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Overcoming the coherence time barrier in
quantummachine learning on temporal data

Fangjun Hu 1,4, Saeed A. Khan 1,4, Nicholas T. Bronn 2,
Gerasimos Angelatos 1,3, Graham E. Rowlands 3, Guilhem J. Ribeill3 &
Hakan E. Türeci1

The practical implementation of many quantum algorithms known today is
limited by the coherence time of the executing quantum hardware and
quantum sampling noise. Here we present a machine learning algorithm,
NISQRC, for qubit-based quantum systems that enables inference on temporal
data over durations unconstrained by decoherence. NISQRC leverages mid-
circuit measurements and deterministic reset operations to reduce circuit
executions, while still maintaining an appropriate length persistent temporal
memory in the quantum system, confirmed through the proposed Volterra
Series analysis. This enables NISQRC to overcome not only limitations
imposed by finite coherence, but also information scrambling in monitored
circuits and sampling noise, problems that persist even in hypothetical fault-
tolerant quantum computers that have yet to be realized. To validate our
approach, we consider the channel equalization task to recover test signal
symbols that are subject to a distorting channel. Through simulations and
experiments on a 7-qubit quantum processor we demonstrate that NISQRC
can recover arbitrarily long test signals, not limited by coherence time.

The development of machine learning algorithms that can handle
data with temporal or sequential dependencies, such as recurrent
neural networks1 and transformers2, has revolutionized fields like
natural language processing3. Real-time processing of streaming
data, also known as online inference, is essential for applications such
as edge computing, control4, and forecasting5. The use of physical
systems whose evolution naturally entails temporal correlations
appears, at first sight, to be ideally suited for such applications. An
emerging approach to learning, referred to as physical neural net-
works (PNNs)6–9, employs a wide variety of physical systems to
compute a trainable transformation on an input signal. A branch of
PNNs that has provenwell suited to online data processing is physical
reservoir computing10, distinguished by its trainable component
being only a linear projector acting on the observable state of the
physical system11. This approach has the enormous benefit of fast
convex optimization through singular value decomposition routines

and has already enabled temporal learning on various hardware
platforms4,12–15.

Among many physical systems considered for PNNs, quantum
systems are believed to offer an enormous potential formore scalable,
resource-efficient, and faster machine learning16–23, due to their evo-
lution taking place in the Hilbert space that scales exponentially with
the number of nodes24–30. However, quantummachine learning (QML)
onpresent-day noisy intermediate-scale quantum (NISQ) hardwarehas
so far been restricted to training and inference on low-dimensional
static data due to several difficulties. A fundamental restriction is
Quantum Sampling Noise (QSN) – the unavoidable uncertainty arising
from the finite sampling of a quantum system – which limits the
accuracy of both QML training and inference9,31,32 even on fault-
tolerant hardware. In addition, the optimization landscape for training
quantum systems often features “barren plateaus”33,34, which are
regions where optimization becomes exponentially difficult. These
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plateaus, especially in the presence of QSN, present a significant
challenge to implementing QML at scales relevant to practical
applications.

Two further concerns arise when considering inference on long
data streams, which call into question whether quantum systems can
even in principle be employed for online learning on streaming data.
Firstly, without quantum error correction, the operation fidelities and
finite coherence timesof constituentquantumnodesplace a limit on the
size of data on which inference can be performed35,36, which would
appear to rule out inference on long data streams. Secondly, the nature
ofmeasurementonquantumsystems imposes a fundamental constraint
on continuous information extraction over long times. Backaction due
to repeated measurements on quantum systems necessitated by infer-
ence on streaming data is expected to lead to the rapid distribution of
information between different parts of the system, a phenomenon
known as information scrambling and thermalization37,38, making it
extremelydifficult to trackor retrieve the informationcorrelations in the
input data. This constraint persists even in an ideal system with perfect
coherence, such as one thatmay be realized by a fault-tolerant quantum
computer. It is not known precisely what conditionsmust be satisfied to
avoid information scrambling. For classical dynamical systems, a strict
condition known as the fading memory property39,40 is required for a
physical system to retain a persistent temporal memory that does not
degrade on indefinitely long data streams. This imposes restrictions on
the design of a classical reservoir and in particular, how input data is
encoded. Here, a mathematical framework known as Volterra Series
theory41 provides the basis for analyzing the memory properties of a
classical dynamical system. Such a general theory for quantum systems
has remained elusive so far.

Here we present a Volterra theory for quantum systems that
accounts for measurement backaction, necessary for analyzing the
conditions required to endow a quantum system with a persistent
temporal memory on streaming data. Based on this Quantum Volterra
Theory we propose an algorithm, NISQ Reservoir Computing
(NISQRC), that leverages recent technical advances in mid-circuit
measurements to process signals of arbitrary duration, not limited by
the coherence time of constituent physical qubits (see Fig. 1). The
property that enables inference on an indefinitely-long input signal –
the ability to avoidmeasurement-induced thermalization at long times
under repeated measurements due to a deterministic reset protocol –
is intrinsic to the algorithm: it survives even in the presence of QSN,
and does not require operating in a precisely-defined parameter sub-
space – and is thus unencumbered by barren plateaus.

Here, we demonstrate the practical viability of NISQRC through
application to a task of technological relevance for communication
systems, namely, the equalization of a wireless communication chan-
nel. Channel equalization aims to reconstruct a message streamed
through a noisy, non-linear and distorting communication channel and
has been employed in benchmarking reservoir computing
architectures11,14 as well as other machine learning algorithms42,43. This
task poses a challenge for parametric circuit learning-based
algorithms19 because the number of symbols in the message, Nts, to
recover in the inference stage directly determines the length of the
encoding circuit, which, in turn, is limited by the coherence timeof the
system. Amore critical issue is that the recovery has to be done online,
as the message is streamed, which structurally is not suitable for static
encoding schemes. We demonstrate through numerical simulation
(Results’ subsection “Practical machine learning using temporal data”)
and experiments on a 7-qubit quantum processor (Results’ subsection
“Experimental results on the quantum system”) that NISQRC enables
quantum systems to process signals of arbitrary duration. Most sig-
nificantly, this ability to continuously extract useful information froma
single quantum circuit is not limited by coherence time. Instead, the
quantum system’s coherence influences the resulting memory time-
scale; we show that by balancing the length of individual input

encoding steps with the rate of information extraction through mid-
circuit measurements, it is possible to endow the circuit with a mem-
ory that is appropriate for the ML task at hand. Even in the limit of
infinite coherence, temporal memory is still limited by this funda-
mental trade-off. Reliable inference on a time-dependent signal of
duration Trun = 117 μs is demonstrated on a 7-qubit quantumprocessor
with qubit lifetimes in the range 63 μs – 164 μs and T2 = 9 μs – 231μs. In
our experiments, longer durations are restricted by limitations onmid-
circuit buffer clearance. To leave no doubt that a persistent memory
can be generated, we first compare the experimental results to
numerical simulations with the same parameters, showing excellent
agreement. Building on the accuracy of numerical simulations in the
presence of finite coherence and our noise model, we explicitly
demonstrate successful inference on a 5000 symbol signal: the
resulting circuit duration is 500 times that of the individual qubit
lifetimes.

Here, we also develop a method to efficiently sample from deep
circuits under partial measurements. Simulating individual quantum
trajectories for circuits with repeated measurements requires the tra-
versal of ever-branching paths conditioned on the measurement
results, which becomes rapidly unfeasible for deep circuits. Our
numerical method (see “Methods” subsection “The quantum Volterra
theory and analysis of NISQRC”) allows us to sample from repeated
partialmeasurements on circuits of arbitrary depth.We use our scheme
to numerically explore other seemingly reasonable encoding methods
adopted in previous studies, showing that these can lead to a sharp
decline in performance when the effect of measurement is properly
accounted for. Drawing upon the Quantum Volterra Theory, we unveil
the underlying cause: the absence of a persistent memory mechanism.

