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Coherent multimode instabilities are responsible for several phenomena of recent interest in semiconduc-
tor lasers, such as the generation of frequency combs and ultrashort pulses. These techonologies have proven
disruptive in optical telecommunications and spectroscopy applications. While the standard Maxwell-Bloch
equations encompass such complex lasing phenomena, their integration is computationally expensive and offers
limited analytical insight. In this paper, we demonstrate an efficient spectral approach to the simulation of multi-
mode instabilities via a quantitative analysis of the instability of single-frequency lasing in ring lasers, referred
to as the Lorenz-Haken (LH) instability or the Risken-Nummedal-Graham-Haken (RNGH) instability in distinct
parameter regimes . Our approach, referred to as CFTD, uses generally non-Hermitian Constant Flux modes to
obtain projected Time Domain equations. CFTD provides excellent agreement with finite-difference integration
of the Maxwell-Bloch equations across a wide range of parameters in regimes of non-stationary inversion, in-
cluding frequency comb formation and spatiotemporal chaos. We also develop a modal linear stability analysis
using CFTD to efficiently predict multimode instabilities in lasers. The combination of numerical accuracy,
speedup, and semi-analytic insight across a variety of dynamical regimes make the CFTD approach ideal to
analyze multimode instabilities in lasers, especially in more complex geometries or coupled laser arrays.

I. INTRODUCTION

Lasers are complex dynamical systems the operation of
which is enabled by the interaction between the field of an
often-multimode cavity and a gain medium. For a con-
siderable part of the history of lasers, experimental efforts
have been focused on improving stability, monochromatic-
ity, power performance and beam quality. This is largely due
to specific applications where these attributes are desirable,
such as fiber optical telecommunication, materials processing,
and precision spectroscopy. Even in such high-performance
regimes, nonlinear, multimode effects emerge via mode com-
petition and spatial hole burning, which must be understood
and suppressed [1, 2] to maximize laser power and efficiency.
More recently, however, rather than an undesired effect, co-
herent multimode lasing phenomena have been the focus of
many studies [3–8]. Such phenomena include ultrashort (sub-
ps) pulse formation [9, 10] useful for precision machining [11]
and probing of ultrafast processes [12, 13]. Active mode lock-
ing is another example traditionally linked with the genera-
tion of ultrashort pulses [14, 15]; recent efforts have focused
on achieving mode locking in lasers with fast gain recovery,
such as quantum cascade lasers [16, 17]. Furthermore, soliton
generation has, in recent years, proven to be a disruptive tech-
nology via passive dissipative Kerr combs [18, 19] as well as
active platforms [20]. Optical frequency combs – whether or
not characterized by ultrashort pulses – are also a prime exam-
ple of a technology hinging on coherent instabilities that has
been impactful in applications of spectroscopy [21], metrol-
ogy [22, 23], optical clocks [24] and optical telecommunica-
tion [25].

In contrast to standard lasing regimes marked by station-
ary population inversion in the gain medium, coherent mul-
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timode instabilities present in the examples above are me-
diated by nontrivial dynamics of the lasing medium itself,
referred to as population pulsations in prior work [26].
One of the earliest predicted examples of such dynamics are
the instabilities of single-frequency lasing in ring lasers, of-
ten classed into Lorenz-Haken (LH, or ‘single-mode’ ) and
Risken-Nummedal-Graham-Haken (RNGH, or ‘multi-mode’)
instabilities [27, 28]. Either instability emerges past a second
threshold where the gain overcomes loss for additional modes,
leading to steady-state multi-frequency emission. This second
threshold was predicted to be at high pump powers, rendering
experimental verification elusive [29–32]. However, in more
recent years, low-threshold multimode instabilities have been
investigated in ring quantum cascade lasers [33–35], as well as
alternate geometries including Fabry-Pérot lasers [26, 36], and
the instability mechanism at play has been subject of much
work.

The development of simulation tools to capture such insta-
bilities is thus very timely. While the semi-classical Maxwell-
Bloch equations (MBEs) have provided the standard descrip-
tion of spatio-temporal lasing dynamics across the aforemen-
tioned single and multi-mode lasing regimes, the powerful
simulation methods that have been developed to simulate
MBEs are computationally expensive [37, 38], and provide
only limited analytic insight into these lasing phenomena. As
a result, alternative simulation methods to more efficiently an-
alyze lasing phenomena in nonlinear dynamical regimes are
highly desirable. Such schemes are also particularly relevant
with increasing interest in lasers of more complex geometries
or coupled laser arrays [39–43], for which simulation com-
plexity will further increase.

