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By placing an atom into a cavity, the electromagnetic mode structure of the cavity is modified. In cavity QED,
one manifestation of this phenomenon is the appearance of a gauge-dependent diamagnetic term, known as the
A? contribution. Although in atomic cavity QED, the resulting modification in the eigenmodes is negligible,
in recent superconducting circuit realizations, such corrections can be observable and may have qualitative
implications. We revisit the canonical quantization procedure of a circuit-QED system consisting of a single
superconducting transmon qubit coupled to a multimode superconducting microwave resonator. A complete
derivation of the quantum Hamiltonian of an open circuit-QED system consisting of a transmon qubit coupled

to a leaky transmission line cavity is presented. We introduce a complete set of modes that properly conserves
the current in the entire structure and present a sum rule for the dipole transition matrix elements of a multilevel
transmon qubit coupled to a multimode cavity. Finally, an effective multimode Rabi model is derived with

coefficients that are given in terms of circuit parameters.
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I. INTRODUCTION

In single-mode realization of cavity QED (CQED), a
single atom coupled to a small high-Q electromagnetic
resonator can be well described by a model wherein the
matter is described by a single atomic transition, and its
coupling to one of the modes of the resonator can saturate
this transition before other modes are populated [1]. A
plethora of fundamental physical phenomena and their recent
applications in quantum information science has been explored
and vigorously pursued with a superconducting circuit-based
realization of this setup [2—7]. In such systems, the existence
of the atom leads to a modification in the cavity modal
structure due to Rayleigh-like scattering. Such corrections
are unobservably small in atomic CQED unless a special
cavity structure is chosen. In recent realizations of circuit
quantum electrodynamics (cQED) however, such corrections
may have observable consequences which we discuss in this
article.

A better known manifestation of the aforementioned scat-
tering corrections is the so-called A? term in single-mode
CQED. There has been a lively debate in recent years [8—13]
about the impact of this term on synthetic realizations of
the single-mode superradiant phase transition [14—16] when
instead of one, N identical noninteracting quantum dipoles
are coupled with an identical strength to a single cavity mode.
This particular instability of the electromagnetic vacuum
has originally been discussed [14-16] within the context
of the single-mode version of the Dicke model [17] where
the A% term was not included. Subsequent work shortly
thereafter [18-20] pointed out that the A? term rules out
such a transition. Recent theoretical work on superconducting
realizations of the Dicke model [8] has challenged the validity
of such “no-go” theorems [20]. Leaving this contentious
matter aside [9,21], we note here that the A? term is
a gauge-dependent object, and specifically appears in the
Coulomb gauge description of the single-mode atomic CQED.
However, the scattering corrections due to the existence

2469-9926/2016/93(1)/012120(19)

012120-1

of an atom in a cavity are physical and measurable, and
hence not dependent on the choice of gauge. In fact, recent
realizations [22] of the multimode strong-coupling regime in a
very long coplanar waveguide cavity, as well as cQED systems
in the ultrastrong-coupling regime [23,24], provide settings
where such corrections may be observable, as we discuss
below.

By fabricating a charge qubit close to a transmission
line resonator, the resonator’s capacitance per unit length is
locally altered. This impurity scattering term is typically ne-
glected [25-28] in the derivation of the quantized Hamiltonian
for the multimode regime of cQED [29]; we therefore revisit
the quantization procedure in Sec. II. We discuss how the qubit
changes the propagation properties of the resonator and how as
aresult this modifies its eigenmodes and eigenfrequencies. We
show in particular that this new basis is the one which properly
fulfills current conservation law at the point of connection
to the qubit. Finally, in Sec. III we show how our results
can be generalized to a leaky cavity, one that is connected
capacitively to external waveguides. In Sec. IV, we briefly
discuss the comparison to the case of atomic CQED. We
point out that including the A? term in the Hamiltonian will
lead to the same type of modification in the modes of a
cavity.

II. MODEL

As illustrated in Fig. 1(a), we consider acommon cQED de-
sign [30] consisting of a single transmon qubit that is fabricated
at point xq (in the dipole approximation, as discussed below)
inside a superconducting transmission resonator of length L.
In this section, we assume that C,, g = 0, which corresponds to
closed (perfectly reflecting) boundary conditions at x = 0, L.
In Sec. III we discuss the open case, where a finite transmission
line of length L is coupled through nonzero capacitors Cg 1.
to the rest of the circuit.

©2016 American Physical Society
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FIG. 1. A superconducting transmon qubit coupled capacitively
to a superconducting coplanar transmission line. (a) Device view. (b)
Equivalent circuit.

A. Classical Hamiltonian and CC basis

As discussed in detail in Appendix B, the Hamiltonian for
this circuit can be written as

H = Q_% — Ejcos Zn—J
~2c, 7 o
Ha
L 2 2
p(x,t) 1 (0®(x,1)
+/0 dx[Zc(x,xo) +E< 0x ) i|
H?od
booplxn)
+)/QJ/ dx 8(x — xg). (D
0 c(x,xp)
Him

The notation used here follows the canonical approach to
quantization of superconducting electrical circuits [28,31],
briefly reviewed for completeness in Appendix A. In the above
Hamiltonian, the canonical variables ®; and Q; represent the
flux and charge of the transmon qubit respectively. In a similar
manner, the canonical fields ®(x,?) and p(x,?) represent the
flux field and charge-density field of the transmission line.

Furthermore, ¢y = 2’1—6 is the flux quantum and y = cg%c, .
There is a crucial difference between the Hamiltonian we
have found here, with respect to earlier treatments [28,30].
We do include the modification in the resonator’s
capacitance per length at the qubit connection point xo,
c(x,x0) = ¢ + C;8(x — xg) where C; is the series capacitance
of C; and C, given as chfgg. The Dirac § function is the
result of treating the qubit as a point object with respect to the
resonator, whereas a more realistic model would replace that
with a smooth function as we have discussed in Appendix F

in detail. As we see shortly, the § function appearing in the
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denominator will not cause any issues in the quantization
procedure, since the charge density p(x,7) also contains
the appropriate information regarding this point object so
that C‘ijf;z) turns out to be a continuous function in x. Once
we understand how this correction influences the photonic
mode structure of the resonator, we will move on to use that
information in constructing the quantization procedure.

The Hamiltonian equations of motion derived from the
Hamiltonian H2*® of the modified resonator including the
impurity scattering term is given by (see Appendix B)

0P (x,1) _ p(x,t)
dt T clx,xg)’
dp(x,r) 1 32D (x,1)
a1 ox?

2

3)

The solution to these linear equations can be written in terms
of the Fourier transform ®(x,7) = % j;o dt e "' P(x,w)
where ®(x,w) is the solution of the one-dimensional (1D)

Helmholtz equation

”x
M + le(x,x0)0* P (x,w) = 0. @)
0x2

We look for solutions that carry zero current across
the boundaries, implemented by Neumann-type boundary
conditions BXCT)(x)|X=0, 1 = 0. A solution then exists only at
discrete and real values w = w,,. The Dirac § function hidden
in ¢(x,xp) can be translated into discontinuity in d, ®(x) which
is proportional to the current [(x) = —%%
exits the point of connection to the transmon,

that enters and

1 0P (x,w)

19®(x,w)
[ 0ox +

+ I 0x

Xo

= C,0”®(xp,0), (5)

Xo.

where the right-hand side is the current that enters C; through
C,, therefore the series capacitance C,. This condition
amounts to the conservation of current at the point of
connection to the qubit and thus it is appropriate to call the set
of eigenmodes satisfying this condition the current-conserving
(CC) basis. The solution of the above-stated Neumann problem
gives the CC eigenfrequencies w, through the transcendental
equation

sin(k, L) + xsk, L cos(k,xo) cos[k,(L — xg)] = 0. (6)

In the equation above, k,L = ‘;ﬁL = lcw,L is the

normalized eigenfrequency and x, = f—L is a unitless measure
of the transmon-induced modification in eigenfrequencies
and eigenstates compared to the conventional cosine basis.
The CC eigenfunctions are given by

o cos [k, (L — xp)] cos (k,x),
Dn(x) {cos (knxo) cos [k, (L — x)],

0<x<xg
Xo<x <UL’ )
The proportionality constant has to be set by the orthogonality
relations that can be found directly from the modified wave
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FIG. 2. (a) The first ten modified resonances for different values
of x, and xo = 0.01L. Higher modes with larger yx, experience a larger
shift in frequency. (b), (c¢) Normalized level spacing for x, = 0.001
and 0.01 respectively. The blue dashed line shows the constant level
spacing for y, = 0.