Results
Time-series processing in quantum systems
The general aim of computation on temporal data is expressed most
naturally in terms of functionals of a time-dependent input
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Fig. 1 | Schematic representation of NISQRC architecture for machine learning
on temporal data using a convex optimization algorithm on finitely-sampled
partialmeasurements. For concreteness, the architecture is shown for a quantum
circuitwith aprojective computational basis readout; both the underlyingquantum
system and the measurement scheme can be much more general. Temporal input
data is encoded into the evolution of the reservoir at every time-step n via a
quantum channel UðunÞ; a non-trivial I/O map is enabled via partial readout and
subsequent reset of a readout subsystem while a memory subsystem retains the
memory of past inputs. Temporal quantum reservoir computing (QRC) output x(n)
are obtained via measurements (more precisely, stochastic unbiased estimators
�XðnÞ of expected features are constructed from S repetitions of the experiment, see
Method III A), and a learned linear combination is used to approximate the target
functional y(n) of un. The overall execution time of the circuit is O(NS), where N is
the length of the input temporal sequence.
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u = {u−∞,⋯ , u−1, u0, u1,⋯ , u∞}. A functionalF : u 7!ymaps a bounded
function u to another arbitrary bounded function y, where
y = {y−∞, ⋯ , y−1, y0, y1, ⋯ , y∞}. Without loss of generality, these func-
tions canbe normalized;we choose un∈ [− 1, 1] and yn∈ [ − 1, 1].Within
the reservoir computing paradigm44, this processing is achieved by
extracting outputs x(n), where n is a temporal index, from a physical
system evolving under said time-dependent stimulus un ≡ u(n).
Learning then entails finding a set of optimal time-independent
weights w to best approximate a desired F with a linear projector
yn ≡ y(n) = w ⋅ x(n). If the physical system is sufficiently complex, its
temporal response x(n) to a time-dependent stimulus u is universal in
that it can be used to approximate a large set of functionals F ½u� with
an error scaling inversely in system size and using only this simple
linear output layer27,28,45.

To analyze the utility of this learning framework, it proves useful
to quantify the space of functionals F ½u� that are accessible. For clas-
sical non-linear systems, a firmly established means of doing so is a
Volterra series representation of the input-output (I/O) map39:

xjðnÞ=
X1

k =0

X1

n1 = 0

� � �
X1

nk =nk�1

hðjÞ
k ðn1, � � � ,nkÞ

Yk

κ = 1

un�nκ
ð1Þ

where the Volterra kernels hðjÞ
k ðn1, � � � ,nkÞ characterize the dependence

of the systems’ measured output features at time n on its past inputs
un�nκ

. Hence the support of hðjÞ
k over the the temporal domain

(n1, ⋯ , nk) quantifies the notion of memory of a particular physical
system, with the kernel order k being the corresponding degree of
nonlinearity of the map. Most importantly, the Volterra series repre-
sentation describes a time-invariant I/Omap, as well as the property of
fading memory, which roughly translates to the property that the
reservoir forgets initial conditions and thus dependsmore strongly on
more recent inputs (For instance, formulti-stable dynamical systems, a
global representation such as Eq. (1) may not exist. However, a local
representation around each steady state can be shown to exist with a
finite convergence radius). The realization of such a time-invariant
map is essential for a physical system to be reliably employed for
inference on an input signal of arbitrary length, and thus for online
time series processing.

In classical physical systems, the existence of a unique informa-
tion steady state and the resulting fading memory property is deter-
mined only by the input encoding dynamics – the map from input
series to system state. More explicitly, the information extraction step
(sometimes referred to as the “output layer”) on a classical system is
considered to be a passive action, so that the state can always be
observed at the precision required. However, for physical systems
operating in the quantum regime, the role of quantummeasurement is
fundamental: in addition to the inherent uncertainty in quantum
measurements as dictatedby theHeisenberguncertainty principle, the
conditional dependence of the statistical system state on prior mea-
surement outcomes – referred to as backaction – strongly determines
the information that can be extracted. Recent work in circuit-based
quantum computation has shown that the qualitative features of the
statistical steady state of monitored circuits strongly depend on the
rate of measurement46,47. In particular, generic quantum systems that
alternate dynamics and measurement (input encoding and output in
the present context) are known to give rise to deep thermalization of
the memory subsystem48,49, resulting in an approximate Haar-random
state with vanishing temporal memory. The absence of a compre-
hensive framework in QML for analyzing and implementing an
encoding-decoding system with finite temporal memory, along with
characterization tools for the accessible set of input-output func-
tionals, has hindered both a systematic study and the practical appli-
cation of online learning methods.

Here, we develop both a general temporal learning framework
suitable for qubit-based quantum processors and the associated
methods of analysis based on an appropriate generalization of the
Volterra Series analysis to monitored quantum systems, the Quantum
Volterra Theory (QVT). Our approach incorporates the effects of
backaction that results from quantummeasurements in the process of
information extraction.

We begin by providing a fundamental description of both the
information input and output processes that enable general time ser-
ies processing with quantum systems before specializing in the
NISQRC algorithm. The ‘input’ component of the map is given by a
pipeline (encoding) that injects temporal data {un} into a quantum
system through a general parameterized quantum channel UðunÞρ̂.
This channel could describe for instance continuous Lindblad evolu-
tion for a duration τ, namely eτLðunÞρ̂, as in Results’ subsection “Practical
machine learning using temporal data”, or a discrete set of gates as in
Results’ subsection “Experimental results on the quantum system”;
UðunÞ is generally applied to all qubits, and we assume only that they
are not explicitly monitored for its duration.

To enable persistent memory in the presence of quantum mea-
surement, we separate the L-qubit system intoMmemory qubits and R
readout qubits (L =M + R) and denote their respective Hilbert spaces
with superscript M and R. After evolution under any input un, only the
R readout qubits are (simultaneously) measured; this separation
therefore allows for the concept of partial measurements of the full
quantum system, which proves critical to the success of NISQRC. The
measurement scheme itself can be very general, characterized by a
positive operator-valued measure (POVM)

OR = M̂j ∣M̂j = Î
�M � Êj

n o
ð2Þ

satisfying Êjk0 and
P

j Êj = Î
�R

. Here we will consider a practically
implementable measurement in the readout qubit computational
basis, described by Êj = ∣bji hbj ∣: each bit-string bj is the R-bit binary
representation of integer j∈ {0, 1,⋯ , 2R − 1} denoting the bit-wise state
of the measured qubits.

As elucidated by the QVT analysis of Results’ subsection “Quan-
tum Volterra Theory”, a purification mechanism must necessarily
accompany readout to prevent thermalization and furnish our quan-
tum architecture with persistent fadingmemory. This is accomplished
by following each projective measurement operation with a determi-
nistic reset to the ground state ∣0i. The resulting measure-reset
operation we employ throughout this paper is formally described by

the POVM operators Êj = K̂
y
j K̂ j in Eq. (2), with non-hermitian Kraus

operators K̂ j = ∣b0i hbj ∣. In each measure-reset step, only the readout
qubits are measured in the computational basis and then reset to the
ground state, irrespective of the measurement outcome.

NISQRC is distinguished by the iterative encode-measure-reset
scheme depicted in Fig. 1. Explicitly, for a given input sequence u with
length N, we initialize the system in the state ρ̂M

0 � ∣0i 0h ∣�R. For each
element of the input sequence un, an encoding step is comprised of
unmonitored evolution of all qubits via UðunÞ followed by a measure-
reset operation OR. The measurement outcome in this single shot is a
random bitstring b(s)(n), and the resulting state is ρ̂M,cond

n � ∣0i 0h ∣�R:
the memory qubits are in a state conditioned on the measurement
outcome, and the readout qubits are reset. The subsequent input is
then encoded in this state, i.e., Uðun + 1Þ ρ̂M,cond

n � ∣0i 0h ∣�R
� �

, and the
process is iterated as long as there is data in the pipeline. This structure
elucidates the naming of the unmeasured memory qubits: these are
the only qubits that retain the memory of past inputs.

