .
We have also introduced the pump overlap matrix Bnmrs =∫
P dr f (r)ϕnϕmϕrϕ

∗
s . These equations constitute the TCMT,

a modal description of the gGPE-reservoir equations, in our
non-Hermitian pump basis. The coupled nonlinear PDEs are
hence reduced to a set of nonlinear ODEs, with all the spatial
information included in the overlap matrices Anmrs and Bnmrs .
For a basis expansion featuring N modes, the TCMT has N

equations for the basis coefficients and N (N + 1)/2 equations
for the reservoir matrix elements, where we take advantage of
the fact that the reservoir matrix is symmetric under exchange
of its indices, Nnm = Nmn [see Eq. (16)].

The TCMT simulation procedure is straightforward: for
fixed system parameters {g,gR,R,γc,γR} and pump power

P , we first compute the N pump modes at that pump
power, as discussed in Sec. III A. This allows computation
of the spatial overlap matrices Anmrs and Bnmrs and the
basis eigenvalues {νn(P )}. Then, Eqs. (24a) and (24b) can be
easily simulated (once initial conditions are specified) for the
basis coefficients and reservoir matrix elements. Equation (10)
allows computation of the condensate wave function, and
hence related observables, from the simulation results.

IV. NUMERICAL TESTS

We now proceed to tests of the developed modal description
by comparing direct numerical simulations of the TCMT to
those from a full spatiotemporal integration of the nonlinear
gGPE and associated reservoir dynamics equation using a
standard split-step integrator (SSI). We restrict our analysis
to one-dimensional geometries, where simulation times for
the SSI are still feasible. However, even here, we find that the
TCMT easily outperforms the SSI in simulation speed.

For the SSI, a large spatial domain is used to avoid any
numerical artifacts due to the imposition of periodic boundary
conditions in the FFT-based algorithm. In contrast, the spatial
modes for the TCMT are computed only within the pumped
region, and only once at a given pump power. The spatial
resolution is kept equal for both methods. We also employ
Strang splitting for accurate time evolution with the SSI [36],
while the TCMT is based on an adaptive step-size solver which
is checked for stability by choosing small enough temporal step
sizes.

A. 1D uniform pump

As a first example, we consider the uniform pump configu-
ration that was introduced earlier [see Fig. 1(a)], compute the
LTMs and corresponding pump modes for the pump basis, and
simulate Eqs. (24a) and (24b) for the basis coefficients {an(t)}
and reservoir matrix elements {Nnm(t)}. Since dynamical
unknowns differ between the SSI and the TCMT, performing
an equivalent initialization procedure across both requires
some explanation. The SSI requires choosing an initial wave
function �(r,0), and initial reservoir density nR(r,0). To map
these to equivalent initial conditions for the TCMT, �(r,0) is
projected onto the basis of size N being used. Then, the initial
values of basis coefficients {an(0)} can be isolated using the
orthogonality of the basis modes. For the reservoir density, we
first displace the reservoir [see Eq. (11)] to obtain ñR(r,0), then
use Eq. (16) to compute the initial reservoir matrix elements
{Nnm(0)}. Defining � ≡ |�(r,t)|e−iφ(r,t), physically relevant
quantities namely the condensate density |�(r,t)|2, phase
φ(r,t), and the total polariton number ρ(t) = ∫

dr|�(r,t)|2,
can be easily obtained from the TCMT results using Eq. (10).

We begin by considering the case of fast reservoir re-
laxation, where γR is large compared to the mirror loss
rate γc; in particular, γR = 10γc = 10 meV. The repulsive
interactions are both kept on, with gR = 0.072 μm2 meV
and g = 0.04 μm2 meV. The amplification rate is fixed at
R = 0.1 μm2 meV, and m−1 = 0.59 μm2 meV. We follow
condensate dynamics as the pump power is increased beyond
the lowest linearized power threshold value, P L

1 , which—as
discussed earlier—is the threshold for condensation in this
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FIG. 3. (a) Plot of the total polariton number (integrated con-
densate intensity) as a function of time, under a uniform 1D pump
configuration using the TCMT (solid lines) and the SSI (dashed lines).
Here, the reservoir relaxation rate is fast compared to the mirror
loss, γR = 10γc, and the pump power P = 1.50P L

1 . (b) Plot of the
spatial condensate density distribution using the TCMT with N = 13
modes (solid black) and the SSI (dashed red). The orange shaded area
indicates the pumped region. (c) Plot of (sine of) the condensate phase
in space (horizontal axis) and scaled time (vertical axis), relative to
the phase φ(x = 0,t), for the TCMT (top panel) and SSI (bottom
panel).

case. Figure 3(a) shows results for P = 1.50P L
1 , well into the

nonlinear regime, for the total polariton number as a function
of time as computed using the TCMT (solid lines) and the
SSI (dashed line). Note the good agreement when a pump
basis of size N = 13 is used. At this pump power, including
additional pump modes does not change the simulation results.
Encouragingly, the correct qualitative behavior is reproduced
with as few as N = 6 pump modes, and the inclusion of
additional modes leads to improved agreement with the SSI.