In this paper, we develop and validate a spectral approach
to simulating complex multimode laser instabilities to address
this need. While spectral or modal approaches have been
used previously to analyze laser instabilities [44], they use
lossless, closed cavity modes as a basis, and often consider
restricted parameter regimes to reduce the dimensionality of
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the MBEs. Our approach differs in these two keys aspects.
First, our spectral basis of choice is spanned by cold modes
defined by the lossy laser cavity: the so-called constant-flux
(CF) modes of the laser [45], which satisfy a generally non-
Hermitian boundary value problem with associated complex
eigenvalues. For cavities where the internal loss dominates
over loss due to openness and radiation, such as the original
RNGH and LH models we compare to , the modal theory can
be cast in terms of standard closed-cavity modes with com-
plex eigenvalues denoting intrinsic loss. Secondly, and more
importantly, we analyze the full MBEs, placing no constraints
on the gain medium dynamics. This requires us to use the
spectral basis to perform a spatial projection of the spatiotem-
poral inversion field, casting the modal theory in terms of a
general time-dependent inversion matrix. This non-standard
representation ultimately proves crucial to correctly captur-
ing the dynamics of the inversion field and thus of instabilities
mediated by population pulsations.

The resulting coupled-mode theory, referred to as CFTD in
our earlier work [46], has previously been applied to specific
situations where only brief violations of stationary inversion
occur, such as synchronization. However, in this paper we
test and demonstrate the utility of CFTD across a wide range
of regimes in ring lasers characterized by nontrivial dynamics
of the gain medium, encompassing both LH and RNGH insta-
bilities, below, past, and far above the so-called second thresh-
old. This spans dynamical phenomena ranging from decay-
ing spatiotemporal oscillations around a single-mode lasing
state, to stable broadband frequency combs, and even chaotic
dynamics. Crucially, we provide a thorough benchmarking
study of CFTD across these regimes using at least one of two
standard methods: finite difference time domain (FDTD) inte-
gration of multimode lasing dynamics and a split-step Runge-
Kutta method (SSRK) tailored to ring lasers. We find excel-
lent qualitative agreement across the broad range of consid-
ered regimes, with very good quantitative agreement in spe-
cific regimes that we identify. Furthermore, the agreement is
obtained via CFTD simulations several orders of magnitude
faster than FDTD or SSRK simulations.

Finally, the CFTD approach goes beyond providing an effi-
cient numerical tool: it also forms the foundation for a modal
linear stability analysis (LSA) that we show can be used to
predict multimode instabilities. The modal LSA explicitly de-
scribes the instability of discrete modes coupled via inversion
matrix elements describing gain medium dynamics. This is
in contrast to more standard perturbative approaches to ring
lasers, which analyze the instability of a continuous pertur-
bation of the spatiotemporal PDE [27]. Not only does the
modal LSA typically agree with the spatiotemporal (ST) LSA,
it can at times provide additional information. In particular,
the modal LSA derived from CFTD is natively aware of the
laser cavity mode spectrum, unlike the ST LSA. As a result,
we find it can correctly predict the absence of instabilities in
parameter regimes when a newly generated frequency does
not coincide with a cavity mode, in contrast to the ST LSA.
The numerical accuracy and efficiency of CFTD simulations,
together with predictive capabilities provided by the modal
LSA, make it ideal to study multimode instabilities in more

complex, coupled laser geometries.
This paper is organized as follows. In Sec. II we recount

the standard description of lasing via MBEs, including their
form within the slowly-varying envelope approximation typi-
cally employed in the analysis of ring laser instabilities. In
Sec. III, we present the CFTD approach starting from the
general MBEs, and obtain the set of time-dependent ordinary
differential equations (ODEs) that constitute the CFTD equa-
tions. Sec. IV considers the single-mode lasing regime below
the multifrequency instability threshold, applied in particular
to spatially non-trivial initial field distributions involving mul-
tiple spatial modes. In Sec. V, we consider dynamics above
the threshold of the ring laser instability leading to stable fre-
quency comb formation, as a function of laser loss parameters.
In Sec. VI we investigate the CFTD method in a parameter
space that leads to chaotic behavior, and finally in Sec. VII we
quantify the simulation time improvement that our method has
over spatiotemporal schemes.