The above description yields a set of N measurement outcomes
{b(s)(n)} observed in a single shot s of the quantum circuit. In order to
obtain statistics and therefore to output features as expected values of
observables M̂j, we perform S repetitions of this circuit for a given u
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sequence: the total execution time is NS, linear with respect to shots S
and input lengthN. The resulting readout features are formally defined
as the probability

xjðnÞ= Pr½bðsÞðnÞ=bj ju�, ð3Þ

which are estimated by the empirical mean �XjðnÞ= ð1=SÞ
P

sδðbðsÞðnÞ,bjÞ
of fbðsÞðnÞgs2½S� (see “Methods” subsection “Generating features via
conditional evolution and measurement” for more details of the
NISQRC algorithm). We show in Supplementary Note 2 that at time
step n, xj(n) can be computed efficiently through

xjðnÞ=Tr M̂jρ̂
MR
n

� �
, ð4Þ

where ρ̂MR
n is the effective full L-qubit system state at time step n prior

to measurement.
The output yn � yðnÞ=w � xðnÞ 2 R is obtained from the mea-

surement results in each step, defining the functional I/O map which
we characterize next (see details in “Methods” subsection “Generating
features via conditional evolution and measurement” and “The quan-
tum Volterra theory and analysis of NISQRC”). This complete archi-
tecture, from the quantum circuit generating measurement outcomes
for a given input, to the construction of weighted output features, is
depicted schematically in Fig. 1. We note that reset operations have
been used implicitly in prior work on quantum reservoir algorithms,
where the successive inputs are encoded in the state of an ‘input’
qubit26,50. However the critical role of the reset operation in endowing a
quantum reservoir with a persistent memory, discussed in the next
subsection, has so far not been highlighted.

While for null inputs (i.e., un =0 for all n) such quantum systems
are guaranteed to have a unique statistical steady state, the existence
of a nontrivial memory and kernel structure is much more involved.
Through QVT (see “Methods” subsection “The quantum Volterra the-
ory and analysis of NISQRC”), we show that these requirements place
strong constraints on the encoding and measurement steps viz. the
choice of (U, M̂j). This then enables us to propose an algorithm for
online learning that provably provides a controllable and time-
invariant temporal memory (which will be referred to as persistent
memory) – enabling inference on arbitrarily long input sequences even
on NISQ hardware without any error mitigation or correction.

Quantum Volterra theory
In NISQRC the purpose of the partial reset operation is to endow the
system with asymptotic time-invariance, a finite persistent memory,
and a nontrivial Volterra Series expansion for the system state (see
“Methods” subsection “The quantum Volterra theory and analysis of
NISQRC” and Supplementary Note 3):

ρ̂MR
n =

X1

k =0

X1

n1 = 0

� � �
X1

nk =nk�1

ĥkðn1, � � � ,nkÞ
Yk

κ = 1

un�nκ
: ð5Þ

where all Volterra kernels ĥk are quantum operators. The classical
kernels in Eq. (1) describing the measured features can be extracted
through hð jÞ

k =TrðM̂jĥkÞ. We refer to this analysis as the Quantum Vol-
terra Theory (QVT). Through analytical arguments based on the QVT,
we show that omitting the partial reset operation renders all Volterra
kernels trivial – a finding corroborated by our experimental results in
Results’ subsection “Experimental results on quantum system”.

QVT also provides a way to characterize the important memory
time-scales of the I/O map generated by the NISQRC algorithm
through a given encoding, which we use in Results’ subsection “Prac-
tical machine learning using temporal data” to aid encoding design for
a specificML task on an experimental system. In what follows, we show

that inferenceon an indefinitely long input sequence can be done even
in the presence of dissipation and decoherence.

Consider an input-encoding UðunÞρ̂= eτLðunÞρ̂ where

LðuÞρ̂ = � i½ĤðuÞ,ρ̂�+DTρ̂, ð6Þ

representing evolution under a parameterizedHamiltonian ĤðunÞ for a
duration τ in the presence of dissipationDT. For concreteness, we take
DT =

PL
i= 1γiD½σ̂�,z

i � describingdecoherenceprocesses and studyhere a
specific Ising Hamiltonian encoding ĤðuÞ= Ĥ0 +u � Ĥ1 inspired by
quantum annealing and simulation architectures (other ansätze can
likewise be considered),

Ĥ0 =
X

hi,i0 i
Ji,i0 σ̂

z
i σ̂

z
i0 +

XL

i= 1

ηx
i σ̂

x
i , Ĥ1 =

XL

i = 1

ηz
i σ̂

z
i : ð7Þ

The coupling strength Ji,i0 , transverse x-field strength ηx
i and long-

itudinal z-drive strength ηz
i are randomly chosen but then fixed for all

inputs {un} (see Supplementary Note 1 for more details). The encoding
channel is applied for duration τ, and each qubit has a finite lifetime
T1 = γ−1. We will specify the number ofmemory and readout qubits of a
given QRC with the notation (M +R).

In Fig. 2(a), we plot the first two Volterra kernels h1 and h2
(cf. Eq. (1)), for a random (2 + 1)-qubit QRC using the above encoding
and the reset scheme. The expression for these kernels has been
derived from the QVT; their numerical construction is discussed in
Methods, also see Supplementary Equations 43–45. Importantly, we
find all kernels have an essential dependence on the statistical steady
state or fixed-point in the absence of any input: ρ̂M

FP = lim
n!1

ρ̂M
n jun =0

.
Here ρ̂M

n jun =0
=Pn

0ρ̂
M
0 is obtained by n applications of the null-input

single-step quantum channel P0, defined in Methods’ subsection “The
quantum Volterra theory and analysis of NISQRC”. The properties of
quantum Volterra kernels, including their characteristic decay time,
can be related to the spectrum of P0, defined by P0ϱ̂

M
α = λα ϱ̂

M
α . Here ϱ̂

M
α

Fig. 2 | Quantum Volterra Theory (QVT) analysis for (M + R)-qubit reservoir.
a First and second order Volterra kernels in a (2 + 1)-qubit QRC, which vanish at
large n1 and n2 due to finite memory nM. b Fixed-point of memory subsystem ρ̂M

FP

with reset (top) and without reset (bottom), starting from an arbitrary initial state
(center). Without reset, the fixed point is always the trivial fully-mixed state and
Volterra kernels vanish. The top panel shows the distribution of the 4M = 256
eigenvalues of P0 in a (4 + 2)-qubit QRC, where red dots correspond to the static
unit eigenvalue λ1= 1. The remaining eigenvalues λα≥2 (blue) evolve with evolution
time τ, leading to a variable memory time. The bottom panel shows the resulting
memory time nM as a function of the evolution duration τ. c Memory time nM as a
function of qubit lifetimes T1 = γ−1, in terms of the evolution duration τ in a (4 + 2)-
qubit QRC. Provided T1≫ τ, nM ! n0

M, so that the QRC memory is mostly domi-
nated by its lossless dynamical map and not by T1 in this regime.
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are eigenvectors that exist in the 4M-dimensional space of memory
subsystem states. The eigenvalues satisfy 1 = λ1 ≥ jλ2j≥ � � � ≥ jλ4M j≥0;
examples are plotted in Fig. 2(b) for various values of τ. The unique
eigenvector corresponding to the largest eigenvalue λ1 = 1 is special,
being the fixed point of thememory subsystem, ϱ̂M1 = ρ̂M

FP, reached once
transients have died out.