The steady-state condensate density distribution is plotted
in Fig. 3(b) for the TCMT (solid curve, N = 13 pump modes)
and the SSI (dashed curve). Again, very good agreement is
seen between the two methods. The polariton distribution
is significantly more delocalized than the lowest LTM for
this pump configuration into which condensation first occurs,
shown in Fig. 2(c). Here the modal description we have
developed provides useful insight: mixing with higher-order
modes due to interactions leads to the modified condensate
density distribution. Such a description escapes the standard
gGPE. Finally, the (sine of the) condensate phase is presented
in Fig. 3(c) in both space and time, for the TMCT (top panel)
and SSI (bottom panel). The phase evolution and emergent
coherence agree very well across both methods. The very
slight discrepancy seen in initial dynamics is not definitive:
we find that here the SSI results themselves can vary when
spatial grid size is changed.

The convergence of simulation results as the number of
pump modes increases is a direct consequence of how these
modes are defined. To clarify this, we draw attention to the
plot in Fig. 4 of basis eigenvalue trajectories νn(P ) as a

-0.2
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FIG. 4. Trajectories of non-Hermitian basis mode eigenvalues
as a function of power for the case of a 1D uniform pump, with
pump powers P ∈ [1,2]P L

1 , and γR = 10γc. The difference from the
trajectories shown in Fig. 2 is that here the outgoing frequency �(P )
is nonlinearly determined at every pump power via self-consistent
solution of the TCMT; the evolution of �(P ) is shown in the inset.
Red squares indicate the frequencies {ωL

n} of the LTMs.

function of pump power, for pump modes with n ∈ [1,10].
The pump-dependent outgoing frequency �(P ) is shown in the
inset; its evolution is determined by computing the frequency
spectra of mode coefficients F{an(t)} (where F{·} is the
Fourier transform), which in this case yields a single-frequency
condensate. As the pump power increases, the eigenvalues flow
across the complex plane as before; the only difference here
is the evolution of �(P ) (shown in the inset), which modifies
the flow from that shown in Fig. 2(a), where � is constant.

For the specific pump power P = 1.50P L
1 corresponding

to Fig. 3, the squares and triangles indicate respectively
the eigenvalues with positive or negative imaginary parts.
Note that basis modes for larger n have increasingly more
negative imaginary parts. This is in fact explicitly due to
the correspondence of the nth pump mode with the nth
LTM: LTMs with larger n have higher power thresholds,
which is indicative of the comparatively lower gain they
experience compared to LTMs with lower n. This amount
of gain manifests in the imaginary parts of eigenvalues of
the pump modes that correspond to these LTMs. Roughly
speaking, this gainlike term controls the importance of the
pump modes as it explicitly appears in Eq. (24a), although
since the simulated problem is no longer linear this control
is not absolute. Including only pump modes with eigenvalues
above the real line—the first six modes here—already shows
reasonable agreement with the full solution. Generally, we find
that the inclusion of pump modes corresponding to the lowest
few LTMs is already sufficient for a qualitative understanding
of dynamics; the addition of more modes simply refines the
TCMT solution without incurring significant changes. As
pump power increases and imaginary parts of the pump mode
eigenvalues become less negative, as is clear from Fig. 4, more
and more pump modes need to be included in the expansion.

Next, we turn to the opposite dynamical regime, where
reservoir relaxation is slow compared to the mirror loss; in
particular, we take γR = 0.1γc. In this regime, dynamical
instabilities and non-steady-state behavior is known to be
prevalent [37], as manifest in the nonstationary polariton
number ρ(t) plotted in Fig. 5(a) for the TCMT (top panel) and
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FIG. 5. (a) Plot of polariton number ρ(t) using the TCMT with
N = 13 basis modes (top) and SSI (bottom), under a uniform pump
configuration. Here, the reservoir relaxation rate is slow, γR = 0.1γc,
and P = 1.30P L

1 . (b) Zoomed-in version of (a) for γct ∈ [0,500],
with TCMT results in solid blue and SSI results in dashed red. (c)
Plot of the frequency spectra of total polariton number F{ρ(t)}, using
the TCMT (solid blue), and the SSI (dashed red). (d) Plot of F{ρ(t)}
using only N = 7 modes for the TCMT (solid blue), with the SSI
(dashed red) for comparison. (e) Plot of the polariton number ρ(t)
and its spectrum F{ρ(t)} using the “adiabatic” TCMT (see text),
where deviations from the results of (b), (c) are clearly visible.

SSI (bottom panel) at pump power P = 1.30P L
1 . The initial

dynamics are well captured, as is clear from the zoomed-in
plot for γct ∈ [0,500] in Fig. 5(b). Comparisons of long time
dynamics are simplest in the frequency domain; we plot the
normalized frequency spectra of polariton number, F{ρ(t)} in
log scale in Fig. 5(c) for the TCMT (blue) and the SSI (red).
The spectra agree very well, up to slight discrepancies. For
completeness, plots comparing condensate density and phase
evolution in space and time for both methods are provided in
Appendix F, Fig. 9.