II. MAXWELL-BLOCH EQUATIONS FOR RING LASERS

Lasing dynamics of a variety of lasers have been very suc-
cessfully described by MBEs for the electric field inside the
laser cavity E(r, t) coupled to the polarization P(r, t) and in-
version D(r, t) of the gain medium,

∇2E − n2

c2
Ë = µ0P̈ (1a)

Ṗ = (−iΩ− γ⊥)P − i
g2

ℏ
ED (1b)

Ḋ = −γ∥(D −D0) + i
2

ℏ
(EP∗ − E∗P) (1c)

where c = 1√
µ0ϵ0

is the speed of light in vacuum. Mathemat-
ically, Eqs. (1a)-(1c) most generally describe a set of coupled
partial differential equations (PDEs) for arbitrary lasers. They
must be accompanied by boundary conditions, here set by the
geometry of the cavity confining the electric field. In this pa-
per, we will consider the specific case of a ring laser (radius R
and length L = 2πR), depicted schematically in Fig. 1 (a), for
which the boundary conditions must be periodic. This enables
a simplification of the MBEs to a set of scalar PDEs, defined
along the ring laser arc length coordinate, which we label x.
Then, n is the effective refractive index of the cavity medium,
which can be complex to incorporate cavity loss; in particular
we write it as n = nR+inI. Phenomenological parameters γ∥
and γ⊥ represent the population and polarization decay rate,
respectively, as shown in Fig. 1. Ω is the center frequency of
the gain curve, g is the dipole moment, and D0 describes in-
coherent pumping threshold necessary to achieve population
inversion and lasing. For simplicity, we consider a spatially
homogeneous pump, although the spectral approach we em-
ploy can also account for nontrivial spatial pump profiles.

We begin by considering the standard approach to
Eqs. (1a)-(1c), namely employing the slowly-varying enve-
lope approximation [47] to reduce the order of derivatives,
reducing the wave equation for electric field evolution to an
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FIG. 1. (a) Schematic of multimode ring laser under incoherent
pumping. (b) Longitudinal mode structure of the ring cavity and gain
medium response curve (grey). Here N = 20 cold cavity modes are
depicted.

advection equation (or, in nonlinear optical media, the nonlin-
ear Schrödinger’s equation).

A. Slowly-varying envelope approximation

Within the standard slowly-varying envelope approxima-
tion, the form of the MBEs is simplified by explicitly ex-
tracting the spatiotemporal dependence at the frequency set
by the atomic transition frequency. For ring lasers, this takes
the form:

E(x, t) = Ec · E(x, t)
1√
L
ei(nRΩ/c)xe−iΩt (2a)

P(x, t) = Pc · P (x, t)
1√
L
ei(nRΩ/c)xe−iΩt (2b)

D(x, t) = Dc ·D(x, t) (2c)

where we have also extracted dimensionful factors of the
physical fields for convenience:

Ec =
ℏ
√
Lγ⊥γ∥

2g
, Pc = ϵ0Ec, Dc =

ℏϵ0γ⊥
g2

. (3)

E(x, t), P (x, t) then describe the envelopes of the total
electric and polarization fields respectively, which typically
evolve at frequencies much slower than the large atomic tran-
sition frequency Ω that has been explicitly extracted. Sub-
stituting Eq. (2a)-(2c) into Eqs. (1a)-(1c) and dropping terms
proportional to the second-order time-derivative of the enve-
lope fields defines the slowly-varying envelope approxima-
tion. The final MBEs under the slowly-varying envelope ap-
proximation take the form of an advection equation for the
electric field (instead of a second-order wave equation), cou-
pled to ODEs for the polarization and inversion fields:

Ė = − 1

n
∂xE − κE + i

Ω

2n2
R

P (4a)

Ṗ = −γ⊥P − iγ⊥ED (4b)

Ḋ = −γ∥(D −D0) + i
γ∥

2

(
EP ∗ − E∗P

)
(4c)

where we have also introduced the dimensionless space, time,
and frequency scales:

x =
x

L
, t =

t

L/c
, (Ω, γ∥, γ⊥, κ) =

L

c
(Ω, γ∥, γ⊥, κ) (5)

and where D0 = D0

Dc
, while κ = nI

nR
Ω describes the cavity

loss rate proportional to the imaginary part of the refractive
index.

Having introduced the various scaling transformations via
Eqs. (3), (5), we will now drop the (·) notation in the remain-
der of this paper, for clarity of the presentation. All quantities
from here on are therefore to be understood as dimensionless,
unless otherwise noted.

Eqs. (4a)-(4c) and their associated periodic boundary con-
ditions still describe a set of PDEs, and thus must be solved
using a spatio-temporal integration scheme such as a FDTD
method. While well-established, such schemes are computa-
tionally expensive and scale unfavourably with system size.
In the following sections, we develop an efficient spectral ap-
proach to capturing dynamics of complex multimode lasers
described by the MBEs, and then benchmark this approach
against more standard numerical techniques for simulating
Eqs. (4a)-(4c).