The second largest eigenvalue λ2 determines the time over which
memory of an initial state persists as this fixed point is approached,
and is used to identify a memory time nM = � 1= ln jλ2j. Note that this
quantity is dimensionless and can be converted to the actual passage
of time through multiplication by τ, while nM itself non-trivially
depends on τ (see Fig. 2(b)). Memory time describes an effective
‘envelope’ for a system’s Volterra kernels; an additional nontrivial
structure is also required for QRC to produce meaningful functionals
of past inputs. With the spectral problem at hand, we next analyze the
information-theoretical benefit of the reset operation. Firstly, the
absence of the unconditional reset operation produces a unital P0

(“unital” refers to an operator that maps the identity matrix to itself)
with resulting ρ̂M

FP = I
�M=2M . This fully mixed state is inexorably

approached after nM steps under any input sequence and retains no
information on past inputs: all Volterra kernels, therefore, vanish,
despite a generally-finitenM. Such algorithms (e.g., refs. 27,30) areonly
capable of processing input sequences of length nM and would not
retain a persistent memory necessary for inference on longer
sequences of inputs. Hence such encodings would be unsuitable for
online learning on streaming data. The possibility of inference through
the transients has been observed and utilized before (see e.g.,
refs. 12,51,52) in the context of classical reservoir computing. However,
the simple yet essential inclusion of the purifying reset operation
avoids unitality – more generally, a common fixed point for all u-
encoding channels – which we find is the key to enabling nontrivial
Volterra kernels and consequent online QRC processing (see “Meth-
ods” subsection “The quantum Volterra theory and analysis of
NISQRC” and also ref. 53). Once such an I/Omap is realized, λα and the
consequentmemory properties can bemeaningfully controlled by the
QRC encoding parameters. As shown in Fig. 2(b) the characteristic
decay time set by nM, for instance, decreases across several orders-of-
magnitude with increasing τ.

The partial measurement and reset protocol also resolves the
unfavorable quadratic runtime scaling of prior approaches. A wide
range of proposals and implementations of QRC27,29,54 consider
the read-out of all constituent qubits at every output step, terminating
the computation. Not only does this preclude inference on streaming
data, it requires the entire input sequence to be re-encoded to proceed
one step further in the computation, leading to anO(N2S) running time.
As shown in schematic Fig. 1, incorporating partial measurement with
reset in NISQRC does not require such a re-encoding; the entire input
sequence can be processed in any givenmeasurement shot S, enabling
online processing with an O(NS) runtime, while maintaining a con-
trollable memory timescale. We note that an alternative scheme to
remedy this issue has been suggested in ref. 50, which relies on
information extraction through continuous weak measurement.

Next, we show that the nontrivial nature of Volterra kernels rea-
lized by the NISQRC algorithm is preserved under the inclusion of
dissipation. For example, we explore the effect of finite qubit T1 on nM
in Fig. 2(c). If T 1=τ >n

0
M, where n0

M is the memory time of the lossless
map, then nM ! n0

M and is essentially independent of T1, determined
instead by the unitary andmeasurement-induced dynamics. Therefore
the design of the encoding algorithmhas to be guided bymatching the
memory time of the reservoir to the longest correlation time in the
input data. Additional design criteria are discussed in Section Discus-
sion. As a result, lossyQRCs can still be deployed for online processing,
with a total run time Trun that is unconstrained by (and can therefore
far exceed) T1. We will demonstrate this via simulations in Results’
subsection “Practical machine learning using temporal data” with

Trun ≫ T1, and via experiments in Results’ subsection “Experimental
results on the quantum system” for Trun≃ T1; in the latter Trun is limited
only by memory buffer constraints on the classical backend.

Practical machine learning using temporal data
Thus far, we have assumed outputs to be expected features xj(n),
which, in principle assumes an infinite number of measurements. In
any practical implementation, one must instead estimate these fea-
tures with S shots or repetitions of the algorithm for a given input u.
The resulting QSN constrains the learning performance achievable in
experiments on quantum processors in a way that can be fully
characterized9 and is therefore also included in numerical simulations
which we present next.

To demonstrate the utility of the NISQRC framework, we consider
a practical application of machine learning on time-dependent classi-
cal data: the channel equalization (CE) task11,14. Suppose one wishes to
transmit a messagem(n) of length N, which here takes discrete values
from { − 3, − 1, 1, 3}, through an unknown noisy channel to a receiver.
This medium generally distorts the signal, so the received version u(n)
is different from the intended m(n). Channel equalization seeks to
reconstruct the original message m(n) from the corrupted signal u(n)
as accurately as possible, and is of fundamental importance in com-
munication systems. Specifically, we assume themessage is corrupted
by nonlinear receiver saturation, inter-symbol interference (a linear
kernel), and additive white noise11,14 (additional details in Supplemen-
tary Note 6). As shown in Fig. 3(a), even if one has access to the exact
inverse of the resulting nonlinear filter, the signal-to-noise (SNR) of the
additive noise bounds the minimum achievable error rate. We also
show the error rates of simply rounding u(n) to the nearest m, and a

Fig. 3 | Numerical results for the channel equalization (CE) task with Hamilto-
nian ansatz. a Error rates on test messages for the CE task with a Hamiltonian
ansatz (2 + 4)-qubit QRC for two distinct connectivities shown in (b) The fully-
connected QRC in red has Jacobian rank RJ = 2R − 1 = 15 and is shown for both S → ∞

(circles) and finite S = 105 (⋆), whereas the split QRC has RJ = 2(22 − 1) = 6 and only
S → ∞ is plotted in magenta. These are compared with the error rates of naive
rounding (black dash-dots) and logistic regression on the current signal (yellow +,
see Supplementary Note 6), and the exact channel inverse (blue dashed). c Perfor-
mance of connected QRC on SNR = 20dB test signals (solid) of increasing length
Nts≤ 5000,with shots S = 105. Training error onN = 100-lengthmessages is indicated
for comparison in dashed lines. Without reset (red) or using 4 ancilla qubit ansatz
with quantum non-demolition (QND) readout (proposed in ref. 30, green), the
algorithms both fail, approaching the random guessing error rate and showing that
both architectures suffer from the thermalization problem. Performance is only
slightly reduced from the dissipation-free case (blue) when strong decay T1 = 10τ is
included (purple). All error rates in (c) are averaged over 8 different test messages.
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direct logistic regression on u(n) (i.e., a single-layer perceptron with a
softmax activation – see Supplementary Note 6). for comparison. Both
these approaches are linear and memory-less and, therefore, perform
poorly on the non-trivial nonlinear filter we consider, although logistic
regression outperforms rounding (≈ 30%) by inverting the linear por-
tion of the distortion.

We now perform the CE task using the NISQRC algorithm on a
simulated (2 + 4)-qubit reservoir under the ansatz of Eq. (7), as could be
realized in quantum annealing hardware (see Fig. 3). We will later
demonstrate the same task in experiments with a completely different
quantum system and encoding ansatz, implemented on a super-
conducting quantum processor (see Fig. 4). The ability to efficiently
compute the Volterra kernels for this quantum system immediately
provides guidance regarding parameter choices. In particular, we
choose random parameter distributions such that the average (across
the circuit) Ji,i0τ, η

x
i τ and ηz

i τ provides a memory time nM ≈O(101), on
the order of the length of the distorting linear kernel h(n), which is 8.
These QRCs have K = 24 = 16 readout features fxjðnÞgj2½K � whose corre-
sponding time-independent output weights w are learned by mini-
mizing cross-entropy loss on 100 training messages of length N = 100
(see Supplementary Note 6 for additional details). The resulting
NISQRCperformance on testmessages is studied in Fig. 3(a), wherewe
compare two distinct coupling maps shown in Fig. 3(b). In the highly-
connected (lower) system theperformance approaches the theoretical
bound for S → ∞; finite sampling (here, S = 105 is in the range typically
used in experiments) increases the error rate as expected, but the

increase in error rate in numerical simulations is observed to depend
on the encoding (not reported here). In all cases, NISQRC significantly
outperforms direct logistic regression due to its ability to reliably
implement non-linear memory kernels and therefore approximate the
distorting channel inverse.