equation (4) as

L
/ dx S & (0B, (x) = Lo, ®)
0 C
L9, (x)0d,
/dxﬁ ) ks L6y, 9)
0 dx 0x

Based on these results, eigenfrequencies are not only
sensitive to x,, but also to the point of connection x;. In order
to understand this modification better, first we have plotted the
normalized eigenfrequencies in Fig. 2(a) for different values
of xs and the case where a qubit is connected very closely to
one of the ends. This is a standard location for fabricating a
qubit [22] to attain a strong-coupling strength between the res-
onator modes and the qubit, since the electromagnetic energy
concentration is generally highest near the ends. In this figure,
the blue circles representing the eigenfrequencies for y; = 0
are located at n. For y; # 0, all lower CC eigenfrequencies
are redshifted with respect to the x; = 0 solutions and by
going to a higher mode number and a higher y;, the deviation
becomes more visible. In a larger scale however, the behavior
of x; # 0 eigenvalues are nonmonotonic and most notably,
display a dispersion in frequency. For better visibility of this
periodic behavior, in Figs. 2(b) and 2(c) we have compared the
level spacing of CC modes for different values of y; to the con-
stant level spacing of unmodified cosine modes. This behavior
is determined by the position of the qubit connection point x
and is easy to understand. Since xo = 0.01L sits at the local
minima of modes 50, 150, 250, and so on, we expect a periodic
behavior in the values of CC eigenfrequencies where within
some portion of that period set by x,, CC solutions are less than
the x; = O solutions and vice versa in the remaining portion.
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FIG. 3. Normalized energy density of the first four modes for
xo = 0.01L and x; = 0.1. The black curve shows cosine modes while
the red curve represents CC modes. The blue star shows where the
qubit is connected.

In Fig. 3 we show the spatial dependence of the first
four modes. The amplitude of the lower CC eigenmodes
at the qubit location are consistently less than that for the
unmodified cosine eigenmodes, suggesting that the actual
coupling strengths of the qubit to these modes are below the
ones predicted by the y; = 0 modes.

We note that a similar modification in the modal structure of
resonators has also been noted for transmission-line resonators
containing inline transmons [32] as well as 3D cQED archi-
tectures [33]. In these studies, the modifications result from
solving the spectral problem of the quadratic Hamiltonian that
in addition to the resonator part also includes the linear part of
the JJ’s cos(2m @ ; /¢po)-type nonlinearity, unlike the situation
described here.

In order to see the dependence of these CC modes on xy,
we have also investigated two different cases of connecting the
qubit to xp = % and xp = % in Appendix C in Figs. 5 and 6
respectively.

B. Canonical quantization

As discussed in Appendix C, the conjugate quantum fields
of the resonator can be expanded in terms of the CC basis as

o h 172 .
dan=>" (2w CL) [a,(1) + {1, (x).  (10)

hw, 12 ~
ﬁ(x,t)=—iz< ; ) [, (1) — &}()]cCx,x0) Dy (X).

Y

By substituting these expressions into 7’:{18‘"j and employing
orthogonality conditions (8) and (9), one finds its diagonal
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representation
N 1
A4 =" hw,(ala, + = ). 12
e= e (ana + 2) (12)

In a similar manner, the qubit flux operator ®; and charge
operator (J; can be represented in terms of eigenmodes of
transmon Hamiltonian as

&)= (m| D,(0)In) P(0), (13)
Q1) =" (m| 0,(0) |n) Ppn(t), (14)

where P, (1) represents a set of projection operators acting
between states |m) and |n). Working in the flux basis, the
eigenmodes are found through solving a Schrodinger equation
as

R d? D,
— EW — E] COos 27'[% \l/n(q)J) = hQn\pn(ch)
J
(15)

whose solution can be characterized in terms of Mathieu
functions [30]. Due to the invariance of the Hamiltonian under
flux parity transformation, the eigenmodes are either even or
odd functions of ®; and, as explained in Appendix C, only
off-diagonal elements between states having different parities
are nonzero. Consequently, flux and charge matrix elements
are purely real and imaginary. Therefore, we can rewrite

®,() =" (m| &,0) n) (Pn(0) + Bun(1)),  (16)

m<n

Q,(1)="Y_ (ml 00 In) (Ppu(t) = Bu(@)). (17

m<n

Finally, applying the unitary transformation & — ia; and
P, — i P, for m < n, the second quantized representation
of the Hamiltonian in its most general form can be expressed
as

H=> hQPu+)_ hodla,

n n
HA H?od
+ Z hgmnl(pmn + ﬁnm)(&l + al]L) ’ (18)
m<n,l
Him

where the g,,,,; stands for the coupling strength between mode
[ of the resonator and the transition dipole P,,, and is obtained
as

Fay \ 2 3
Figumi = y(%) (i Q1) ®1(x0). (19)

Various TRK sum rules [34] can be developed for a
transmon qubit, as discussed in detail in Appendix D. For
instance, the sum of transition matrix elements of Q; between
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the ground state and all the excited states obeys

A 21
D 2AE,—Eg) (0] Oy In) > = (2¢)*E; (0] cos <¢—:<I>J) 10)

n>0
< (2¢)’E;. (20)

Since all terms on the right-hand side are positive, this imposes
an upper bound to the strength of Q;,. A multimode Rabi
Hamiltonian can be recovered by truncating the transition
matrix elements to only one relevant quasiresonant transition
term (assumed here to be the 0 — 1 transition):

A 1
H= Ehwmaw;hwn&;an + ;hgm— +67)@n + a)).

(21
The coupling strength g, is now reduced to
how,, 12 Y
hgn=y| 5] Qr01)Pnlxo) (22)
2cL
and, based on Eq. (20), Qo1 has to satisfy
20°E 2E
10s01 < L~ - (@3

~ e,
El_EO \/SEJEc—EC

where we have defined the charging energy E¢ = 2%1

In order to understand how much g, can deviate in practice
from its former widely used expression in terms of the
unmodified (x; = 0) modes, in Fig. 4, we have compared
the results for various values of x;. We note that in recent
experiments on an ultralong (~70 cm) transmission line
cavity [22], x, was found to be around 1073. For shorter,
more standard transmission line resonators we should expect
xs ~ 0.1 because x,; %

As we observe in these figures, CC couplings g, are very
sensitive to a change in ;. For instance, in Fig. 4(a), which
is for the common case of connecting the qubit to one end,
xo = 0.01L, it is observed that even for x;, = 0.001 (red stars)
the relative shift in the highest mode shown (mode 20) is about
3%. This relative change increases to 26%, 69%, and 80% for
xs = 0.01, x, = 0.05, and x; = 0.1 respectively.

These modifications, even for small y;, are clearly observ-
able in the multimode regime, i.e., when the qubit is resonant
with a very high-order mode. To study the large scale behavior
of couplings, we have plotted the first 250 CC couplings g, in
Fig. 4(b) for the same parameters. As we mentioned earlier,
due to the fact that the qubit is placed at a symmetry point, we
expect that with a period of 100 modes, the couplings fall down
to zero. The first mode that has a local minimum at xo = 0.01L
is mode 50 and it occurs again at modes 150, 250, and so on.
As a general rule, higher CC modes experience a bigger shift
in their coupling strength. Another important observation is
the suppression of coupling strength as y, increases such that
the highest coupling strengths occur at the beginning of each
cycle (black, blue, and purple) rather than in the middle (red
and blue).

It remains to be seen whether the nonzero dispersion
in frequencies and the modifications of coupling strengths
to higher-order modes is observable in practice, because in
considering such large frequency intervals, the frequency
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FIG. 4. Normalized coupling strength g, for xo = 0.01L. (a)
First 20 modes. (b) Large scale behavior for 250 modes. In both
graphs, coupling strength is normalized such that only the normalized
photonic dependence is kept, i.e., g, = (k,L)"/>®,(xo).

dependent response function of superconductors would have
to be taken into account [35,36].

The dependence of g, on x( has been studied in Appendix C
for two other cases xy = % and xp = % along with their
corresponding CC eigenfrequencies and eigenmodes.