When only N = 7 pump modes are used, the resulting
normalized frequency spectrum F{ρ(t)} is shown in Fig. 5(d);
this already agrees reasonably with the full result. Finally,
in this regime where γR < γc, the often-used technique
of adiabatically eliminating the reservoir density evolution
should no longer be valid; our approach allows us to check this
approximation. Using the “adiabatic” TCMT, where reservoir
matrix elements Nnm(t) are determined by ñad

R given by
Eq. (20), we compute and plot the polariton number ρ(t)
and its spectrum F{ρ(t)} in Fig. 5(e). Sure enough, we see
clear discrepancies between these results and the analogous
Figs. 5(b) and 5(c), where full reservoir dynamics are included.
Therefore, in this regime the nontrivial dynamics of the
reservoir are crucial in determining the correct condensate
behavior; adiabatic elimination of the reservoir density fails
to capture these dynamics, whereas our full treatment of the
reservoir dynamics’ equation via Eq. (24b) does.

Uniform incoherent pump
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FIG. 6. (a) Top: geometry of the trapping potential and pump
profile under consideration.Vc is the confining potential and �V is the
detuning of the two traps. Bottom: two lowest threshold modes for the
geometry in the top panel. (b) Flow of eigenvalues with pump power
in the complex-ν plane for the two pump modes corresponding to the
LTMs shown in (a). (c) Evolution of the real part of basis eigenvalues
as a function of pump power, showing the reservoir-induced blueshift
in the linear regime.

Additional simulation results under uniform pumping for
varying polariton-polariton interaction strengths g are pro-
vided in Appendix F, together with a comparison of simulation
times showing the speedup in using the TCMT relative to the
SSI.

B. Coupled polariton traps under incoherent pumping

The TCMT can also be used to study dynamics of
incoherently pumped polaritons trapped in nontrivial potential
landscapes. We will consider this situation as a second numer-
ical example, looking at the case of polariton condensation in
coupled polariton traps that can be generated by fabricating
a trapping potential for their photonic component [38–42].
Such traps can be generated by unintentional disorder as
well [29]. The system is pumped incoherently with a wide
beam spot; the trapping potential and pump geometry are
shown in Fig. 6(a). For concreteness, we take a beam spot of
10 μm (in comparison to trap widths of 2 μm), with the two
traps being separated by 1 μm. The strength of the trapping
potential is Vc. We consider the case where the two traps have
slightly different depths, with the difference in depth being
�V . We emphasize that arbitrary potential landscapes and
pump geometries may be simulated.

For a given spatial configuration of the system, the LTMs are
computed as discussed in Sec. II B, but now with the addition
of the trapping potential Vtrap(r) in Eq. (3) to account for
the confining geometry. Then, the new linear non-Hermitian
generator for this system is defined via

HL(P )� ≡
[
− ∇2

2m
+ Vtrap(r) + sPf (r) − i

2
γc

]
�. (25)

Here, the solution outside ∂P is no longer an outgoing
polariton flux, but is rather confined by the trapping potential.
The boundary condition is then of the form introduced
in Eq. (7), but is now characterized by the wave vector
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S. KHAN AND H. E. TÜRECI PHYSICAL REVIEW A 94, 053856 (2016)

q2(νn)/2m = νn + i
γc

2 − Vc, where Vc is the strength of the
confining potential beyond ∂P [see Fig. 6(a)].

The two LTMs with lowest power thresholds obtained for
this system are shown in the lower panel in Fig. 6(a), in solid
red and dashed blue; as expected, each mode is localized
mostly in one trap. However, the coupling between the traps
leads to a renormalization such that each mode has some
density in the neighboring trap. The mode confined mostly
in the deeper trap (right, red) has lower frequency ωL

1 than
that confined mostly in the shallower trap (left, blue) ωL

2 .
The two LTMs have almost equal linear threshold powers
P L

1 ≈ P L
2 ≡ P L.

We find numerically that for low powers, a two-mode
TCMT provides a complete description of condensate dynam-
ics; including additional modes in the TCMT does not change
the simulation results. As such, we will focus on a two-mode
pump basis from here on, with pump modes that are connected
to the n = 1,2 LTMs, as described earlier. The trajectories of
the eigenvalues for these basis modes as a function of pump
power are plotted in the ω-γ plane in Fig. 6(b). Again, these
eigenvalues encapsulate the physics of the linear problem:
the flow towards increasing frequencies is due to the pump-
induced blueshift, and the increasing imaginary part signifies
the increasing gain experienced by each mode when the pump
power grows. Note that the homogeneous pump spot ensures
equal pump-induced blueshifts for polaritons throughout the
potential landscape, and as such the two modes experience
identical blueshifts; this is clear from a plot of the real part of
the eigenvalues with pump power in Fig. 6(c).