Wenote that the split system (upper) performs significantlyworse
even without sampling noise: this is because the quantum system lives
in a smaller effective Hilbert space – the product of two disconnected
three-qubit systems – and is far less expressive as a result. Although in
both cases the number of measured features is the same, those from
the connected system span a richer and independent space of func-
tionals. This functional independence can be quantified by the Jaco-
bian rank RJ, which is the number of independent u-gradients that can
be represented by a given encoding (Supplementary Note 5); an
increased connectivity and complexity of state-description generally
manifests as an increase in the Jacobian rank and consequent
improved CE task performance. This observation can be viewed as a
generalization of the findings in time-independent computation9 to
tasks over temporally-varying data, and also agrees with related recent
theoretical work29.

Most importantly, we demonstrate in Fig. 3(c) that the NISQRC
algorithmenables theuseof a quantumreservoir foronline learning. In
all cases studied here,N = 100 is used for training and the length of the
SNR = 20dB test messages Nts is varied. As suggested by the QVT,
the performance is unaffected by Nts even if it greatly exceeds the
lifetime of individual qubits: Nts = Trun/τ ≫ T1/τ = 10, and NISQRC can,
therefore, be used to perform inference on an indefinite-length signal
with noisy quantum hardware. As seen in the same figure, while dis-
sipation imposes only a small constant performance penalty, the reset
operation is critical: if removed, the error rate returns to that of ran-
domguessing, as the Volterra kernels vanish and the I/Omapbecomes
trivial.

We finally note that an arbitrarily-inserted reset operationmay not
be sufficient to create a non-zero persistent memory. For instance, an
analysis based on the QVT shows that despite its use in a recently stu-
died reservoir algorithm30 (based on a quantum non-demolition mea-
surement proposal in ref. 27), the reset operation can not avoid a zero
persistentmemory, effectively resulting in an amnesiac reservoir. In this
scheme, the quantum circuit is coupled to ancilla qubits by using
transversal CNOT gates. Upon closer examination it is found that while
theprojectivemeasurementof ancilla qubits leads to readout of system
qubits and their collapse to the ancilla state via backaction, subsequent
reset of the ancillas does not reset the system qubits. This scheme
therefore suffers from the same thermalization problem as any no-reset
NISQRC does, and hence has zero persistent memory. We verify this
analysis in Fig. 3(c) by implementing theCE taskwith a four-ancilla-qubit
circuit. The error rates are found to be very close to the no-reset-
NISQRC one, whose I/O map we have shown before to be trivial (see
also Fig. 3(c)).

Experimental results on quantum systems
We nowdemonstrate NISQRC in action by performing the SNR= 20dB
CE task on an IBM Quantum superconducting processor. To highlight
the generality of our NISQRC approach, we now consider a circuit-
based parametric encoding scheme inspired by a Trotterization of Eq.
(7), suitable for gate-based quantum computers. In particular, we use a
L = 7 qubit linear subgraph of the ibm_algiers device, with M = 3 mem-
ory qubits and R = 4 readout qubits in alternating positions, as depic-
ted in Fig. 4(a). The encodingunitary for each timestepn is also shown:

ÛðunÞ= WðJÞRz ðθz +θIunÞRxðθxÞ
� �nT

, where Rx,z are composite Pauli-

rotations applied qubit-wise, and WðJÞ defines composite Rzz gates
between neighboring qubits, all repeated nT = 3 times (for parameters
θx,z,I, J and further details see “Methods” subsection “IBMQ
implementation”).
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Fig. 4 | Experimental results for the channel equalization task with circuit
ansatz. a (3 + 4)-qubit linear chain of the ibm_algiers device used to perform the CE
task. Filled colors represent qubit T1 time according to the displayed colorbar, for
the specific experimental runwith the split chain. Qubits indexed {8, 14, 19} are used
for memory and qubits {5, 11, 16, 22} for readout, and gate-decomposition of the
encoding unitary ÛðunÞ is depicted. Removing gates shaded in brown yields two
smaller chains to explore the role of connectivity, while removing reset operations
(shaded peach) allows switching from a non-unital to a unital I/O map. b Testing
error rates for the SNR = 20dB CE task of Results' subsection “Practical machine
learning using temporal data” with N = 20 on the ibm_algiers device in filled circles
and in simulation in open circles, as a function of number of shots S. The connected
circuit in blue outperforms the split circuit in brown and the circuit without reset in
peach. For comparison, we plot the testing error rate of logistic regression (yellow
line), as well as random guessing (black dashed line).
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Realizing the NISQRC framework with the circuit ansatz depic-
ted in Fig. 4(a) requires the state-of-the-art implementation of mid-
circuit measurements and qubit reset, which has recently become
possible on IBMQuantum hardware55. We plot the testing error using
the indicated linear chain of the ibm_algiers device as a function of
the number of shots S in solid blue Fig. 4(b), alongside simulations of
both the ideal unitary circuit andwith qubit losses in open circles.We
clearly observe that performance is influenced by the number of
shots available, and hence by QSN. In particular, for a sufficiently
large S, the device outperforms the same logistic regression method
considered previously. For the circuit runs, the average qubit
coherence times over 7 qubits are Tav

1 = 124μs, Tav
2 = 91μs (see Sup-

plementary Note 9 for the ranges of all parameters, which vary over
the time of runs as well), while the total circuit run time for a single
message is Trun ≈ 117 μs. Even though T run ’ Tav

1 , the CE task perfor-
mance using NISQRC on ibm_algiers is essentially independent of
qubit lifetimes. This is emphatically demonstrated by the excellent
agreement between the experimental results and simulations
assuming infinite coherence-time qubits. In fact, finite qubit decay
consistent with ibm_algiers leaves simulation results practically
unchanged (as plotted in dashed blue); we find that T1 times would
have to be over an order of magnitude shorter to begin to detri-
mentally impact NISQRC performance on this device (see Supple-
mentary Note 7). We further find that artificially increasing Trun
beyond T1 by introducing controlled delays in each layer also leaves
performance unchanged (see Supplementary Note 8).

Using the same device, we are able to analyze several important
aspects of the NISQRC algorithm. First, we consider the same CE task
with a split chain, where the connection between the qubits labeled ‘14’
and ‘16’ on ibm_algiers is severed by removing the Rzz gate highlighted
in brown in Fig. 4(a). The resulting deviceperformance using these two
smaller chains is worse, consistent both with simulations of the same
circuit and the analogous split Hamiltonian ansatz studied in Results’
subsection “Practical machine learning using temporal data”. Next, we
return to the 7 qubit chain but now remove reset operations in the
NISQRC architecture, shaded in red in Fig. 4(a): all other gates and
readout operations are unchanged. The device performance now
approaches that of random guessing: the absence of the crucial reset
operation leads to an amnesiac QRC with no dependence on past or
present inputs. This remarkable finding reinforces that reset opera-
tions demanded by the NISQRC algorithm are, therefore, essential to
imbue the QRC withmemory and enable any non-trivial temporal data
processing.

We note that for these experiments, while performance qualita-
tively agrees well with simulations, some quantitative discrepancies
are observed. Our deployment of mid-circuit measurements in their
earliest implementation on IBM Quantum was accompanied by some
technical constraints; for example, not all shots for a given instance of
the CE task could be collected in contiguous repeated device runs,
instead sometimes being separated by several hours (due to queuing
times as well as classical memory buffer constraints on the number of
shots that could be collected in a single experiment). Simply put, this
means that the device could suffer non-trivial parameter drifts from
one type of device configuration to the next, and even during the
course of collecting all shots for a specific configuration. In particular,
we find that qubit lifetimes for experiments with the split chain, and
the connected chain without reset, were significantly shorter than for
the connected chain with reset (see Supplementary Tables 1–3), which
could lead to the discrepancy in comparison to simulations, where we
assumed a fixed coherence time distribution. Resource constraints
similarly restrict us to limited training and testing set sizes, which can
also lead to variance in performance. We anticipate such technical
constraints to be alleviated as mid-circuit measurement implementa-
tions mature on IBM Quantum, enabling even more accurate corre-
spondence with simulations.