III. GENERALIZATION TO AN OPEN-CAVITY:
OPEN-BOUNDARY CC BASIS

We now discuss the quantization in an open geometry,
where the resonator is coupled to two long microwave
transmission lines, of length L; and L, at each side through
nonzero capacitors C;, and Cy (Fig. 1). In Appendix E, we
discuss how these nonzero capacitances alter the boundary
conditions at each end, and hence the mode structure as a result
as well. The resulting real eigenfrequencies of the resonator
can be found from the transcendental equation

+[1 — xgxr(kyL)*1sin (ks L) + (Xg + x1)kn L cos (k, L)
+ x5k, L cos (k,xo) cos [k, (L — xo)]

— Xr Xs(kn L)? cos (kyxo) sin [k, (L — x0)]

— X1 Xs (kn L)? sin (ky ) cos [k, (L — x0)]

+ Xr XL Xs (kn L) sin (knxo) sin [ky(L — x0)] =0, (24)

CR.L

where xg, . = =7* are normalized coupling constants to the
left and right transmission line. Considering only the first two
terms in the expression above, by setting x; = 0, would lead
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to the well-known equation in the literature [25-27]

(Xr + x0)kn L
XexXL(koL)? — 17

which only describes eigenfrequencies of an isolated resonator
and does not contain appropriate current conservation at the
qubit location. The third term is the same modification we have
found in the closed case and has a significant influence as x;
increases, while the others represent higher-order corrections
and are almost negligible except for very high-order modes.
The real-space representation of these eigenmodes are found
as

tan (k,L) = (25)

= (x),

&D;(x), x0<x<L’

0<x<xg

®,(x) o (26)

where CTD; (x) and d); (x) are given by

®,(x) = {cos [kn(L — x0)] — xrknL sin [ky(L — x0)]}
x[cos (k,x) — xpk, L sin (k,x)] 27

@7 (x) = [cos (knxo) — Xrkn L sin (k,x0)]
x{cos [k, (L — x)] — xgk,L sin [k, (L — x)]}.
(28)

The open-boundary CC basis can be shown to satisfy the
modified orthogonality relations

L
/ dx 20 & & () = Ly, (29)
0 C

where the capacitance per unit length c,,(x,xp), due to the
leaky boundary, is given by

cop(xsxO) = ¢+ Cy8(x — x)
+Crb(x — L)+ Cré(x —0M).  (30)

The remaining orthogonality relations for the current are also
modified,

L . .
n / dxaq)’"(x) 9D, (x)
0 ax dx

1 - ~

+ XLém(0+)&)n(0+)]
= kmkn L8mn . (31)

The same argument holds for the CC modes of the left and
right transmission lines, while the exact knowledge of these
modes requires assigning appropriate boundary conditions at
their outer boundaries. For instance, if the side resonators are
assumed to be very long, an outgoing boundary condition is
a very good approximation, since the time scale by which the
escaped signal bounces back and reaches the original resonator
is much larger than the round-trip time of the central resonator.
On the other hand, if we have a lattice [25-27] of identical
resonators each connected to a qubit and capacitively coupled
to each other, then the same basis can be used for each of
them. Assuming we also have the solution for the CC basis of
right and left resonators as {w, s, ®, s|n € N,S = {R,L}}, the
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quantum flux fields in each side resonator can be expanded in
terms of these CC modes as

X h 2 A -
Dg(x,t) = E (m) (bn,S(t)+b:,’s(t))q>n.s(x)y
n,S ’

(32)

where 13”, s=(r,1) are the annihilation and creation operators for
the n* open CC mode in each side resonator. Following the
quantization procedure discussed in Appendix E, we find the
Hamiltonian in its second quantized representation as

A=Y 0P+ howafa,+ > housbl sbys
n n n,S={L,R}

Ha HE iy

+ Z hgmnl(pmn + pnm)(&l + &IT)

m<n,l

Hint

BBun.s@m +al)bys + b ). (33)

)

m,n,S={L,R}

Hcep

In this expression, B,,, s stand for the coupling strength of
the mth open CC mode of the resonator to the nth open CC
mode of the side baths and is found as

Cs 12 1/2 % -\d +
=0 O sPn(LT)P, s(LT),  (34)
2c«/f«/LS - s

where Cy here stands for side capacitors Cg 1 and should not
be confused with the series capacitance C, introduced earlier.
Notice that light-matter coupling strength g,,,; has the same
form as before, but in terms of open CC eigenmodes and
eigenfrequencies.

Ian,S =

IV. DISCUSSION

The corrections to the spectral structure of the resonator
found in Secs. II and III are mathematically equivalent to
the scattering corrections that result from the presence of
an atom in atomic CQED systems. Electromagnetic field
quantization has been studied in great detail for CQED
systems including single-electron atoms [37-39], multielec-
tron atoms [40], and for atoms embedded in dispersive and
absorptive dielectric media [40—45]. For completeness, in
Appendix G we present a full derivation of the minimal
coupling Hamiltonian (neglecting electron’s spin) for this
system starting from a Lagrangian formalism that yields the
Maxwell’s equations and the Lorentz force law [40]. The
term Lin = Hine = %C g(cb J— Cb()co,t))2 that appears in the
canonical quantization of cQED systems is mathematically
equivalent to the approximate (zero-order dipole approxi-
mated) minimal coupling term 7, ~ ﬁ[pe — eARem, H)?
appearing in the CQED Hamiltonian, thus their impact on
the cavity modal structure is similar. It could be argued that
the freedom in the choice of the point of reference for the
generalized fluxes, i.e., the choice of ground, is analogous to
the gauge freedom. However, the fact that the cavity modes

PHYSICAL REVIEW A 93, 012120 (2016)

are modified due to the existence of the qubit is a property
that is gauge independent. In Appendix G, we show that
in a similar manner to the discussion here, the existence of
the A% term in the Coulomb gauge gives rise to modified
spectral properties of the resonator. However, in atomic CQED
these corrections are tiny because of the smallness of typical
atomic transition dipoles and the fine-structure constant. In
Appendix B3, we have also studied the reverse question
and proved it is feasible to retrieve an A2-like term if one
naively performs the quantization by the cosine basis. This
completes the similarity between cQED and CQED Hamilto-
nians in the lowest-order (zeroth-order dipole approximation)
where the dimension of transmon (atom) is completely
neglected compared to the cavity’s wavelength.
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APPENDIX A: CQED NOTATION

In order to describe the dynamics of any cQED system we
follow a common quantization procedure [28,31]. The first
step is to write the Lagrangian in terms of a generalized
coordinate L[g,]. Then, a Legendre transformation to find
the Hamiltonian in terms of the coordinate and its conjugate
momentum p, = % as H(qu,pnl =), 4upn — L. Finally,
we need to apply the canonical quantization by imposing a
nonzero commutation relation between the conjugate pairs
as [gn,pn] = ih. Here we go after the convention used in
cQED by choosing the generalized coordinate as &,(t) =
fot V,(t")dt’" in which V,(¢) is the voltage at node n and is
measured with respect to a ground node. This quantity has the
units of magnetic flux and it can be shown that its conjugate
variable has the units of charge and we denote it by Q,(¢).
There is an additional rule one has to keep in mind. In the
case of external magnetic flux applied on a certain loop, the
algebraic sum of flux variables over that loop should be equal to
the external flux. Taking into account all these considerations,
the Lagrangian for any cQED system is found as

L[®,,d,] = T[D,] — U[D,], (A1)

where 7 represents the Kkinetic energy corresponding to
capacitors as 7¢c[P] = %C dDZC and U/ stands for the potential
energy corresponding to inductors as Uy {P} = ﬁ@% or any
other nonlinear magnetic device such as Josephson junction
U;[P;] = —Ejcos (271%) where ¢¢ = 2% is the flux quan-
tum.

APPENDIX B: CLASSICAL HAMILTONIAN AND
MODIFIED EIGENMODES OF A CLOSED CQED SYSTEM

Here, we follow the procedure discussed in Appendix A
for the system shown in Fig. 1(b). We first use a discretized
lumped element LC model [46] for the microwave resonator
and then take the limit where these infinitesimal elements go to
zero while leaving the capacitance and inductance per length
of the resonator invariant.
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1. Discrete limit
a. Classical Lagrangian for the discretized circuit

In terms of the generalized coordinates introduced in
Appendix A, the Lagrangian for the discretized circuit can
be written as the difference between kinetic capacitive energy
and potential inductive energy and it reads

1 . (O]
L= —C‘]CD3 + E; cos (271—1)
2 ®o

+ Z [—chqﬂ

|
+5cg(q>0—<1>,)2. (B1)

! —(® ®,)’
le n+1 n

In the expression above, we have labeled the discrete nodes
such that the qubit is connected to the zeroth node.

b. Classical Hamiltonian for the discretized circuit

The first step to find the Hamiltonian is to derive the
conjugate variables associated with the generalized coordinate
{{®,}; ®,;}. These conjugate variables will have the dimension
of charge and we represent them as {{Q,}; Q,}. By definition,
these conjugate variables read

3L

Q)= o= =(Cr+Cby - Zc Suo®n.  (B2)
J
8L

0y = o= = (cAx + C8,0) Py — Cybp0®. (B3)

The next step is to calculate the discrete Hamiltonian by a
Legendre transformation

7_[:Z:Qn(i)n'i_Q./(i).l_'C

1 <5 D,
=(Cj + Co)®; — Ejcos | 2mr—
2 %o

1
+ Z[ (eAx + Cebo) ¥ + 5 (Pt — c1>,,)2]

— C, Do, (B4)

Now, we need to solve for ®; and &, in terms of Q, and
Q, to represent the Hamiltonian only in terms of generalized
coordinates and their conjugate variables.