This system features interesting dynamical regimes that
can be explored via the TCMT; for demonstrative purposes
we will focus on a specific example, which is the transition
from a multifrequency condensate to a single-frequency, syn-
chronized condensate as the pump power is increased. In our
simulations, both reservoir-polariton and polariton-polariton
repulsive interactions are active, gR = 0.2 μm2 meV, g =
0.0275 μm2 meV, and we consider the regime of fast reservoir
relaxation, γR = 10γc = 10 meV. The amplification rate is
again R = 0.1 μm2 meV and m−1 = 0.59 μm2 meV.

The phenomenon of interest is clearest in frequency space;
Fig. 7(a) shows the frequency spectra of mode coefficients
F{aj } as a function of pump power above P L, where F{·}
denotes the Fourier transform. Pump power increases along
the y axis. As pump power grows, the modes are initially
distinct in frequency space, while being blueshifted due to
increasing polariton-polariton repulsion. The modal frequency
difference starts out being equal to the bare frequency detuning
of the pump modes �ω = ωL

2 − ωL
1 , but is modified as

pump power increases, with additional frequency components
being generated. Beyond a certain threshold pump power, a
transition to a synchronized regime is observed, where the
modal detuning is overcome and both modes lock to a single
frequency state.

To compare these simulation results with predictions
from the SSI, it is simplest to compare observables. In the
multifrequency regime, we compute the total polariton number
ρ(t) in each trap, which is simply the condensate density
integrated over each trap’s extent. Note that this is not the same
as the polariton number in each mode, since neither basis mode
is entirely confined to just one trap. The results are shown for
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FIG. 7. (a) Frequency spectra of mode coefficients F{aj } as a
function of increasing pump power along the y axis; each trace
is labeled with the corresponding pump power. (b) Steady-state
condensate density distribution as computed using the TCMT (solid
black) and the SSI (dashed red), at P = 1.12P L, in the synchronized
regime. The gray shaded regions indicate the locations of the polariton
traps. (c) Polariton numbers in the right trap (solid red) and left trap
(dashed blue) as computed using the TCMT (top panel) and the SSI
(bottom panel) at P = 1.06P L, in the desynchronized regime.

P = 1.06P L in Fig. 7(c), where the polariton number in the
right trap is plotted in solid red, and that in the left trap is
shown in dashed blue. The top panel shows the TCMT result;
in this regime we see that the coupling leads to an exchange
of polariton densities between the two traps. The bottom panel
in the same plot shows the SSI results; the agreement is quite
clearly seen. As the pump power is increased and dynamics
enter the synchronized regime, a time-independent steady state
is reached. For a pump power P = 1.12P L in this regime, we
plot the steady-state condensate density as obtained using the
TCMT (solid black) and the SSI (dashed red) on the same plot
in Fig. 7(b). Again, very good agreement is seen between the
results from the two methods.

A number of questions particular to this system remain: for
example, what is the mechanism for the emergence of synchro-
nization, and how do the strengths of various interactions affect
this behavior, to name a few. We address the rich dynamical
features observed in this system in a separate publication [43].
Instead, with the discussion in this section we can reasonably
conclude that the TCMT is capable of accurately capturing
these dynamical regimes in incoherently pumped polariton
condensates, even in the presence of trapping potentials.

C. Trapping vs nonlinear defocusing dynamics

Our previous example studied condensate dynamics in
polariton traps, where the trapping potential defines the
condensate modes that interact and synchronize. However, for
strong enough pumping, one expects an interesting regime
to appear: as the condensate density grows, the repulsive,
“defocusing” potential due to nonlinear polariton-polariton
interactions within the condensate (g|�|2) can be of the order
of the linear trapping potential. In this regime, the localizing
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FIG. 8. (a) Top: system comprising a wide pump spot over a
single polariton trap. Plot of the steady-state condensate density |�|2
computed using the TCMT (solid black) and SSI (dashed red). The
pump power is just above the condensation threshold, P = 1.01P L

1 .
In this regime, v = 0.28 [see Eq. (26)]. (b) Steady-state condensate
density for P = 1.13P L

1 , using the TCMT (solid black) and SSI
(dashed red). Here, v ≈ 1.2, and a delocalized condensate density
distribution is seen. Insets in both figures show the spectral weight
of pump modes used in the TCMT. (c) Spatial density profiles of
the LTMs {ϕL

n }, for n = 1,3,5,7 (from left to right). Vertical dashed
lines in all figures mark the extent of the polariton trap, while orange
shaded area shows the pump region.

nature of the trap competes with this defocusing potential. We
conclude our numerical tests of the TCMT by analyzing this
regime.

Consider the system configuration shown in the top panel
of Fig. 8(a), where a wide pump spot is incident over a
single polariton trap. We employ a TCMT with N = 10 pump
modes; for a selection of these pump modes (n = 1,3,5,7),
the corresponding LTMs {ϕL

n } are shown in Fig. 8(c). Note
that the LTM with lowest threshold, ϕL

1 , is strongly confined
by the trap. However, LTMs for n > 1 are more delocalized,
with a majority of the mode density being outside the trap.