We also note that there is room for improvement in CE perfor-
mance when compared against Hamiltonian ansatz NISQRC of similar
scale in Fig. 3. A key difference is the reduced number of connections
in the nearest-neighbor linear chain employed on ibm_algiers; includ-
ing effective Rzz gates between non-adjacent qubits significantly
increases the gate-depth of the encoding step, enhancing sensitivity to
circuit-fidelity due to increasing runtimes. The circuit ansatz can also
be optimized - using knowledge of the Volterra kernels - for better
nonlinear processing capabilities demandedby theCE task, in addition
to memory capacity determined by nM. Nonetheless, the demon-
strated performance and robustness of the NISQRC framework to
dissipation already suggests its viability for increasingly complex time-
dependent learning tasks using actual quantum hardware.

Discussion
A key technical advancement in our work is the formulation of the
Quantum Volterra Theory (QVT) to describe the time-invariant input-
outputmap of a quantum system under temporal inputs and repeated
measurements. Insights provided by the QVT enabled us to propose
the essential component of theNISQRC algorithm - deterministic post-
measurement reset to avoid thermalization due to repeated mea-
surements - which allows the quantum system to retain persistent
memory of temporal inputs even under projective measurements and
their associated strong backaction. The resulting algorithm enables
inference on a signal that can be arbitrarily long, provided the
encoding is designed to endow the reservoir with a memory that
matches the longest correlation time in the data.

While we have applied the QVT to qubit-based circuits, our ana-
lysis does not make an explicit assumption on the Hilbert space
dimension of the quantum system, and allows for completely general
measurements through its formulation in terms of POVMs; as a result,
it canbe applied toother finite-level quantum systems suchas qudits24,
and can be extended to continuous-variable quantum systems28,31. We,
therefore, believe theQVTprovides the ideal framework to analyze the
memory and computational capacity of temporal information pro-
cessing schemes using general quantum systems and their associated
measurement protocols.We note here that the useof continuousweak
measurements, analyzed in ref. 50, provides an alternative approach to
endowing the reservoir with finite persistent memory and can be
analyzed with QVT for its task-specific optimization.

Going beyond the crucial reset component, we have demon-
strated that QVT can be invaluable in identifying general design prin-
ciples for qubit-based systems as reservoirs. For example, while
measuring some fraction of qubits is essential for extracting infor-
mation, measuring all qubits imposes a trivial memory time. We
employ M ≃R in this work, but an optimal separation of memory and
readout qubitsmay depend on specific tasks. A simple rule of thumb is
to chooseM/R, together with τ and other drive strengths, tomatch the
memory time of the physical system to the longest correlation time in
thedata. In the channel equalization task studied inResults’ subsection
“Practical machine learning using temporal data”, the data correlation
time is fixed by choice of the distorting channel and we have then
chosen M/R to endow the quantum system with a memory time –

calculated through the QVT formalism – that matches that time, about
8 steps (recall memory time is measured in the number of encoding
steps). Especially, the duration of the unmonitored dynamics, τ, has
been chosen to be long enough to generate non-linear kernels that
match the known order of the non-linearity of the distorting channel,
but short enough to avoid limiting thememory timeby the shortest T1.
For the latter requirement, the kind of analysis shown in Fig. 2c, cal-
culated through QVT, can act as a very helpful guide. We have
observed that even when there is a large spread in T1, the physical
memory timemay be longer than the shortest T1, presumably through
the delocalization of the informationon longer-livedmemory qubits in
the circuit. In addition, qubit connectivity, analyzed in Fig. 3a, can help
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with the generation of functions that are sufficiently complex tomatch
the functional complexity of the task.

Finally, the most crucial design criterion for any quantum system
intended to process streamingdata is that themapP0 be non-unital. In
an architecture with memory and readout qubits, the presence of a
reset operation is essential but not on its own sufficient: as noted
earlier the quantum channel must additionally contain input-
dependent operations on both memory and readout qubits to pre-
vent scrambling of memory qubits and endow the QRC state with the
fading memory property. To address an important example, it is
straightforward to confirm that any channel with input-dependent
operations on only memory qubits UðunÞ and an arbitrary set of con-
trolled gates frommemory to readout qubits (e.g., Fig. 5d in ref. 30) is
unital on memory qubits and therefore lacks a persistent temporal
memory.We note that in such cases the reservoir can still be trained to
implement complicated functions in the transient state12, but genuine
online learning will not be possible. The QVT presented here pre-
scribes how to avoid such pitfalls when designing a quantum channel
for temporal data processing: one can simply check whether the
resultingP0 is a unitalmap.Wehavenot carriedout here an exhaustive
study of the optimal design principles for more complex or general
classes of tasks, but we hope that the simple and fundamental guide-
lines we have followed for designing an experimental reservoir to
accurately carry out equalization on RF-encoded messages illustrate
the utility of QVT in the design of a hardware reservoir.

By enabling online learning in the presence of losses, NISQRC
paves the way to harness quantum machines for temporal data pro-
cessing in far more complex applications than the CE task demon-
strated here. Examples include spatiotemporal integrators, and ML
tasks where spatial information is temporally encoded, such as video
processing. Recent results provide evidence that the most compelling
applications, however, lie in the domain of machine learning on weak
signals originating from other, potentially complex quantum
systems15,56, for the purposes of quantum state classification. In tack-
ling such increasingly complex tasks, the scale of quantum devices
required is likely to be larger than those employed here. The NISQRC
framework can be applied irrespective of device size; however, its
readout features at a given time live in a K = 2R dimensional space. For
applications requiring a large R, the exponential growth of the feature-
space dimension may give rise to concerns with under-sampling,
as in practice the available number of shots S may not be suffi-
ciently large. In such large-R regimes, certain linear combinations
of measured features can be found, known as eigentasks, that
provably maximize the SNR9 of the functions approximated by a
given physical quantum system trained with S shots. Eigentask
analysis provides very effective strategies for noise mitigation. In
ref. 9 the Eigentask Learning methodology was proposed to
enhance generalization in supervised learning. For the present
work, such noise mitigation strategies were not needed as the size
of the devices used was sufficiently small to efficiently sample. An
interesting direction is the application of Eigentask analysis to
NISQRC, which we leave to future work.

The present work and the availability of an algorithm for infor-
mation processing beyond the coherence time presents new opportu-
nities for mid-circuit measurement and control. While mid-circuit
measurement is essential for quantum error correction57, its recent
availability on cloud-based quantum computers has allowed the
exploration of other quantum applications on near-term noisy qubits.
Local operations such asmeasurement followed by classical control for
gate teleportation have been used to generate nonlocal
entanglement58–60. In addition, mid-circuit measurements have been
employed to study critical phenomena suchasphase transitions61–63 and
are predicted to allow nonlinear subroutines in quantum algorithms64.
The present work opens up a new direction in this application space,
namely the design of self-adapting circuits for inference on temporal

data with slowly changing statistics. This would require dynamic pro-
gramming capabilities for mid-circuit measurements, not employed in
the present work. We show here that implementing even the relatively
simple CE task challenges current capabilities for repeated measure-
ments and control; having themeans todeploymore complexquantum
processors for temporal learning via NISQRC can push hardware
advancements to more tightly integrate quantum and classical pro-
cessing for efficient machine-based inference.

Methods
Generating features via conditional evolution andmeasurement
Here we detail how an input-output functional map is obtained in the
NISQRC framework. The quantum system is initialized to
ρ̂MR
0 = ρ̂M

0 � ∣0i 0h ∣�R, where ρ̂M
0 is the initial state, which is usually set to

be ∣0i 0h ∣�M . Then, for each run or ‘shot’ indexed by s, the process
described in the following paragraph is repeated.