Before proceeding further, let us define a few quantities in
order to simplify the calculation:

Cg
= — B5
Y CotCy (BS)
c,C
Co= 51 (B6)
C,+Cy
Cs n = =cAx + C 8}10» (B7)
Con = cAX + Cyby0, (B8)

where C; represents the series combination of the coupling
capacitor C, and Transmon’s capacitor C. In terms of these
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new quantities we can write

: Qn V(SnOQJ
b, = — + —=, B9
Con  Con B9
3 Y J/no
b, == s B10
J (CJ+C50)QJ+Z MQ (B10)
1C )
H=—- gQDZ—EJcos(Zn—J),
2y Dg
1
Con®? + &, — D)
+Z[ . TS )}
— Cydod. (B11)

By inserting the expressions for ®, and ® into the one for
the Hamiltonian one finds that

1 Y yz(cg 0 — ch):| 2 ( (DJ)
H=—-|— + — — Ejcos|2m—
2 [cg 2, Q1= E o

1Cen —vCobuo 5 1 5
A : <Dn - ch

+Z[2 Ot gy (P @0

n

14
B12
+ Coo (B12)

Notice that this expression can be further simplified since

C,y.nand C; ,, arerelated as C, , — ¥ Cy8n0 = Cs . Therefore,
the final result for the discretized Hamiltonian will be

Ly 7\ ( D,
H=-(L —E 2=
2<Cg+Cvo)Qj 7eo8 n¢0

+Z[zcm

T %)ﬂ

BI13
+ CS,O (B13)

where the conjugate variables obey the classical Poisson-
bracket relations

{®Pn, O} = Smns (B14)
{(®,,0,} =1, (B15)
{00, On} = {Py, P} =0, (B16)
{0,,.0/} ={P,,®,} =0. (B17)

2. Continuum limit

Now that we have the expressions for Lagrangian and
Hamiltonian in the discrete limit, we can obtain the analogous
continuous ones by simply taking the limit Ax — 0, while
keeping the capacitance and inductance per length constant.
In order to do so, let us find first how some of the terms change
in this limit. Let us first investigate the Kronecker §. It is quite
natural to argue that

Sno

lim
Ax—0 Ax

= §(x). (B18)

8(x) here represents the Dirac § function. One can simply
verify that it has all the properties of a Dirac § function:
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(i) d(x) = x #0;

(i) 8(x) > +o0, x — 0;

(i) limay—o0 Y, A"g Ax = er: S(x)dx =1.

Based on this result, it is possible to find how C; , transform
in the continuous case as

= lim =2
el = Jim

=c+ C8(x). (B19)

We call this quantity the modified capacitance per length
of the resonator, since it has the information regarding the
position of the qubit and the way it changes the capacitance
at the point of connection. By going to the continuum limit,
the charge variable Q, goes to zero, since it represents the
charge of infinitesimal capacitors. However, the charge density
remains a finite quantity,

_ o Oa(0)
p(x,t) = AI;I_I}() T (BZO)
Finally, by definition,
(o} t)— P,(t 0D (x,t
lim n+1(1) @) _ 9%k )' B21)
x—0 Ax 0x

a. Classical Lagrangian and Euler-Lagrange equations
of motion in the continuum limit

Applying the limits introduced in the previous section,
Lagrangian in the continuum limit reads

1 .
L=3(Cr+ Co)®5 —Uy(d))

L/2 J l Cs @)2 1 /0
o[ aferesnn(5) - 5(5)

L/2 1)
- / dxC3(x)d, 22
—L)2 dt

(B22)

where U;(® ;) = —E; cos (27t o L), Euler-Lagrange equations

of motion (EOMs) are derived from the variational principle
3L =0as

. L2 2D AU,(D))
C,+C)d,—C dxd(x)— + ———= =0,
(Cy+Cy)0, g/_mx(x)atﬁ ry

(B23)
32D BRI 82<I>
- —+lc +1Cx)| — — @, ) =0. (B24)
0x? 912

It is helpful to rewrite these equations by first finding &,
from (B23) and plugging into (B24)
9P RRE0) AU (D)
— —lc(x)— =1lyd(x)————,
o2 WG =i
which is a wave equation with modified capacitance per length
and the transmon qubit as a source on the right-hand side.
Therefore, the simplified equations of motion read

(B25)

.y UND)) 3D,
é — , B26
' Tee, T (520

920 92d U (Py)
R | =y — B27
a2 G =g 27
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The Dirac é function in the wave equation (B27) can be
translated into discontinuity in the spatial derivative of ®(x,¢?).
Therefore, Eq. (B27) can be understood as

32_q>_lca2_q>=0 x#0 (B28)
ox2 912 ’ ’
01, 1) = &0 ,1), (B29)
RS Rl 9P AU (D)
a x=0t - a x=0- - Sm x=0 aq)l .
(B30)

In terms of voltage and current, Eq. (B29) means that the
voltage is spatially continuous while (B30) means that the
current is not continuous at the position of the transmon, since
some of the current has to go into the qubit. The two terms
on the right-hand side of (B30) are proportional to the current
that enters C; and the Josephson junction respectively.

b. Classical Hamiltonian and Heisenberg EOMs
in the continuum limit

Starting from our discrete Hamiltonian, we try to find the
continuous one again by taking the limit Ax — 0. Let us
investigate each term separately.

2
1
lim (l + y—) . (B31)
Ax—0 Cg Cs,O CJ
therefore, the transmon’s Hamiltonian will be
2
)
9 E; cos <2n —J>. (B32)
2Cy fon)

The resonator’s Hamiltonian transforms as

li 0, + ! (® ®,)’
lm = P n - n
a0~ | 2¢, ' 2IAx +

Q 2

1 (D — @

li A 2 \Ax - n+ n
AiTOZ x[ o 21( Ax )]

L2 200,0) 1 (3D(x,0)\?
=/ dx[m L _<$) ] (B33)
—L/2 2c(x) 21 dx
and finally the interaction term can be written as
Py cs ;200 =]
&5
= 1
m VQJ C A
L/2 (x t)
=v0Qy / s(x). (B34
L/2 C(X)
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Putting all the terms together, the final expression for the
Hamiltonian will be
2 P
H = & — Ejcos 27—
2Cy 0

Ha

L2 2 2
+/ dx[p (x.0) _’_i(ad)(x,t)) ]
—L2 2c¢(x) 21 ax
et
L2
4 yQJ/ dax P sy,

L2 cx)

Hint

(B35)

where the Poisson bracket relations now change to

{(®,,0;} =1, (B36)

{®(x,1),p(x",1)} = 8(x — x'). (B37)

Notice that in our expression for the Hamiltonian we have
a Dirac § function hidden in ¢(x) in the denominator of both
the resonator’s capacitive energy and the interaction term. At
the first sight, it might seem unconventional to have a Dirac §
function in the denominator. However, we will show that the
charge density p(x,t) is also proportional to c(x) which makes
these integrals have finite values.
We know that the time dependence of an operator
O0({®,},{0,}; ®s,0y; 1) is determined by
do 00
pre {O,H} + a7
Using the Poisson-bracket relations introduced above one can
find the Hamiltonian EOM as follows:

(B38)

0P(x,1)  plx,t) = ydx)
i cx) | cx) Qs (B39)
2

dp(r.t) _ 19 db(x,t)’ B40)

ot [ 0x?

00, Qs [P vi)
? N C_J * /L/z dx c(x) pLeD, B4
00, _ 9U,(®p) _ —2—”EJ sin <2n&). (B42)

ot 0d; o fon)

The results here can be generalized to a case where the
transmon is connected to some arbitrary point xy, where the
modified capacitance per length now changes to c(x,xp) =
c+ Ci8(x — xp).