With growing pump power, the effect of the nonlinear
potential is expected to increase; it is therefore useful to
quantify the importance of the nonlinear potential relative to
the trapping potential. To do so, we introduce the quantity

v = 〈g|�|2〉
〈V(r)〉 , 〈G(r)〉 =

∫
dr G(r)|�|2. (26)

We use parameters employed for Fig. 3, except with a stronger
polariton-polariton interaction strength, g = 0.05 μm2 meV.
For a pump power just above threshold, P = 1.01P L

1 , a single
frequency (�) condensate is obtained in the long time limit,
with a density profile shown in Fig. 8(a). Here, we find
v = 0.28 for the steady-state condensate; this suggests a strong
effect of the trapping potential in defining the condensate
profile, which is clearly seen. The TCMT’s decomposition
into pump modes offers further insight: the spectral weight
of the coefficients {an[�]} corresponding to these modes is
shown in the inset, normalized by a1[�]. Note that the only
pump mode with nonzero spectral weight is that corresponding
to ϕL

1 , the trapped mode.

However, as the pump power is increased and the con-
densate density grows, so does the potential due to nonlinear
interactions. For P = 1.13P L, the condensate wave function
is plotted in Fig. 8(b); here, v = 1.24, and the effects of the
defocusing potential are clear. The plot of spectral weights
(inset) indicates that now the more delocalized n > 1 pump
modes also acquire weight in determining the condensate
distribution observed. Note the excellent agreement with the
SSI in both cases: this highlights the ability of the TCMT
to capture condensate profiles even in the strongly nonlinear
regime, attained dynamically with increasing pump power,
using the same set of pump modes.

D. Significance of the TCMT

The excellent agreement of TCMT results with those from
a split-step integration of the gGPE in different dynamical
regimes provides strong evidence for the general validity
of the modal description we have derived in this paper.
As was seen for dynamics under a uniform pump spot,
regimes with widely varying condensate dynamics (Fig. 3 vs
Fig. 5) can be described using the same set of pump modes,
highlighting the power of this modal representation. The
judicious choice of basis is key: the correspondence of pump
modes to LTMs lends a hierarchy of importance to the former,
which manifests via the pump mode eigenvalues to control
the dynamical “gain” experienced by these pump modes. An
expansion in the pump basis then corresponds physically to
an expansion in optimal gain-experiencing modes for a given
pumping configuration, and is well-controlled with respect to
the inclusion of additional modes. The TCMT can also be
employed to great effect in the presence of trapping potentials,
and interesting dynamical transitions can be captured. Thus
the modal theory has promise in providing both numerical
and analytic insight into the physics of incoherently pumped
polariton condensates, beyond what is accessible directly via
the numerical integration of the gGPE.

The other major advantage of the TCMT is the faster simu-
lation speed. A comparison of simulation times is included in
Appendix F; generally, the TCMT is between one and two
orders of magnitude faster than the SSI in simulating the
gGPE, in even the simplest geometries. By requiring spatial
modes to be computed only once at a given pump power, the
TCMT gains a significant computational advantage over the
SSI, wherein the spatial wave function is computed at every
time step. For higher dimensions, the disparity only grows:
SSI computation time for a d-dimensional geometry grows
exponentially with d—specifically, Nd

g log2(Ng), where Ng is
the number of grid points in every spatial coordinate (assumed
equal) [44]. The TCMT does not suffer from this scaling.
Furthermore, the TCMT is better equipped for the computation
of any quantities that require spatial integration, for example,
the total polariton number ρ(t). While the SSI requires a spatial
integral at every time step for these calculations, the TCMT’s
expansion in spatial modes reduces spatial integration to a
simple matrix multiplication with time-independent matrix
elements, which can be significantly faster (see Appendix F).

The ability to formulate the TCMT for arbitrary pumping
profiles and trapping geometries in one and two dimen-
sions, together with the computational advantages the modal
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description provides, make the TCMT very versatile. For ex-
ample, the study of dynamics in two-dimensional condensates
is hindered by the computational expense of spatiotemporal
integration of the gGPE. In Ref. [27], we employed the TCMT
to efficiently analyze pump-dependent dynamics of polaritons
confined entirely by a two-dimensional annular pump. In
addition, our study of condensation in coupled traps here
and further in Ref. [43] lays the groundwork for application
of the TCMT to condensates in lattice geometries that have
garnered much interest recently [26]. Overall, our exploration
of spatiotemporal dynamics in varying setups provides a firm
foundation for the TCMT to be applied to a diverse range of
polariton systems.