III. MULTIMODE CFTD APPROACH FOR LASER
DYNAMICS

Any spectral approach to analyzing laser dynamics uses
a spatial basis to project Eqs. (1a)-(1c), thereby yielding
a set of ordinary differential equations. The distinguish-
ing feature of the CFTD spectral approach, introduced in
Ref. [46], is the use of a general set of non-Hermitian modes
as a basis: the constant-flux (CF) modes. In a multi-
dimensional domain R, the CF modes {φm(r)} are solu-
tions to the generalized eigenproblem (in normalized units)
∇2φm(r) = −n2(r)ω2

mφm(r), with complex eigenfrequen-
cies {ωm}. Crucially, the modes obey outgoing boundary
conditions past the boundary of the spatial domain, ∂R, cor-
rectly accounting for losses due to the fields leaving the laser
cavity. The non-Hermitian CF basis has successfully pro-
vided the foundation for Steady-state Ab Initio Lasing Theory
(SALT) [45].

While the CFTD method has been developed using this
most general form of the CF basis, it can be greatly simpli-
fied for the ring laser geometry we consider here. Assuming
further a complex but uniform refractive index n(r) → n,
the eigenproblem can be simplified to the effectively one-
dimensional case:

∇2φm(x) = −n2ω2
mφm(x) (6)

where x denotes the angular variable along the ring cavity, and
the modes satisfy periodic boundary conditions. The modes
satisfy the orthogonality relationship:∫ 1

0

dx φ∗
n(x)φm(x) = δnm (7)

where the integral is defined over the spatial domain of the
ring cavity.

The modes obtained by solving the resulting Eq. (6) and
imposing periodic boundary conditions then take the simple
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form of propagating plane waves:

φm(x) = eikmxei(nRΩ)x (8)

where km = 2mπ,m ∈ Z is the wavevector for the mode
indexed by integer m. The complex eigenfrequencies ωm can
be found exactly, and are parameterized in terms of their real
parts νm describing the mode frequencies and imaginary parts
κm describing losses:

ωm = νm − iκm, νm =
1

nR
km, κm =

km
nR

nI

nR
. (9)

The cold cavity mode spacing ∆ (or free spectral range (FSR))
is constant and is given by ∆ = 2π

nR
. It is then clear that

the orthogonality relationship of Eq. (7) is simply that of the
complex Fourier basis. We note that while we consider here
the special case of modes of a ring cavity with only internal
losses, the time-dependent theory we discuss holds for non-
Hermitian modes defined by Eq. (6) for arbitrary geometries
in multiple dimensions, including random lasers [48], and in-
corporating losses via open boundary conditions [45].

Having defined our spatial basis modes, we will now re-
turn to the lasing cavity case and expand the coupled slowly-
varying envelopes of the electric field and polarization using
the following ansätze:

E(x, t) =
∑
m

Em(t)φm(x) (10a)

P (x, t) =
∑
m

Pm(t)φm(x) (10b)

The spatial complexity of the laser cavity including boundary
conditions is entirely captured by the cavity modes {φm(x)},
while the nontrivial time dynamics are encoded in the ex-
pansion coefficients {Em(t), Pm(t)}. We then substitute
Eqs. (10a), (10b) into the MBEs (Eqs. (1a)-(1c)), and make
use of the orthogonality relationship to integrate out the spa-
tial degrees of freedom over the ring cavity domain. Doing so
also projects the inversion onto a set of the basis modes via:

Dnm(t) =

∫ 1

0

dx φ∗
m(x)D(x, t)φn(x). (11)

For the special case of a ring cavity, using the explicit form of
the spatial basis modes, it is clear that Dnm(t) are simply the
spatial Fourier components at the wavevector difference kn −
km of the inversion field at a time t; however, the projection
and resulting dynamical equations are more general and hold
for basis modes that are not simply complex exponentials.