3. Modified resonator eigenmodes and eigenfrequencies

Consider the second term ’Hg“’d in (B35) which is the
modified resonator Hamiltonian. The goal here is to find out
how this modification in capacitance per length influences
the closed Hermitian eigenmodes and eigenfrequencies of the
resonator. Assuming that the transmon is connected to some
arbitrary point x, the Hamiltonian is given as

L 2 2
mod __ pr(xt) 1 (9P(x,1)
He™ = ./(; dx|:2c(x,x0) * 21( dx > ] (B43)
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Applying the Poisson-bracket relations discussed in the
previous section, the Hamiltonian EOMs for the conjugate
fields read

00(x,1)  p(x,1)

= , (B44)
at c(x,x0)
dp(x,t)  13°P(x,1)

== . B45

ot I 9x? (B43)

By combining the above equations and rewriting

them in Fourier representation in terms of ®(x,w)=
f_t;o dtd(x,t)e’”" we obtain

32D (x,w)
0x2
Notice that there is a Dirac § function hidden in c(x,xg). As
we mentioned earlier, this can be translated into discontinuity
in 3, ®(x) which is proportional to the current I (x) = — % %
that enters and exits the point of connection to the transmon,

1 0d(x,w) n 19®(x,w)
l 0x s 0x

Xo

+ lc(x,xo)wzéf)(x,w) =0. (B46)

= Cswzé(xo,a)). (B47)

%o

We are after a complete set of modes ®,(x) = ®(x,w,)
where any solutions to the previous wave equation can be
linearly decomposed on them. In order to find these modes,
we have to solve

329, .
FEuN) | o2d, ) =0, x %0 (B48)
dx2 "
with boundary conditions
ad, 9P,
@] _ 9Pak) —o. (B49)
dx x=0 dx x=L
9D, 9D, -
9Pu| OO e 02,00 =0, (BSO)
ox |+ ox |-
0 0
&, () = Bulxy). (B51)

Applying the boundary conditions we find a transcendental
equation whose roots will give the Hermitian eigenfrequencies
of this closed system as

sin(k, L) + xsk, L cos(k,xg) cos[k,(L — x9)] =0. (B52)

In the expression above, k,, represents the wave vector defined

as k2 = lco? and the quantity x, = & is a unitless measure

for the discontinuity of current introduced by the transmon.
Eventually, the eigenfunctions are found as

~ cos [k, (L — xg)]cos (k,x), 0 <x <xp
D) {cos (kpxg)cos [k,(L —x)], xo<x <UL’
(B53)

where the proportionality constant is set by the orthogonality
relation

L
/‘ " c(x,xp) &, (x)®,y(x) = LS. (B54)
0

c

Another important orthogonality condition can be derived in
terms between {0, P, } as

/L 3&)171()5) 85)11()5)
dx
0 ax ax

= kpkn LSy . (B55)
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Finally, it is instructive to show explicitly the origin of an
A?-like term when instead of the CC basis the conventional
cosine modes are chosen. Replacing p(x,t) from (B44) in Hrc'“’d
gives

L 2 2
mod c(x,xq) (0D(x,1) 1 [0d(x,1)
= | dx| 2 /2 — (=5 .
He /0 x[ 2 ( ar ) Tl Tax
(B56)
Substituting c(x,x9) = ¢ + C;8(x — xp) leads to

L AD(x,1)\> 1 [dD(x,1)\°
m0d= d E ? — i
He /0 12\ T\ Tax
H(‘
1 [8d(x0,0)\>
—C, [ —=2=2) .
*3 ( ot >

—_—
Hmod

(B57)

As discussed in [28] H¢ has a diagonal representation in
terms of the cosine basis. However, by choosing this basis
H™4 remains as an A2-like term giving rise to intermode
interaction.

APPENDIX C: CANONICAL QUANTIZATION OF A
CLOSED CQED SYSTEM

We have all the tools to extend the classical variables
into quantum operators by introducing a set of creation and
annihilation operators as

O@,1) =) Co(@)@,0,(x) +a] 05 (x)),  (CI)

where O(x,t) is any arbitrary classical field that we already
know its set of classical eigenmodes {O0,(x)} and eigen-
frequencies {w,} and O(x,t) represent its quantum analog.
C s(w,) represents the appropriate normalization constant for
each mode. The creation and annihilation operators obey the
usual bosonic commutation relations

(4,00 ] = i8m, (C2)
[&n’&m] = 0, (C3)
[a),al1=0. (C4)

Remembering that {®, (x)} represent Hermitian modes and
thus real functions, we find the quantum operators ®(x,) and
p(x,t) to be

N h 12 -
e = <2w - L) (@ +ah)®,(x),  (C5)

hw,, 12 o
ﬁ(x,r>=—i2( ; ) (@n — ah)e(x,x)®,(x).  (C6)

Substituting these expressions into ﬂgwd and using the
orthogonality relations (B54) and (B55) will result in

ﬂrélod — Z

n

hw,
T"(aian + anai) = Z ha)na];an + const,
n

(€7
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which is a sum over energy of each independent mode as we
expected. Having found the resonator’s Hamiltonian in the
second quantized form, we have to calculate now the spectrum
of transmon whose Hamiltonian is given as

A

~ Q2 D,
=J _F 2r— ); C8
Ha = 2C, JCOS( nd)o), (C8)

choosing to solve for the spectrum in the flux basis {|®;)}
where 0, = we find

B d?
[‘ 2C, 43

9
8<I>’

D,
— E;cos <2n¢—>]lll (D)) = hQ2, ¥, (D).
0
(C9)
The solution to the above equation is a set of real
eigenenergies and eigenmodes {AS2,,W,(¢,)|n € N°} where

any operator in the transmon’s space has a spectral represen-
tation over them as

Or(t) = Ut)Or(0)U' (1)
= U(r)(Z (m| Or(0)|n) Amn)fﬂ (1)

m,n

= > " (m| Or(0) |n) Pyn(0).

m,n

(C10)

where {P,,, = |m) (n|} is a set of projection operators between
states m and n, and

n h 0
(m| Or(0) n) = / ¢, <¢J>0T[¢J,. }v é)).

Loy
(C11)

We are now able to express &, and O, in their spectral
representation. Notice that since the potential is an even
function of ¢;, the eigenmodes are either even or odd functions
of ¢,, so the diagonal matrix elements are zero, since

(n| &, |n) = f dd; DV, (@)W, (D) =0, (Cl2)
Odd
A h
01 0 i) = - / 49, W,(@,) 52w, (®)) = 0. (€13
Odd
Therefore, we can express d ; and Q J as
&, (1) =Y (m| D,(0) In) Pun(t)
m#n

=" (m| & (0) [n) (Pyn(t) + Pun(1)), (C14)

m<n

0,1)="_(m| 0;(0)|n) Puu(t)
m#n

=D (ml Qs In) (Pn(r)

m<n

Bon(1)), (C15)

where the second lines are written based on the observation
that by working in a flux basis, matrix elements of O ; and &,
are purely real and imaginary respectively. Now that we know
the spectrum of both the resonator and the qubit, we can easily
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write the interaction term as

L ~
yQJf ax PED s
0

c(x,xp)

A N h(,()] 12 N
= —l}/ Z QJ,mn(Pmn - an)( ) (&l_&] )CDI(X()).

m<n,l 26_L
(Cl16)
Defining the coupling intensity g,,; as
hoy \'7* -
hgmnl =Y\ — (l QJ,mn)ch(XO) (C17)
2cL
the interaction takes the form
— " hgunt(Pon — Pun) @y — a)). (C18)

m<n,l

Finally, up to a unitary transformation @, — ia; and 13,,,,1 —
i P,, for m < n, the Hamiltonian reads

7:{ = Z hQn ﬁnn + Z hwﬂala”

7:{/\ ﬂ?od
+ > Wt (P + Pun)@r + ). (C19)
m<n,l
Hine

Notice that by truncating transmon’s space into its first two
levels, we are able to recover a multimode Rabi Hamiltonian

L1 )

H = S honé* + D honalan+ Y hga (6 + 6T )@ + 4,
~—— n n

g

H?Od Hint
(C20)

where we have used the shorthand notation 6~ = 1301 ,6T =
Pio, and wg; = Q1 — Qp. gmu 18 also reduced to g, = goin
given as

(C21)

hw, 12 .
hg, = V(H) (@ Q1,00)Pn(x0).

In the main body of this article we have only included the
results for the case xo = 0.01L. In Figs. 5 and 6, we have
considered the cases of xop = 0.50L and xy = 0.25L respec-
tively. For xo = 0.50L we observe that all even numbered CC
modes are unperturbed, while for odd numbered CC modes,
both eigenmodes and eigenfrequencies are found to be less
than cosine ones. The reason for invariance of even numbered
modes is that originally a qubit sits on a local minimum of
the photonic energy density and therefore does not interact
with these modes. In addition, regardless of the value for s,
all odd numbered coupling strengths are zero due to the high
symmetry of this point. For x; = 0, the even modes follow
an envelope that goes like ,/w, and as x, grows they are
suppressed and fall below this envelope.

This behavior is not specific to xo = 0.50L. Generally, if
the qubit is placed at xg = %n € N then there is a periodicity
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FIG. 5. Closed-boundary CC modes for xo = 0.5L. (a) First 20
eigenfrequencies for x, = 0.1. (b)—(e) Normalized energy density
of the first four modes for y, = 0.1. The black curve shows cosine
modes while the red ones represent CC modes. The blue star shows
where the qubit is connected. (f) First 20 coupling strengths g, for
various values of ;.

in the mode structure such that every n mode remains
unperturbed. This is for example observed in Fig. 6 where
xo = 0.25L and thus modes indexed as 4n —2,n € N are
unchanged. In this case, depending on the value of ¥, the CC
coupling strengths can be either below or above the solutions
for x; = 0.
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FIG. 6. Closed-boundary CC modes for xo = 0.25L. (a) First 20
eigenfrequencies. (b)—(e) Normalized energy density of the first four
modes for x; = 0.1. The black curve shows cosine modes while the
red ones represent CC modes. The blue star shows where the qubit is
connected. (f) First 20 coupling strengths g, for various values of x;.