V. CONCLUSIONS

In this paper, we have introduced a modal description
of polariton condensation under incoherent pumping, based
on modes of the generator of linear dynamics. These non-
Hermitian modes incorporate the reservoir-induced repulsive
potential, and the pumping and losses inherent to polariton
condensates. We have also developed a pump-dependent basis
of non-Hermitian pump modes that allows an expansion of the
condensate wave function with time-dependent basis coeffi-
cients. A temporal coupled-mode theory using this expansion
provides dynamical equations for the basis coefficients and
captures condensates and reservoir dynamics in the presence
of all nonlinear interactions. The efficiency of our formulation
was shown by successful comparisons with a full split-step
integration of the generalized Gross-Pitaevskii equation, for
pump-confined polariton condensates and condensation in
trapping potentials. The diverse dynamical regimes we explore
and the resulting agreement place the modal description on
solid ground for application to other polariton condensate
systems, in particular polariton lattices and two-dimensional
condensates where split-step integration of the generalized
Gross-Pitaevskii equation is unwieldy and less insightful.
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APPENDIX A: LINEARIZED GPE

To simplify the equations describing condensate dynamics
below the threshold of condensation, we will essentially
linearize the dynamics in the condensate density |�|2, which
is vanishing below the threshold power of condensation,
representing the uncondensed state. Under this linearization,
the equation describing reservoir dynamics [cf. Eq. (2)] can be
simplified to

∂

∂t
nR(r,t) = Pf (r) − γRnR. (A1)

Linearization of this equation in |�|2 amounts to neglecting
the effects of reservoir depletion before condensation has
occurred, as must be the case. We now further consider the case
where below the condensation threshold, the reservoir density

has reached a steady state. In this case, the time derivative
in the above equation is neglected, and we find the linear,
time-independent part of the reservoir density, nL

R(r):

nL
R(r) = Pf (r)

γR

. (A2)

This is precisely the part of the reservoir density that we
extract explicitly in Eq. (11). We can similarly linearize the
full, nonlinear GPE, Eq. (1):

i
∂

∂t
�(r,t) =

[
− ∇2

2m
+ gRnL

R(r) + i

2

[
RnL

R(r) − γc

]]
�.

(A3)

Note that we have dropped the nonlinear polariton-polariton
interaction ∝g, and replaced the reservoir density by its linear,
time-independent (undepleted) form. Using the explicit form
of nL

R(r) from Eq. (A2) in the above leads to Eq. (3).

APPENDIX B: PRACTICAL DETERMINATION OF
LTMs AND BASIS MODES

Our approach to determining the LTMs focuses on finding
modes with eigenvalues very close to the real axis, since
these will be the threshold modes. We consider finely spaced
windows of outgoing frequency �, and solve for a small
number of eigenvalues νn at every pump power for each of
these windows. Only eigenvalues for which the real part, ωn, is
closer to the outgoing frequency for their window, �n, and that
are close to the real line are kept; the others are discarded. Then,
the pump power is increased, and the procedure is repeated.
The newly computed eigenvalues are compared against the
previous eigenvalues to see if these eigenvalues have crossed
the real line, by checking the change in sign of their imaginary
part. By choosing a small enough pump increment and fine
outgoing frequency windows, the eigenmodes that cross the
real line after a small power increment can be isolated
accurately.

Once the LTMs are computed for a given system config-
uration, obtaining the pump modes corresponding to those
LTMs is a relatively straightforward task. First, we note that
the P and � dependence of the pump modes themselves
(not their eigenvalues) is relatively weak, certainly for the
cases we consider in this paper. Thus, even for values of P

and � different from the linear threshold values P L
n and ωL

n

respectively, the nth pump mode retains its relationship to the
nth LTM. This relationship is determined quantitatively by the
overlap integral defined as

On(P,�) =
∫
P

dr ϕL
n (r; Pn,ωn)ϕn(r; P,�). (B1)

When P = P L
n , � = ωL

n , the nth pump mode is identical to the
nth LTM, and therefore On = 1. For all other values of (P,�),
the nth basis mode minimizes |On(P,�) − 1|. Therefore, once
the nth LTM is computed, computing the corresponding pump
mode is the simple matter of finding the mode that minimizes
the overlap integral On for that LTM, at a given (P,�) pair.
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APPENDIX C: CONTINUITY EQUATION

For the system of incoherently pumped exciton-polaritons,
we can derive a continuity equation describing the evolution
of the condensate density as a result of the gain and loss
experienced by the condensate. In particular, we look to
describe the dynamics of |�|2, where � = �(r,t) in what
follows. Recall that

∂

∂t
|�|2 = �∗ ∂

∂t
� + c.c. (C1)

The time evolution of � is given by the generalized Gross-
Pitaevskii equation, which allows us to expand the above:

∂

∂t
|�|2 = −i

{[
−�∗∇2�

2m

]
+

[
i

2
(RnR − γc)

]
|�|2

+ [gRnR + g|�|2]|�|2
}

+ c.c. (C2)

We observe that the second line has a purely imaginary
contribution (due to the imaginary unit up front). The right-
hand side of the above equation should be purely real, being
the time derivative of a real quantity, and so we are left with
the simple result:

∂

∂t
|�|2 = − i

2m
[−�∗∇2� + �∇2�∗] + (RnR − γc)|�|2.