Leaving details of the spatial projection for Appendix D,
we present the final equations of motion for the variables

{Em, Pm, Dnm} below:

Ėm =
i

2Ω

(
Ω2 − ν2m + κ2

m

)
Em − κmEm +

iΩ

2n2
R

Pm

(12a)

Ṗm = −γ⊥Pm − iγ⊥
∑
m

EnDmn (12b)

Ḋnm = −γ∥(Dnm −D0
nm) +

iγ∥

2

∑
rs

Anmrs[ErP
∗
s − E∗

sPr]

(12c)

where we have introduced the dimensionless mode overlap
tensor Anmrs:

Anmrs =

∫ 1

0

dx φn(x)φ
∗
m(x)φr(x)φ

∗
s(x)

=

∫ 1

0

dx ei(kn+kr−km−ks)x = δ(n+ r −m− s)

(13)

The second line above specializes the tensor to the case of
multimode ring lasers. Finally, we note that D0

nm defines the
projected matrix elements for the incoherent pump, and is de-
fined analogously to Eq. (11), with D(x, t) → D0. This def-
inition can equivalently be used for spatially inhomogeneous
pump profiles.

Eqs. (12a)-(12c) thus define the CFTD description of mul-
timode dynamics for ring lasers: a time-domain description
derived from the underlying spatiotemporal MBEs via a spe-
cialized spatial projection, most generally using the CF basis.
This leads to a close connection between CFTD and SALT,
which we expand on below.

A. Dynamics across regimes of stationary and non-stationary
inversion

The assumption of stationary inversion, Ḋ(t) = 0, forms
the basis of successful steady-state spectral descriptions of
lasing, such as SALT. However, this assumption places strong
constraints on lasing phenomena described by the MBEs. To
see this, note that if the inversion is stationary Eqs. (1a)-(1b)
for the electric and polarization fields form a set with no non-
linear mixing of time-dependent terms. While the inversion
does depend nonlinearly on E and P via Eq. (1c), it is as-
sumed to be time-independent and hence does not lead to
any frequency mixing in Eqs. (1a)-(1b). The same obser-
vation holds for the subsequently-derived CFTD equations.
Stationary inversion thus precludes the generation of new fre-
quencies via intermodulation products of the lasing field and
the gain medium population dynamics (which are strongly
suppressed). New frequencies can arise in this regime, but
via standard multimode lasing: with increasing pump power,
a new spatial mode φm can lase if a corresponding pump
threshold is crossed. These pump thresholds provide a natural
truncation scheme within SALT, determining when a specific
mode begins to lase and hence must be included in the spectral
description.
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In contrast, CFTD is not bound by the stationary inversion
approximation, and is able to simulate dynamics across re-
gions of both stationary and non-stationary inversion. For
aforementioned regimes where SALT is valid, the CFTD
ansatz can capture lasing modes φm with nonzero coefficients
Em(t) containing only a single frequency in the long-time
limit, defining the lasing frequency for that mode m. How-
ever, by allowing Em(t) to have more a general time de-
pendence, CFTD can also capture transient dynamics where
the inversion evolves with time, to the final steady-state las-
ing regime where SALT operates; we discuss this dynamics
in Sec. IV. We note that correspondence between CFTD and
SALT in regimes where the stationary inversion approxima-
tion is briefly violated were also investigated in Ref. [46].

Most importantly, in this paper we analyze regimes where
the dynamics of the inversion give rise to lasing phenomena
that are qualitatively different from multimode lasing: insta-
bilities that lead to simultaneous generation of multiple coher-
ent frequencies from a single lasing frequency background.
The coefficients Em(t) associated with distinct spatial modes
now have much more general, coupled dynamics: several
coefficients can become nonzero simultaneously past a sin-
gle threshold, instead of sequentially with multiple thresh-
olds. Each Em(t) can even possess multiple distinct fre-
quency components, a feature increasingly prevalent in more
complex laser geometries [49]. This more general class of
dynamics is the main focus of this paper, and the subject of
Secs. V and VI.

B. Numerical verification

We investigate the accuracy and efficiency of the CFTD
model by comparing against standard numerical approaches to
simulating Eqs. (4a)-(4c). The most natural comparison of the
CFTD method, which is geometry-agnostic, is against a com-
pletely general spatiotemporal FDTD scheme. For specific
comparisons, however, we also employ the split-step Runge-
Kutta method (SSRK) [50, 51]. This scheme is tailored to
ring lasers, and hence can be expected to perform optimally
for the present case, but lacks generalizability to other geome-
tries. We begin with comparisons in both simple single-mode
lasing regimes but with nontrivial initial spatial field distribu-
tions (i.e. spanning multiple cavity modes) in Sec. IV. When
this single-mode lasing state becomes unstable, complex mul-
timode lasing dynamics can ensue, including the formation
of frequency combs which we analyze in Sec. V or even the
emergence of chaotic dynamics, discussed in Sec. VI.