APPENDIX D: TRK SUM RULES FOR A
TRANSMON QUBIT

In this Appendix, first we are after finding a general sum
rule in quantum mechanics and then we apply the results to
calculate upper bounds for matrix elements of charge and
flux operator, i.e., (m| O, |n) and (m|®, |n) for the case
of a transmon qubit. Assume a Hamiltonian H where its
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eigenmodes and eigenenergies are known as {|n) , E, |n € NO}.
Consider an arbitrary Hermitian operator A = Al where we
define successive commutation of 7{ and A as

By this deﬁnition we find that for any two arbitrary eigenstates
Im) and |n),

(m|C \n) = (Ep — Ey) (m| 5" |n)
= (En — Eo) (m| Aln) . (D2)

Using the above identity we find that

(m [ALYYIm) = ml A 1 €Y m)
>, In)nl
.
—mCY A Am)
D oaln)n

(=D 1 (m| A |n) .

= Z(En - Em)[l -

(D3)
Now, consider the Hamiltonian for a transmon qubit,
H= Q—2+U((DJ) (D4)
2C;

where U(®,) = —E, cos (i—f ®,). Applying the result found
in (D3) we can write

=Y " 2E, — Eo)| (0| &, [n) |, (DS)

n>0

(0l [y, [7,,/1110)
— —
ey
where |0) represents the ground state. The left-hand side can
be calculated explicitly as Z—j which leads to the sum rule for
(i) J as
2

N h
D 2AE, = E[ {01 &y n) [P = —. (D6)
J

n>0

Noticing that all terms on the left-hand side are positive, we
can find an upper bound for ®; ¢; as

D01 "’ be (h)z (D7)
<

"= ¢, (B~ Ey) . JBEEc — Ec

where we have defined the charging energy E¢ = .Ina

o N
similar manner, it is possible to obtain a sum rule for Q J as

(110, [H,0,1110) = Y " 2E, — Eo)| (0] O, |n) |*. (D8)
A1) n>0
o

The left-hand side can be explicitly found as
A 32U (D) (2nh>2 (271 . )
JH, =hW—"=(=—) Escos D
[Qs.[H, 0] )32 ™ J 0
(D9)
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2nh

Noticing that o = 2e brings us the sum rule for O as

A 2w .
Y 2E, — E)I (01 Q) In) I = (2¢)°E, (0] cos <¢—’:<I>J) 10)

n>0
< (2¢)’E;. (D10)
Again, due to positivity of terms on the left-hand side we find
2€2E] 2E] >
~ e”.
E\—-Ey J8E;Ec—Ec

APPENDIX E: GENERALIZATION TO AN OPEN
CQED SYSTEM

2
Q701" <

(D11)

1. Lagrangian and modified eigenmodes

The results from the previous section make it very easy
to find the Lagrangian and hence the dynamics for the
open case where now the end capacitors Cg and C; have
finite values as shown in Fig. 1(b). Here, we have a finite
length resonator which is capacitively coupled to two other
microwave resonators at each end. Assuming that the transmon
qubit is connected to the resonator at some arbitrary point
X = X, the Lagrangian for this system can be written as

1 .
L= EC]CDJ(t)Z —U[P,;(1)]

+/Ld 1 /ad\> 1 /0d)\>
o 12 ) T 2\ax
L+Lg 1 [9®r\> 1 [/0d\>2

d _ P

+/L+ x[f( ot ) 21( ox ) }
0 1 /90, \> g

[ ety (2
o, 27 21\ ox

+ %CL(MO—J) — $(0%, 1)

+ %CR(ch(L*,r) — (L)

+3Cb0) — Do) (E1)

We have already learned how the coupling intensity depends
on the Hermitian eigenmodes and eigenfrequencies of the
resonator as well as the dipole moment of the transmon. Here
we have the same situation except that due to the opening
introduced by the finite end capacitors Cg and C;, we need
to find the modified Hermitian modes of the open system.
Therefore, let us for the moment forget about the Lagrangian
of the transmon and its coupling to the resonator and focus on
the modification introduced by one of the end capacitors, for
instance C; . The trick is that we can write this contribution as
the sum of three separate terms,

3CL(@LO07.1) = &(OT.1)?
=1C D07, +1CL D0, —CL PO ,1)DL(07,1).
(E2)

Notice that only the term —C, CiD(O+ , t)dD (07 ,¢) isresponsible
for the coupling of the resonator to the bath and the other two
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can be considered as a modification on top of the closed case.
Applying the same method for the right capacitor, we can
define the modified Lagrangian for the left and right baths,

o0 1 [8dr\> 1 [/0d\>2
E;p =/ dx| =c RY - — R
i 27\ ot 2\ ax

1 .
+5cR<1>R(L+,r)2, (E3)
0~ 1 /80, \> 1 /8d.\°
L:UP =/ d _ - | —
. x[zc( o1 ) 21( ox )]
1 .
+ Echbk(o—,r)? (E4)

In addition, the interaction Lagrangian is found as

Lepg =—Cr®OT,0)®L(07,1) — CRO(L™,1)Pr(LT,1),
(ES)

which is also equal to the interaction Hamiltonian since by go-
ing from Lagrangian to Hamiltonian capacitive contributions
(kinetic contributions) do not change sign. The idea is to find
the Hermitian modes governed only by each of these uncoupled
modified contributions and finally write the interaction in terms
of Hermitian modes of each subsystem.

Up to here, we have not considered the effect of transmon
on capacitance per length as we found in (B19). It is not
necessary to go over the derivation again, since these two
effects, modification due to opening and due to transmon, are
completely independent. By considering the inhomogeneity
introduced by the transmon we have

L~ 1 ad\> 1 /9d\>
op _ - il _ il
Le _/0+ dx[zco”(x)< 8t> 2[<8x> } (ES)

where c¢,,(x,X0) is given as

COP(X,X()) =c+ ng(x - X())

+Cré(x — L)+ Cr8(x —0%).  (E7)

The new § functions in ¢,,(x) are only important at the
boundaries, which can be found by integrating the equation
along an infinitesimal interval that includes the § functions. In
order to find the modes, we need to solve

2P, .
T 1o, =0, x#x  (ES)
0x2
with boundary conditions given as
J - 2% o
——Pu(x) =1Crw;, P, (L7), (E9)
ax el
J - -
—&,(x))  =—lCLay®,(07), (E10)
ox 0t
ad, ad, .
OF 2D ewid, =0, (ELD
0x x[‘;’ 0x Xy
®,(x5) = Du(xy). (E12)
Defining unitless parameters xg ; = CCRLL as we did for

Xs» we find that eigenfrequencies satisfy a transcendental
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equation as

+[1 — xgxr (kL) sin (k, L)

+ (& + xL)ku L cos (k, L)

~+ x5k, L cos (k,xy) cos [k, (L — xo)]

— Xr Xs(kn L)? cos (kyxo) sin [k, (L — x0)]

— X1 Xs (kn L)? sin (ky0) cos [k, (L — xo)]

+ Xr X1 Xs (kn L)’ sin (kyxo) sin [k, (L — x0)] = 0,

(E13)
and the real-space representation of these modes reads
5 <I>n<(x), 0<x <xg
Pnl) & {CI),T(x), xo<x<L’ (E14)

where ®;~(x) and ®; (x) are found as

®,7(x) = {cos [ky(L — x0)] — xrkn L sin [k, (L — x0)]}

x[cos (k,x) — xpk, L sin (k,x)], (E15)

@, (x) = [cos (kyxo) — xrknL sin (kyxo)]
x{cos [k,(L — x)] — xrk,L sin [k, (L — x)]}.
(E16)

The normalization constant will be set by the orthogonality
conditions

L
/dxwém(x)én(x)zhxm (E17)
0

L 3d,,x)0d,
n / dx (x) (x)
0 ox ax

+ Xr &)m(0+)q~)n(0+)] = kmknL(Smlr

1 ~ -
— 5 (ki + K) LLxe (L) (L7)

(E18)

2. Canonical quantization

Following the same quantization procedure as for the closed
case we can write the field operators in terms of the eigenmodes
and eigenfrequencies of each part of the circuit as

A h 12 ; o
=Y (Zw CL) @n(1) + () ®,(x),  (E19)

X h iz . -
Dp(x,1) = Z (m) (bn.r(1) + by, (() Py g (%),

(E20)

A h 2 A~ .
bp(x,t) = Z (m) (b, (1) + b,:,L(t))CDn,L(x)s
(E21)

where we have also considered some finite length for the
left and right resonators as well to keep the normalization
constants meaningful. Now, we can easily derive an expression
for resonator-bath coupling in terms of modes of each part.
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Consider coupling to the left bath for the moment

Hep = —CLdOF 1)dL0 1), (E22)

Hep = —Cr®L+ D) p(L™ 1), (E23)

Considering that the time dynamics of annihilation and
creation operators up to here are only governed by the free
Lagrangian of each part, we have

. 1/2
dx,t) =" <2w CL) (— i@udn(t) + i@, a} (1) Dy (x)

. hw, 172 . At &
=—i Z <M> (a,(t) — al ) ®,(x).  (E24)

And we have the same type of expression for the end resonators
as well. The interaction Hamiltonian then reads

ﬂC,LR = - Z h,an,R(&m - &il)(én,R - 5:,71?)