(C3)

If we now define the polariton current �j as in Eq. (22) in the
main text, the above may be rewritten as

∂

∂t
|�|2 = −�∇ · �j + RnR|�|2 − γc|�|2, (C4)

which can be rearranged to obtain the continuity equation as
expressed in Eq. (21) of the main text.

APPENDIX D: DETAILS OF DERIVATION OF
COUPLED-MODE EQUATIONS

In this appendix section, we present some additional details
of derivations of the coupled-mode equations, specifically for
the reservoir dynamics’ equation. The first step is a simpli-
fication of Eq. (18), for which we rearrange the continuity
equation, Eq. (21):

RnR|�|2 = ∂

∂t
|�|2 + γc|�|2 + �∇ · �j . (D1)

Here, the absence of the reservoir density nR on the right-hand
side allows us to decouple the reservoir-condensate coupling
term in Eq. (18). The effect of the reservoir is encapsulated in
the evolution of the condensate wave function via the nonlinear
GPE, and is therefore fully accounted for here. With this
expression, Eq. (18) simplifies to

∂

∂t
nR = Pf (r) − γRnR − ∂

∂t
|�|2 − γc|�|2 − �∇ · �j . (D2)

This form affords another advantage: we can now choose to
displace the reservoir density as in Eq. (11), finally finding
Eq. (23) of the main text. Applying this transformation to
Eq. (18) would introduce additional terms ∝|�|2 due to the

complicated reservoir-condensate coupling term; this problem
does not afflict Eq. (D2).

In simplifying the final form of reservoir dynamics’
equation, Eq. (23), we first note that it is possible to rewrite
the divergence of the polariton current as

�∇ · �j = RPf (r)

γR

|�|2 + i[�∗HL(P )� − c.c.] − γc|�|2.
(D3)

This is most easily verified by substituting the full form of
HL(P ) from Eq. (3) into the above expression. We emphasise
here that although written in terms of the linear generator
HL(P ), the condensate wave function above is the solution to
the full nonlinear problem; we have simply rewritten ∇2 in
terms of HL(P ).

After substituting Eq. (D3) into Eq. (23), we have

∂

∂t
ñR = −γRñR − ∂

∂t
|�|2 − R

γR

Pf (r)|�|2

− i[�∗HL(P )� − c.c.]. (D4)

Our aim is to isolate equations of motion for the reservoir
matrix elements Nnm(t); to do so, we multiply the above
equation by the product of basis functions ϕnϕm, and integrate
over the pump region P . First, we apply this procedure to the
third and fourth terms in the first line of Eq. (D4) separately
(the first two terms are trivial):∫

P
dr

∂

∂t
|�|2ϕnϕm =

∑
rs

(∫
P

dr ϕnϕmϕrϕ
∗
s

)
d

dt
(ara

∗
s )

=
∑
rs

Anmrs

d

dt
(ara

∗
s ),

∫
P

dr f (r)|�|2ϕnϕm =
∑
rs

(∫
P

dr f (r)ϕnϕmϕrϕ
∗
s

)
ara

∗
s

≡
∑
rs

Bnmrsara
∗
s . (D5)

In the last two lines, the term in brackets is used to define the
pump-mode overlap matrix Bnmrs . The only remaining term in
Eq. (D4) is that involving HL(P ), in the second line. Using the
expansion of � and the action of HL(P ) on its eigenmodes as
defined in Eq. (6), we have∫

P
dr ϕnϕm�∗HL(P )�

=
∑
rs

(∫
P

dr ϕnϕmϕ∗
s HL(P )ϕr

)
ara

∗
s

=
∑
rs

(∫
P

dr ϕnϕmϕrϕ
∗
s

)
νr (P )ara

∗
s

=
∑
rs

Anmrsνr (P )ara
∗
s . (D6)

The term �H∗
L(P )�∗ can be treated in the same way.

Therefore, all terms from Eq. (D4) have been expressed in
terms of basis coefficients and their spatial dependence has
been integrated out. Consolidating these expressions leads to
Eq. (24b).
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APPENDIX E: ADIABATIC ELIMINATION OF
RESERVOIR DENSITY

In the main text, we adiabatically eliminate the reservoir
density for some calculations. For completeness, we discuss
the dynamical regime where this technique is valid. For this
to be the case, we require the adiabatic elimination to hold
self-consistently, such that ṅad

R = 0. Hence we consider the
adiabatically eliminated value of nad

R [see Eq. (19) of the main
text] and compute its time derivative:

∂

∂t
nad

R = Pf (r)

γR

[
1 + R

γR

|�|2
]−2{

− R

γR

∂

∂t
|�|2

}

=
(

γc

γR

)[
− Pf (r)

γcγR/R

][
1 + R

γR

|�|2
]−2

∂

∂t
|�|2. (E1)

If all other parameters are kept constant, then having γc/γR �
1 suppresses the right-hand side and therefore the time
derivative of nad

R is small. This is the fast reservoir relaxation
regime where the reservoir density may be adiabatically
eliminated. Here, the reservoir density is not time independent,
rather its time dependence is determined entirely by that of the
condensate density |�(r,t)|2.