IV. SINGLE-MODE LASING DYNAMICS

We will begin our analysis of lasing dynamics with the sim-
plest operating regime: single-mode lasing. Within our spec-
tral approach, the single-mode lasing regime is characterized
by restricting the expansion coefficients in Eqs. (10a), (10b)

to the single-mode forms:

Em(t) = δlmEl(t)

Pm(t) = δlmPl(t) (14)

so that the only mode with nonzero expansion coefficients is
indexed by l, and is thus the solitary mode that lases. By
virtue of how the inversion matrix elements are constructed
- as projections onto the modes constituting the expansion of
Eqs. (10a), (10b) - the resulting inversion matrix elements,
Eqs. (11), similarly reduce to:

Dnm(t) = δlnδlmDll(t) (15)

As mentioned earlier, we consider a lasing cavity that ex-
periences a spatially uniform pump gain and uniform loss
profile. This is not a restriction of CFTD, but is a simplifi-
cation we make for convenience of later comparisons. Un-
der this assumption, it is easily found that the mode with
lowest threshold pump power is one that is spectrally clos-
est to the atomic transition frequency Ω (for details see Ap-
pendix E),; we index this mode by l = 0, so by definition
|ν0 − Ω| ≪ |νl − Ω| ∀ l ̸= 0. We emphasize, however, that
this simple result holds provided the gain and loss distribution
in the laser cavity is uniform. To simplify the analysis fur-
ther, we consider a cavity such that ν0 ≃ Ω, in which case the
lasing occurs at the frequency Ω. This frequency is explicitly
extracted in the CFTD ansätze, Eq. (10a), (10b), so that the
lasing mode in this frame is at zero frequency. As a result,
the steady-state fields E0 = Ess, P0 = Pss, D00 = Dss in the
single-mode lasing regime are all stationary, and are given by:

Dss = Dth =
2n2

Rκ

Ω
, |Ess|2 =

D0
00

Dth
− 1, Pss = −iEssDss

(16)

Details of the derivation of the above expression can be found
in Appendix E.

In this single-mode regime, it would appear that a spectral
approach retaining only the mode that eventually lases would
suffice, namely restricting Eqs. (10a)-(11) to m = n = l = 0.
However, our more general ansätze allows us to quantita-
tively capture dynamics that require modes beyond the lasing
mode, for example pulsed initial conditions or spatially non-
uniform pumping schemes that excite modes other than the
lasing mode, even if such modes decay away in the long-time
limit.

To simulate this nontrivial regime, we explore the multi-
mode dynamics of a ring laser pumped above the single-mode
lasing threshold, with an initial intensity distribution within
the laser cavity that is described by a Gaussian profile. We
consider pumping the laser at a power five times above the
single-mode lasing threshold, p =

D0
00

Dth
= 5, with decay pa-

rameters γ⊥ = 5.0, γ∥ = 0.5, κ = 0.1, cold cavity refractive
index set to nR = 1.96, and then simulate the dynamics of
the electric and polarization fields at a fixed position x = 0
of the ring cavity as a function of time, using both FDTD
simulations of Eqs. (4a)-(4c), and integration of the CFTD
Eqs. (12a)-(12c). The CFTD approach here takes into consid-
eration modes m ∈ −5, . . . , 5 for a total of N = 11 modes.
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FIG. 2. Multimode dynamics below the instability threshold (the
pump power normalized by the single mode lasing threshold is
p = 5). Top left panel shows the initial Gaussian electric field pro-
file, E(x, t = 0) = 0.1e−100x2

, scaled by Ess. Projection of this
initial profile on the CFTD spatial basis is shown in the top right plot.
Center panel: comparison of dynamics of the electric field intensity
|E(x = 0, t)|2 and polarization |P (x = 0, t)|2 using CFTD (blue)
and FDTD (red). Lower panel shows |E(x = 0, t)|2 scaled by Ess

for the first few roundtrips to highlight the agreement. Loss param-
eters are γ⊥ = 5.0, γ∥ = 0.5, κ = 0.1, while nR = 1.96. The
number of modes included is N = 11, the minimum for reproducing
an accurate Gaussian profile as the initial condition.

A time-step ∆t = 2.45 × 10−4 in units of roundtrips is used
for FDTD simulations, while CFTD employs an ODE solver
with an adaptive time-step.