=Y BBun 1 @n — a})bur — bl ). (E25)

where we find B,,, ¢ and B, 1. as

C o -
Buun g = ﬁw,L/Zw,i,/,id>m<L—>d>n,R(L+), (E26)
c R
() o .
Buns = ﬁwﬂzwi%m(owmwn (E27)
C L

The expression for g, is the same as in (C17) but with
the new set of Hermitian modes satisfying the open-boundary
conditions discussed before. The interaction Hamiltonian then
is found as

— Y hgunt(Pun — Pun)@y — ). (E28)

m<n,l

Gathering all different contributions together and moving
to a new frame where P,,,, — i P, form < n, a, — ia, and
b,,1/r — ib, 1/r, the Hamiltonian in its second quantized
form reads

H=> hQ,Pu+Y howala,+ > ho,sbl sbys
n n

n,S={L,R}

Ha He Hp

+ Z hgmnl(pmn + ﬁnm)(&[ + CAl))

m<n,l

Hint

B, s@m + af )by s + b} ). (E29)

DY

m,n,S={L,R}

Tles

APPENDIX F: FINITE-SIZE TRANSMON

It is very insightful to see how the previous results change
if we assume a finite length d for transmon. In such a case
we assume that the coupling is not local and spreads over the
whole length of transmon with mutual capacitance per length
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¢,. Following the same discrete to continuous approach one
finds the Lagrangian as

1 .
ﬁ:zay+%m¢}4h@ﬂ

+/Ld Lot emeaon(22) - L (22
— 7T s — —_— —
, [l T et 2\ ox
L . 0P
— dx cgma(x,x0)®;—, (F1)
0 ot
where 7;(x,x0) is a unit window of width d that is defined in
terms of Heaviside function 6(x) as my(x,xp) = 6(x — xo +
d/2) —0(x — xg —d/2). The Euler-Lagrange EOMs then
read

L aZ@
/0 dxcgnd(x,xo)m,
(F2)

- aU, (D))

C d)® —_ =

(Cy+ced)®y + Ty

02 RR “

Froie l[e + and(x’xo)]ﬁ = —lcgma(x,x0)®;.  (F3)
Comparing this to the Euler-Lagrange EOMs derived earlier

in Appendix B 2, it becomes clear that the structure of the

equations has remained the same while C,6(x — xo) has

been replaced with ¢,7 (x,x0). The Hamiltonian can be found

through the usual Legendre transformation as

2 o
Qn{d — Ejcos <27r—]>
20 $o

H =

'mod
Hy

L oXx,t) 1 (ad(x,0)\>
+/0 dx[ch(x,x0)+2_l< dx ) i|

‘mod
HC

0y

mod
CJ

p(x,1)

cq(x,x0)

L
+ / dxcgmg(x,xp) , (F4)
0

Hint

where c;(x,xo) is the modified capacitance per length and
reads

C
ca(x,x0) = ¢ + (cg©7’>nd<x,xo>. (F5)

The (S notation represents a series combination of two
capacitors. Surprisingly, we observe that when the dimension
of transmon is taken into account, the modification is mutual
and transmon’s spectrum is also influenced by the coupling
such that C°¢ reads

ccema(x,xo)

L
cmd — ¢ —i—/ dx —————

! g ¢ + cgma(x,x0)
———

cemq(x,x0)®c
= CJ + (Cg®C)d. (F6)
The results above are general such that one can replace the
rectangular window c,m4(x,x0) in capacitance per length by

any smooth capacitance per length ¢,(x,x¢) and the form of
‘H, cq(x,x0), and C ’J“Od remain the same.
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FIG. 7. A single-electron atom interacting with the EM field
inside a closed cavity of length L.

APPENDIX G: HAMILTONIAN AND MODIFIED
EIGENMODES OF A CLOSED CAVITY-QED SYSTEM

In this Appendix, first we derive the classical Hamiltonian
for a general system containing a finite number of point charges
interacting with the electromagnetic (em) field inside a closed
cavity. This is achieved by expressing the Maxwell’s and
Newton’s equations of motion in a Lagrangian formalism and
then a Legendre transformation to find the Hamiltonian. This
model is then reduced to describe a one-dimensional cavity
shown in Fig. 7. In order to emphasize the resemblance to the
cQED results we found earlier, we derive the final form for a
hydrogenic atom.

1. Classical Lagrangian

Following the usual canonical quantization scheme, first
we have to find the classical Lagranian. We already know the
equations of motion for the em fields to be the Maxwell’s
equations as

V. Ew.) = P& (G1)
€
V - B(r,) =0, (G2)
aB(r,7)
V x E(r,t) = — yat (G3)
9E(r,?)
V x B(r,1) = puoJ(r,t) + poeo o (G4)

where p(r,t) and J(r,?) are scalar charge density and vector
current density and are given as

pr.0) =Y g8V r — 1, (1), (G5)

Ja,0) =" gutn ()87 [r — (1)), (G6)

The remaining equation of motion is a Newton equation
regarding the mechanical motion of the electron which reads

My (1) = qu[E(r, (1),1) + £, (1) x B(r, (1),1)] .

Lorentz  Force

(G7)

Based on (G2) and (G3) we are able to express the physical
fields E(r,t) and B(r,?) in terms of scalar potential V (r,t) and
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vector potential A(r,?) up to a gauge degree of freedom as

0A(r,?)
E(,t) = — ryami VV(r,1), (G8)
B(r,t) =V x A(r,t). (G9)

It is possible to write a Lagrangian that produces all
previous equations of motion (G1)—(G4) and (G7) as a result
of the variational principle § £ = 0. This Lagrangian reads

1, 1 1
L= Z Emnrﬁ+/d3r|:§eo(8tA~|—V V)Z—Z—M(VxA)Z]

+ /d3r[J A —pV]. (G10)
In order to proceed further, we need to fix the gauge.
Choosing to work in Coulomb gauge defined as V-A =0
and using (G1) we find that the scalar potential V (r,t) satisfies
a Poisson equation as

p(r,1)

ViV(rt) = — )
€0

(G11)

Having the charge density as (G5) we can easily solve this
equation to obtain

Y
V(I',t) - Z 47'[60|l‘ - rn(t)| .

n

(G12)

Furthermore, this choice of gauge helps to simplify the
Lagrangian since due to the divergence theorem

/d3r8tA-VV = /d3rV-(V8tA)—/d3rV8t (V-A)
N ——
0

= fds - (Va:A), (G13)
which means this term only contributes at the boundaries.
Boundary terms do not affect equations of motion inside
the cavity, however their existence is necessary to ensure
the correct boundary conditions, i.e., continuity of parallel
electric field and perpendicular magnetic field at the interface
of cavity with the outside environment. As far as we fix these
conditions properly, we can remove all surface terms from the
Lagrangian. In a similar manner

1 1 1
/d3r§eo(VV)2 = Eeoygds (VVV) — fd3r§e()VV2V

1 1
= Eeoygds-(vvvwfd%ipv.