APPENDIX F: ADDITIONAL SIMULATION RESULTS

This appendix section includes some additional numerical
results to supplement discussions from the main text. First,
we provide additional simulation results in the regime of slow
reservoir relaxation studied in Fig. 5 of the main text, where
γR = 0.1γc. Figure 9(a) compares the condensate density as a
function of space and time for the TCMT against the SSI, for
the 1D uniform pump configuration. All other parameters are
the same as in Fig. 5. The result is shown for N = 13 pump
modes in the TCMT. Figure 9(b) includes plots of the (sine
of the) condensate phase in space and time. We see that the
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FIG. 9. (a) Plot of the condensate intensity |�|2 as a function
of space (x axis) time (y axis), under a uniform 1D pump config-
uration using the TCMT (top panel), and the SSI (bottom panel),
corresponding to Fig. 5. The reservoir relaxation rate is γR = 0.1γc

and P = 1.30P L
1 . (b) Plot of the normalized phase using the TCMT

(top) and the SSI (bottom).
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FIG. 10. (a) Plot of ρ(t) as a function of time, under a uniform 1D
pump configuration using the TCMT (solid lines) and the SSI (dashed
lines). Here, γR = 10γc, P = 1.30P L

1 , gR = 0.072 μm2 meV, and
g = 0.1 μm2 meV. (b) Plot of steady-state |�|2 using the TCMT with
N = 15 modes (solid black) and the SSI (dashed red). The orange
shaded area indicates the pumped region. (c) Plot of (sine of the)
condensate phase in space (horizontal axis) and scaled time (vertical
axis), relative to the phase φ(x = 0,t), for the TCMT (top panel) and
SSI (bottom panel).

complicated time dynamics in this regime are well captured
by the TCMT.

Next, we provide results comparing the strongly nonlinear
regime, g = 0.1 μm2 meV relative to gR = 0.072 μm2 meV
in Fig. 10, to the weakly nonlinear regime, g = 0.0072 μm2

meV, in Fig. 11. We plot the the polariton number ρ(t),
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FIG. 11. (a) Plot of ρ(t) as a function of time, under a uniform 1D
pump configuration using the TCMT (solid lines) and the SSI (dashed
lines). Here, γR = 10γc, P = 1.30P L

1 , gR = 0.072 μm2 meV, and
g = 0.0072 μm2 meV. (b) Plot of steady-state |�|2 using the TCMT
with N = 5 modes (solid black) and the SSI (dashed red). The orange
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condensate phase in space (horizontal axis) and scaled time (vertical
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FIG. 12. Simulation time comparison for the simulations in-
cluded in Fig. 3, for the TCMT with mode numbers N ∈ {6,10,13},
and the SSI. For N = 6, the TCMT is more than two orders of
magnitude faster than the SSI.

the steady-state condensate density |�|2, and (sine of the)
condensate phase φ(x,t), all in the fast reservoir relaxation
regime, γR = 10γc. The excellent agreement between TCMT
and SSI is clear. Also, as expected, for more strongly nonlinear
regimes, the final wave function can be more strongly modified
in comparison to the lowest threshold mode; this typically
requires the incorporation of more modes in the TCMT basis.
For the strongly nonlinear regime, we use N = 15 modes,
while for the weakly nonlinear regime, as few as N = 5 modes
suffice.

To conclude, we present a comparison of simulation times
for the TCMT and the SSI in Fig. 12, for the 1D uniform
pump case presented in the main text, in the regime of fast

reservoir relaxation. The TCMT simulation times grow with
the number of pump modes N being included. However, we
find that for the simulations we have considered, the TCMT
is still at least an order of magnitude faster than the SSI, even
for the very simple 1D uniform pump geometry. We find that
when more complicated pump geometries are simulated, or
in the presence of nontrivial trapping potentials, the SSI can
be much more inefficient at computing dynamics, whereas a
few-mode TCMT may be much faster and significantly more
useful.

Finally, we explain why the TCMT is much faster for the
computation of spatially integrated quantities, such as the total
polariton number ρ(t). Consider an expansion of � in a pump
basis of size N . Then, ρ(t) in a region R may be written
as

ρ(t) =
∫
R

dr|�|2 =
∑
nm

∫
R

dr ana
∗
mϕnϕ

∗
m

=
∑
nm

an

[∫
R

dr ϕnϕ
∗
m

]
︸ ︷︷ ︸

Cnm

a∗
m. (F1)

As written, the above is simply a prescription for matrix
multiplication; we may write

ρ(t)= (a1 a2 . . . aN )

⎛
⎜⎜⎝

C11 C12 . . . C1N

C21 C22 . . . C2N

...
CN1 CN2 . . . CNN

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

a∗
1

a∗
2
...

a∗
N

⎞
⎟⎟⎟⎠.

(F2)

The matrix elements Cnm are all time-independent complex
numbers which are computed only once at a given pump
power.
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