The results are plotted in Fig. 2, in red for the FDTD simu-
lations and blue for the CFTD simulations. We find excellent
quantitative agreement between the two approaches; the lower
panel zooms in on a length of time equal to 50 roundtrips, plot-
ting both CFTD and FDTD results to highlight the agreement.
Under stationary inversion, only a single-mode solution ex-
ists (see Appendix E). However, the nontrivial time evolution
indicates multimode dynamics in a transient period of ∼ 200
roundtrips after which a single mode lases in the long-time
limit. The CFTD dynamics are substantially more efficient to
simulate than the FDTD, requiring simulation times that are
about two orders-of-magnitude shorter than the FDTD for the
same timestep in regimes captured by several cavity modes

FIG. 3. Top panel: Evolution of the electric field intensity in the
single-mode lasing regime for 500 roundtrips. Bottom panel: Dy-
namics of inversion matrix elements Dnm(t) in CFTD, evaluated
at labelled time points, below the single-mode instability threshold
(p = 5) for an initial Gaussian electric field profile corresponding to
Fig. 2. Parameters are the same as that figure. Off-diagonal elements
of the matrix are suppressed as the solution reaches the single-mode
steady state.

(a more detailed comparison of CFTD simulation times ver-
sus the number of retained modes in more complex dynamical
regimes is shown in Sec. VII).

A unique aspect of the CFTD approach is the use of a pro-
jected set of inversion matrix elements Dnm(t), Eq. (11), to
capture the dynamics of the inversion field. Formally, this
projection cannot be straightforwardly inverted to extract the
spatio-temporal inversion field D(x, t). For the case of a ring
laser, these matrix elements have a simple physical interpreta-
tion. For a spatially-uniform inversion field, D(x, t) = D(t),
all off-diagonal inversion matrix elements vanish, as is seen
from Eq. (11) and the orthogonality relationship, Eq. (7). This
case represents the single-mode lasing regime for ring lasers.
However, when multiple spatial modes with distinct wavevec-
tors are active, a spatial inversion grating is established in the
laser cavity [26]: Dnm(t) then precisely represent the time-
evolution of spatial Fourier components of the inversion field
at the difference of wavevectors kn − km. For more general
cavities where the projecting modes {φm(x)} are not simply
Fourier basis elements, Dnm(t) for n ̸= m still represents the
amplitude of this inversion grating.

The evolution of the inversion matrix elements can be seen
in Fig. 3, where Dnm(t) are plotted in the 2-D plots at indi-
cated time values 1 through 4 scaled by the single-mode lasing
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steady-state inversion, Dss. For the first ≈ 200 roundtrips the
multimode initial pulse is travelling through and in fact build-
ing up in the ring laser, and this dynamics leads to the gen-
eration of off-diagonal inversion matrix elements due to the
inversion grating. However, with increasing time, additional
modes decay away and the laser returns to a single-mode las-
ing state; concurrently, the off-diagonal inversion matrix ele-
ments are suppressed.

We thus see that the CFTD can accurately capture
spatiotemporally-complex initial conditions in the regime of
single-mode lasing. With increasing pump power, it is nat-
ural to ask whether the single-mode lasing regime analyzed
in this section breaks down, and if other cavity modes can be
coherently excited in the long-time limit, unlike the dynamics
observed in Fig. 2. This is the subject of the next section.

V. COHERENT MULTIMODE LASING DYNAMICS:
RNGH INSTABILITY

It can be shown that uniformly incoherently-pumped ring
lasers experience gain clamping above the single-mode lasing
threshold. The inversion field attains a stationary, spatially-
homogeneous value, and prevents additional modes from
crossing the lasing threshold while the first mode is still las-
ing. However, this does not mean that multi-mode dynam-
ics cannot ensue: other types of instabilities do exist, where
the single lasing mode itself becomes unstable, leading to the
generation of new frequencies mediated by the gain medium.
Such a regime is marked by the inversion field becoming time-
dependent, leading to so-called population pulsations [52].

The LH and RNGH instabilities [27, 28] represent proto-
typical examples of such a strongly-pumped, nonlinear multi-
mode lasing regime. The salient features of these instabilities
were originally predicted via a spatiotemporal linear stability
analysis (ST LSA) of the MBEs [27] and then verified numer-
ically; these features are summarized in Fig. 4 and discussed
below. Above a critical (normalized) pump power that we
refer to as the instability threshold pth (the so-called second
threshold in early literature),

pth = 5 + 3

(
γ∥

γ⊥

)
+ 2

√
4 + 6

(
γ∥

γ⊥

)
+ 2

(
γ∥

γ⊥

) 2

, (17)

the single-mode lasing solution becomes unstable (see red
dashed red line in Fig. 4), giving rise to symmetric sidebands
at the frequencies Ω±ωinst. At higher pump powers, a contin-
uous range of frequencies as marked by the shaded region are
predicted to be unstable; the width of this region in frequency
is given by ∆inst.