Before executing the n-th step, the overall state can be described
as ρ̂M,cond

n�1 � ∣0i 0h ∣�R (usually pure), where the superscript cond
emphasizes that thememory subsystem state is generally conditioned
on the history of all previous inputs fumgm≤n�1 and all previous sto-
chastic measurement outcomes. The readout subsystem state is in a
specific pure state, which can be ensured by the deterministic reset
operationwedescribe shortly. Then, the current input un is encoded in
the quantum system via the parameterized quantum channel UðunÞ,
generating the state ρ̂MR,cond

n =UðunÞðρ̂M,cond
n�1 � ∣0i 0h ∣�RÞ. In this

work, UðunÞ takes the form of continuous evolution under Eq. (6)
for a duration τ, or the discrete gate-sequence ÛðunÞ depicted in
Fig. 4a. The R readout qubits are then measured per Eq. (2), and
the observed outcome is represented as an R-bit string:
bðsÞðnÞ= ðbðsÞ

M + 1ðnÞ, � � � ,bðsÞ
M +RðnÞÞ. Here we consider simple ‘computa-

tional basis’ (i.e., σ̂z)measurements, where eachbit simply denotes the
observed qubit state. A given outcome j occurs with conditional
probability TrðM̂jρ̂

MR,cond
n Þ as given by the Born rule, and the quantum

state collapses to the new state ρ̂M,cond
n � ∣bji hbj ∣ associated with this

outcome. Finally, all R readout qubits are deterministically reset to the
ground state (regardless of the measurement outcome); the quantum
system is, therefore, in the state ρ̂M,cond

n � ∣0i 0h ∣�R. This serves as the
initial state into which the next input un+1 is encoded, and the above
process is iterated until the entire input sequence u is processed. It is
important to notice that ρ̂M

n depends on the observed outcome in step
n − 1, and thus, the quantum state and its dynamics for a specific shot
are conditioned on the history ofmeasurement outcomes fbðsÞ

i ðmÞgm<n.
By repeating the above process for S shots, one obtains what is

effectively a histogram of measurement outcomes at each time step n
as represented in Fig. 1. The output features are taken as the frequency
of occurrence of each measurement outcome, as in ref. 9:
�XjðnÞ= 1

S

PS
s = 1X

ðsÞ
j ðn;uÞ, where X ðsÞ

j ðn;uÞ= δðbðsÞðnÞ,bjÞ counts the

occurrence of outcome j at time step n. These features are stochastic
unbiased estimators of the underlying quantum state probability

amplitudes xjðnÞ=EX ½X ðsÞ
j ðn;uÞ�= limS!1 �XjðnÞ9. As noted in themain

text, the final NISQRC output is obtained by applying a set of time-
independent linear weights to approximate the target functional
�yn =w � �XðnÞ. Importantly, during each shot s∈ [S], we execute a circuit
with depth N; the total processing time is therefore O(NS). If instead
one re-encoded Nm previous inputs prior to each successive mea-
surement the processing time is O(NmNS): Nm =O(N) if the entire past
sequence is re-encoded as is conventionally done in QRC26,27,50.

The quantum Volterra theory and analysis of NISQRC
At any given time step n, the conditional dependence on previous
measurement outcomes, presented in the “Methods” subsection
“Generating features via conditional evolution and measurement”, is
usually referred to as backaction. Defining ρ̂MR

n as the effective pre-
measurement state of the quantum system at time step n of the
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NISQRC framework, quantum state evolution from time step n − 1 to n
can be written via the maps:

ρ̂MR
n =UðunÞ TrRðρ̂MR

n�1Þ � ∣0i 0h ∣�R
� �

, ð8Þ

ρ̂M
n =TrRðUðunÞðρ̂M

n�1 � ∣0i 0h ∣�RÞÞ � CðunÞρ̂M
n�1, ð9Þ

whichdescribes the reset of the post-measurement readout subsystem
after time step n − 1, followed by input encoding via UðunÞ into the full
quantum system state. With an eye towards the construction of an I/O
map, it proves useful to introduce the expansion of the relevant single-
step maps UðuÞ and CðuÞ in the basis of input monomials uk:
UðuÞρ̂MR =

P1
k =0u

kRk ρ̂
MR and CðuÞρ̂M =

P1
k =0 u

kPk ρ̂
M. Then, via itera-

tive application of Eq. (9), ρ̂MR
n can be written as:

ρ̂MR
n =

X1

k1 ,��� ,kn =0

uk1
1 � � � ukn

n Rkn
Pkn�1

� � � Pk1
ρ̂M
0 � ∣0i 0h ∣�R

� �
: ð10Þ

The measured features xj(n) can then be obtained
via xjðnÞ=TrðM̂j ρ̂

MR
n Þ.

In Supplementary Note 3, we show that these xj(n) obtained using
the NISQRC framework can indeed be expressed as a Volterra series

xjðnÞ=
X1

k =0

X1

n1 = 0

� � �
X1

nk =nk�1

hð jÞ
k ðn1, � � � ,nkÞ

Yk

κ = 1

un�nκ
ð11Þ

in the infinite-shot limit. The existenceof thismanifestly time-invariant
form is only possible due to the existence of an information steady-
state, guaranteed for a quantum mechanical system under
measurement.

Due to fading memory, the Volterra kernel hðjÞ
k ðn1, � � � ,nkÞ char-

acterizes the dependence of the systems’ output at time n on inputs at
most nk steps in the past (recall n1≤⋯ ≤nk, see Eq. (11)). The evolution

of ρ̂MR
n upto step n − nk, namely for all i < n − nk, is thus determined

entirely by the null-input superoperator P0. Then the existence of a
Volterra series simply requires the existence of an asymptotic steady

state for the memory subsystem, lim
n!1

Pn
0ρ̂

M
0 = ρ̂M

FP. As shown in the

SupplementaryNote 3, suchafixedpoint is usually ensuredby themap

P0ρ̂
M = Cð0Þρ̂M =TrRðUð0Þðρ̂M � ∣0i 0h ∣�RÞÞ being a CPTP map in gen-

eric quantum systems. This immediately indicates the fundamental
importance of P0, the operator that corresponds to the single-step
map of the memory subsystem under null input: it determines the
ability of the NISQRC framework to evolve the quantum system to a
unique statistical steady state, guaranteeing the asymptotic time-
invariance property, and hence the existence of the Volterra series.

One byproduct of computing infinite-S features {xj(n)} is that it
enables us to approximately simulate f�XjðnÞg in a very deep N-layer
circuit for finite S, without sampling individual quantum trajectories
under N repeated projective measurements described in “Methods”
subsection “Generating features via conditional evolution and mea-
surement”. In fact, given any n, once we evaluate a probability dis-
tribution {xj(n) ≥0} satisfying ∑jxj(n) = 1, we can i.i.d. sample under this
distribution vector for S shots and construct the frequency f~XjðnÞg
as an approximation of f�XjðnÞg. The validity of this approximation
is ensured by the additive nature of loss functions in the time dimen-
sion. More specifically, given Q input sequences fuðqÞ 2 ½�1,1�Ngq2½Q�, a
general formof loss function isL = 1

QN

P
q

P
nLð�Xðn;uðqÞÞÞ. As shown in

Appendix C5 of ref. 9, 1
Q

P
qLð�Xðn;uðqÞÞÞ≈ 1

Q

P
qLð~Xðn;uðqÞÞÞ in all orders

of 1
S-expansion for any n ∈ [N], as long as Q is large enough. This is

because the probability distribution of f~XjðnÞg is exactly the same
as the distribution (marginal in time slice) of f�XjðnÞg. Therefore,
1

QN

P
q

P
nLð~Xðn;uðqÞÞÞ is a good approximation of L.