(G14)

Finally, by putting everything together and neglecting surface
terms, we find the simplified Lagrangian as

| 1
L= Z Emnri — /d3r E,OV

+ /d3r[leo(atA)2 - L(V x A)Z] +/d3rJ-A.
2 210

(G15)
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2. Classical Hamiltonian

The first step is to find the conjugate momenta as

oL .
P = I =m,x, + an(l'n(t),l),

(G16)

oL
I(r,t) = B_A = €90;A(r,1). (G17)

Then, the Hamiltonian is calculated via a Legendre trans-
formation of the Lagrangian as

H=> ppin+t / drIl(r,t) - 9,A(r,t) — L;  (G18)

substituting (G16) and (G17) into the expression for the
Hamiltonian we find

H=>_ %mi’i +> %an(rV,)

/ 3 [1 2, | 2:|
+ | d°r| —€ol0:A@r,1)]” + [V x A(r,1)]* |.
2 20
(G19)

By replacing 9;A(r,¢) and r,,(¢) in terms of conjugate momenta
I[1(r,t) and p, (r) respectively, the Hamiltonian can be rewritten
as

2my,
I1%(r,t V x A(r,n)]?
+/d3r ( )+[ (r,1)] . (G20)
2¢e0 2u
which can be written in a more instructive way as

P !
H = Zﬁ + Z E‘Inv(rn)

n — nA ns 2 1
szw+zzqnv(rn)

Ha

2 2
+ /dsr[l'l () | [V <A@ }

260 2#0

Hc

2

dn 42 3
+ | Y A8 —
/rnzn(r)(l‘l‘)

'mod
He

Y A, AL, (G21)

m

Hint

This is the most general form of the classical Hamiltonian of
a finite number of charges interacting with the em field inside
a closed cavity. In what follows, we make a few assumptions
to reduce this model for the system shown in Fig. 7. First of
all, we assume that the wavelength of em field is much larger
than atomic scale r, such that we can apply the zeroth-order
dipole approximation A(R,(2),7) ~ AR, (¢),1) ~ A(R.,,t) in
both H?Od and H;,, where in the last step R, is the center of
mass of the electron and the nucleus. Finally, by rewriting the
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Hamiltonian in terms of new coordinates

R, R
r=R-R, R, =TT o)
me + m,
and new momentum
mpyP, —m,P,
= , P,=P,.+P (G23
Py e +m, » )

and neglecting the center-of-mass kinetic energy we find (for
a more detailed discussion see Chap. 14 of [39])

2

p
H~ 2’;# —eV(r,)
\—/—/
N d3r[ 13(r, t) [V x A(r,t)]2:|
2¢¢ 20
He

/
+/d3r

—AYr,0)89(r — Rey)

'mod
He

—ipu AR 1), (G24)
my

Him

mm,,

is the reduced mass.
me+m

where m,, =

3. Modified cavity eigenmodes and eigenfrequencies

Having found the modification introduced by the A? term
in the previous section, we can now calculate the effect it
has on the structure of the modes. Specifically, we are after
eigenmodes of the modified Hamiltonian for the cavity given
as H™ = Hc + H™. This can be done by finding the
Hamiltonian EOMs for the conjugate fields as

9 1
—A(r,1) = —TII(r,1), (G25)
Jat €0
9 1
—TI(r,r) = ——V x [V x A(r,1)]
ot Ho
6‘2
— —A@,N8P @ — R,p). (G26)
m

n

By combining these two equations and applying the gauge
condition V - A = 0 we find

2

(V2 - M0608—>A(1‘ 1) =

o€’
o7 —Ar,)87(r — Ren),

m

(G27)

which is a wave equation with an extra term on the right-
hand side due to A% modification. The coefficient “"— can
be expressed in terms of fine-structure constant « and Bohr S

radius ag as 4wa’ay. By doing a Fourier transform

» 1 +o0o 5 )
A1) = E/‘ dwA(r,w)e™"*" (G28)

o]
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we can easily separate the time and spacial dependencies to
obtain

2
[vz + (%) — 4ra’ays®(r — Rcm):|A(r,a)) =0. (G29)

Assuming a closed cavity case and remembering that E and
B, are continuous across the cavity, the boundary conditions
read

n x (—ioAr,)+ VV)}B =0, (G30)

1 (V x A(r,w)) (G31)

s =

where n; and nj represent perpendicular and parallel unit
vectors on the boundaries of the cavity and V is the time-
Fourier transform of the scalar potential. Equation (G29) with
the boundary conditions above provide a discrete set of modes
due to the finite volume of the cavity. For notation simplicity,
we label the eigenfrequencies as w;, and the modes as A, (r) =
A(r,w,\), while in reality A denotes multiple sets of discrete
numbers each for a separate dimension of the cavity. These
modes satisfy the general orthogonality relation

/ d*rA;(r) - Ay (r) = V&, (G32)
where we have set the normalization such that the modes are
dimensionless. Another orthogonality relation can be found in
terms of VA, (r) as

+ / d*rVA,(r) - VA, (r)

1 - . - -
-3 % dS - [A,(1) - VAL (1) + Ay (1) - VA, (D]

+4mataAs(Ren) - Ay (Ren) = kiky V8,0, (G33)

Up to this point, we have considered the mode structure
for a general cavity with any arbitrary geometry. In order to
demonstrate the connection to the results for a one-dimensional
cQED system, we have to make a few assumptions about the
geometry of the cavity. We assume that the cavity’s length
is much larger than the diameter of its cross section, i.e.,
L >> +/S. By considering variation of the eigenmodes only
along this dimension we can write A(r,7) = u, A(x,?) and thus
B(r,r) = —u, 0, A(x,t). The Hamiltonian is then reduced to

2

P
H = 2’7:‘# —eV(r,)
——

L 2 2
+/d2S/ dx|:1-[ (x,t)-f— [BXA(xvt)] }
0 26() Z/LO

He
L
+ /dZS/ t)(sz(s - Sc-171)8(x - xcm)
0
Hmod

pAXem 1) . (G34)
—

Him
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Following the same procedure, we can find a modified wave
equation as a result of 71,

d? o\’  4mwalay ~
[W + <;> — 5 S(x — xcm)]A(x,w) =0. (G35

Assuming that the atom is fixed at point x,,, VV only
affects the boundary condition for the zero-frequency mode
which we are not interested in. Therefore, by applying the
boundary conditions

A(x,a))|x=“ =0 (G36)

we find the normalized eigenfrequencies to satisfy a transcen-
dental equation as

i kn cm i kn L— cm
sin(k,lL)—i-szm( Xem) SIN [k, ( Xem)] —o.

G37
L (G37)

where we have defined the unitless parameter x, = 4710{2(10%.
The real-space representation of the eigenmodes reads

A sin [kn(L - xcm)] sin (knx)y
A0 o {sin (ko) sin [y (L — )1

0<x < xepm
Xem <Xx < L~

(G38)

Eventually, one can show that these eigenmodes satisfy the
orthogonality relations:

L
/ dx A, (x)A,(x) = L8, (G39)
0

/Ld 8A”’3A”+XCA (Xem)An(Xem) = kmkn LS
X——F— — A Xem nXem) = KmKn mn -
0 dx ox L

(G40)

Note that only the ratio % is determined by the geometry
of the cavity, while the prefactor 4w a’ay &~ 3.54 x 10~'* mis
a universal length scale. This implies that the modification is
only visible when 3 is around the same order as 47 o ag.

4. Canonical quantization

Now that we have the proper set of eigenmodes and
eigenfrequencies that diagonalize the classical Hamiltonian
for a one-dimensional closed cavity-QED system, we can
move forward and extend the classical variables into quantum
operators by introducing the necessary commutation relation
between conjugate pairs. Let us consider the conjugate fields
for the cavity first. We can expand these fields in terms of the
proper eigenmodes as

R hoo\"? -
Ax.y=Y" (m) (Gn +ah)A,(x),  (G41)

A hE()a)n 172 ~
BEHEESY ( ) @y — DAL (x),  (G42)

2SL
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where a, and &Z are annihilation and creation operators for
each mode. By inserting the above equations and using the
orthogonality conditions (G39) and (G40), ’Hrg"d =Hc +
H™4 become diagonal as

~ ho
Fmed — Z 2n (@lay + apal) = Zhwnaian + const.
n

n

(G43)

The next step is to obtain the spectrum of 4 by solving a
Schrodinger equation in real-space basis as

2
( — ZZJ/[ Vi — EV(I'M)> “pn(ru,) = hQn\I’”(rﬂ), (G44)
n

where we have denoted the eigenmodes and eigenenergies by
(W, (ry),E, = hQuln € NO}. H 4 can be decomposed as

o= 7P

n

(G45)

p,. also has a spectral decomposition over this basis. Since
the Coulomb potential V(r,) is an even function of r,, as
we explained in the case of charge qubit only diagonal matrix
elements of p,, are nonzero and we can write

Pu=Y_ (mlpuln) P, (G46)
m#n
where matrix elements p,, ,,, can be calculated as
h
(m|p, In) = /d3rﬂwm(rﬂ)7V\P,l(rﬂ). (G47)

By working in a basis where W, (r,) are real functions, the
dipole matrix elements are purely imaginary which allows us
to write

f);t = Z (m| Pu |n) (ﬁmn - Anm)~ (G48)

m=>n

Finally, for the sake of resemblance to the cQED results
we move to a new frame P,,, — i P, for m < n to obtain the
Hamiltonian as

H=> QP+ ho,aja,
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