In SupplementaryNote 2 andSupplementaryNote 3,we showthat
without the reset operation, the fixed-point memory subsystem den-
sity matrix is the identity, ρ̂MR

FP = Î
�L
=2L. While this steady state is

independent of the initial state and therefore possesses a fading
memory, it can be shown that the I/O map it enables is entirely inde-
pendent of all past inputs as well, so that Volterra kernels hðjÞ

k =0 for
any k≤ 1. This yields a trivial reservoir, unable to provide any response
to its inputsu. Such single-stepmaps CðuÞ are referred to asunitalmaps
(maps that map identity to identity) and must be avoided for the
NISQRC architecture to approximate any nontrivial functional. The
inclusion of reset serves this purpose handily, although we have found
certain improper encodings with reset to still result in unitalmaps CðuÞ
(e.g., setting nT = 1 in the circuit ansatz depicted in Fig. 4(a)).

A more rigorous sufficient condition for obtaining a nontrivial
functional map, referred to as a fixed-point non-preserving map in
themain text, is that CðuÞ does not share the samefixed points for all u.
It is equivalently Pk ϱ̂

M
FP ≠0 for some k ≥ 1, due to the identity

CðuÞϱ̂MFP = ϱ̂MFP +
P1

k = 1u
kPk ϱ̂

M
FP. We will prove the importance of these

criteria in Supplementary Note 3. The breaking of this criteria will lead
to a memoryless reservoir for all earlier input steps: if Pk ρ̂

M
FP =0 for all

k≥1, then hðjÞ
k ðn1,n2, � � � ,nkÞ≠0 only if n1 = n2 = ⋯ = nk =0. A similar

result for quantum reservoirs characterized by quantum channels can
also be found from Theorem 2 in ref. 53.

Spectral theory of NISQRC: memory, measurement, and kernel
structures
Recall that we can always define the spectral problem P0ϱ̂

M
α = λα ϱ̂

M
α

where ϱ̂Mα are eigenvectors that exist in the ð2M Þ2 = 4M -dimensional
space of memory subsystem states and whose eigenvalues
satisfy 1 = λ1 ≥ jλ2j≥ � � � ≥ jλ4M j≥0. The importance of the spectrumof
P0 is obvious from the definition of ρ̂M

FP already. As ρ̂M
FP is the

fixed point of the map defined by P0, it must equal the eigenvector
ϱ̂M1 since λ1 = 1. Then writing the initial density matrix in terms of

these eigenvectors, ρ̂M
0 =

P
αd0α ϱ̂

M
α , the fixed point becomes

ρ̂M
FP = lim

n!1
ϱ̂M1 +

P
α ≥ 2d

0
αλ

n
α ϱ̂

M
α

� �
. This not only reproduces the result

lim
n!1

Pn
0ρ̂

M
0 = ρ̂M

FP but also shows that the approach to the fixed point

ρ̂M
FP = ϱ̂

M
1 must be determined by the magnitude of λ2; the smaller the

magnitude, the faster terms for α ≥2 decay and hence, the shorter
the memory time.

To see more directly how the spectrum of P0 influences the
memory of inputs, it is sufficient to analyze the Volterra kernels in Eq.
(1). Focusing on single-time contributions from un−p to xj(n) at all
orders of nonlinearity (multi-time contributions are exponentially
suppressed, see Supplementary Note 4), these may be expressed as

X1

k = 1

hðjÞ
k ðp�kÞuk

n�p =
X4M

α = 2

νðjÞα λp�1
α Fαðun�pÞ, ð12Þ

which can be viewed as a spectral representation of Volterra kernel
contributions to the jthmeasured featureobtained via POVM M̂j . Here,
FαðuÞ=

P1
k = 1 c

ðkÞ
α1 u

k define 4M − 1 internal features, so-called as they
dependonly on input encoding operators viaPk ϱ̂

M
α0 =

P4M

α = 2 c
ðkÞ
αα0ϱ̂Mα , and

are in particular independent of the measurement scheme. Nontrivial
Fα(u) and cðkÞα1 can be guaranteed if Pk ϱ̂

M
FP ≠0 for some k ≥1. The

dependence of observables on the measurement basis is via
coefficients νðjÞα =TrðM̂jR0ðϱ̂Mα � ∣0i 0h ∣�RÞÞ. Crucially, the weighting of
Fα(un−p) for p steps in the past is determined by eigenvalues λp�1

α ofP0.
For each α ≥2, it vanishes when we take a long time limit p → ∞. This
property is usually referred to as fading memory. It also clearly defines
a set of distinct but calculable, memory fading rates fjλαjgα ≥ 2.

Importantly, the ability to construct Volterra kernels and internal
features enables us to approximately treat the infinite-dimensional
function xjðnÞ=F jðu≤nÞ as a function with support only over a space
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with effective task dimension deff = O(nM), representing deff time steps
in the past:

xjðnÞ=F jðu≤nÞ≈F jðun�deff
, � � � ,un�1,unÞ, ð13Þ

and we can interpret the fading memory function as a function:
yðnÞ≈F ðun�deff

, � � � ,un�1,unÞ. In other words, at any given time NISQRC
can approximate nonlinear functions that live in a domain of dimen-
sion deff.

IBMQ implementation
We recall that the encoding circuit ÛðunÞ= Wð JÞRzðθz +θIunÞ

�

RxðθxÞÞnT for the experimental IBMQ implementation in the Results
subsection “Experimental results on the quantum system” describes
a composite set of single and two-qubit gates repeated nT times.
Here Rx,z are composite Pauli-rotations applied qubit-wise, e.g.,
Rz =

N
iR̂z ðθz

i + θ
I
iuÞ.WðJÞ defines composite two-qubit coupling gates,

Wð JÞ=Qhi,i0iW i,i0 ð JÞ=
Q

hi,i0i expf�iðJτ=nT Þσ̂z
i σ̂

z
i0 g for neighboring qubits

i and i0 along a linear chain in the device and some fixed J. The rotation
angles θx,z,I are randomly drawn from a positive uniform distribution
with limits [a, a+ δ], where a= τ

nT
θx,z,Imin and δ = τ

nT
Δθx,z,I . We find that

letting the number of Trotterization steps nT = 3 is sufficient to generate
a well-behaved null-input CPTP map P0. Our hyperparameter choices
are further tuned to ensure a memory time nM commensurate with the
CE task dimension. The particular hyperparameter choices for the plot
in Fig. 4 are θx,z,Imin = f1:0,0:5,0:1g, Δθx,z,I =θx,z,I

min , J= 1, nT= 3, and τ = 1.
In the experiment, mid-circuit measurements and qubit resets are

performed as separate operations, due to the differences in control
flow paths between returning a result and the following qubit
manipulation55. Related hardware complexities restrict us to a slightly
shorter instance of the CE task than considered in Results’ subsection
“Practical machine learning using temporal data”, with messagesm(n)
of length N = 20, submitted in batches of 200 jobs with 100 circuits
each and 125 observations (shots) per circuit in order to prevent
memory buffer overflows. Regardless, using cross-validation techni-
ques, we ensure that our observed training and testing performance is
not influenced by limitations of dataset size. We also forego the initial
washout period needed to reach ρMR

FP for similar reasons. Finally, the
W i,i0 ðJÞ rotations in the two-qubit Hilbert space that implement WðJÞ
are generated by the native echoed cross-resonance interaction of IBM
backends65, which provides higher fidelity than a digital decomposi-
tion in terms of CNOTs for Trotterized circuits66.

Data availability
The data generated for numerical results in this study have been
deposited in the GitHub repository under the accession link https://
github.com/skhanCC/NISQRC-Codes67. The raw experimental data
obtained from ibmq_algiers are not available in the GitHub repository
due to its huge size, and its access can be be made available to inter-
ested parties upon request. The processed experimental data are
available at the Github repository. The data of experimental para-
meters in this study are provided in the Supplementary Note 9. No
external data was used in this study.

Code availability
The code used in this article is available in the GitHub repository
https://github.com/skhanCC/NISQRC-Codes.
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