Here, we note the distinction that is often made in the lit-
erature, according to the ratio of the gain linewidth γ⊥ to the
FSR ∆. In particular, for γ⊥/∆ < 1, a single cavity mode -
the lasing mode - falls under the gain curve. The resulting in-
stability is referred to as the single-mode or LH instability. In
the opposite regime where γ⊥/∆ > 1, several cavity modes
fall under the gain curve; consequently, the emerging insta-
bility is labelled the multi-mode or RNGH instability. While

FIG. 4. (a) ST LSA results based on the original formulation of
Risken et al. [27], and corresponding modal LSA results. Beyond
a specific pump threshold pth [See Eq. (17)], the single-mode lasing
solution becomes unstable, at a frequency given by ωinst. Dashed
lines indicate the results of the modal LSA based on linearization of
the CFTD equations. (b) Real part of the eigenvalues Λm of the dy-
namical matrix in Eq. (20) as a function of pump power. A positive
real part indicates an instability. Specific ring laser parameters con-
sidered here are γ⊥ = 1.0, γ∥ = 0.5, κ = 0.1, and nR = 1.96.

dynamics in both regimes can be distinct (as we will see), both
are described by the same ST LSA, with different parameters.

In specific parameter regimes, these ST LSA results can be
cast in simplified analytic forms. In particular, in the RNGH
case and further considering γ⊥ ≫ ∆, γ∥, κ, the minimum
unstable frequency and the range of unstable frequencies close
to the instability threshold pth take the forms [27],

±ωinst = ±γ⊥

(
2
√
3− 2√

3

κ

γ⊥

)√
γ∥

γ⊥
(18a)

∆inst ≃ γ⊥

(√
6

2
+

7√
6

κ

γ⊥

)√
γ∥

γ⊥

√
p

pth
− 1 (18b)

Note that both ωinst and ∆inst generally grow with γ⊥.
While the magnitude of this linewidth in comparison to the
FSR (γ⊥/∆) is heuristically understood to increase the par-
ticipation of cavity modes in lasing, here we see its role in
increasing the participation of modes in multimode instabili-
ties. As we will see via numerical simulations, this increase
in ∆inst via γ⊥/γ∥ will lead to a growing complexity of mul-
timode dynamics.

Having described the general multimode instability, we
now discuss how the CFTD approach can also predict this
instability using an efficient modal linear stability analysis
(modal LSA).

A. Modal LSA: instability via non-stationary inversion

Within the CFTD approach, instability of the single-mode
lasing solution arises naturally via the growth of unstable side-
bands for m ̸= 0. We analyze the dynamics of these sidebands



8

in a linearized approximation:

Em = Essδ0m + δEm +O(δE2
m) (19a)

Pm = Pssδ0m + δPm +O(δP 2
m) (19b)

Dnm = Dssδnm + δDnm +O(δD2
nm) (19c)

and retaining only terms to linear order in
{δEm, δPm, δDnm}.

The multimode LSA then proceeds by first obtaining lin-
earized dynamical equations for the sideband fluctuations and
inversion matrix elements. Leaving details of the derivation
for Appendix F, the resulting equations can be conveniently
written in matrix form as:

d

dt

(
δv⃗m
δv⃗−m

)
≡ Mm

(
δv⃗m
δv⃗−m

)
=

(
Jm Cm,−m

Cm,−m J−m

)(
δv⃗m
δv⃗−m

)
(20)

where the component vectors δv⃗m include fluctuation vari-
ables for mode m:

v⃗m = (δEm, δE∗
m, δPm, δP ∗

m, δD0m, δD∗
0m)T (21)

Immediately, we note that a closed set of linearized equations
can only be obtained when considering the coupled dynamics
of pairs of modes {m,−m}. Here Jm is a 6-by-6 dynamical
matrix of the fluctuations of mode m alone, including those
of the inversion matrix elements. Importantly, the dynamics
due to Jm alone lead to a decay of the mth mode fluctuations
in the long-time limit, so that the single-mode lasing solution
(m = 0) remains stable.

However, the matrix Cm,−m couples fluctuations of differ-
ent modes, in particular the symmetric mode pair {m,−m}.
As Jm does not lead to instability, any multimode instabili-
ties arise due to this coupling matrix. Crucially, as we show in
Appendix F, the coupling is mediated by nonzero off-diagonal
inversion matrix elements D0m, namely ±m ̸= 0. For a
ring laser with stationary inversion, the inversion is also spa-
tially homogeneous, and from Eq. (11) will thus only lead to
nonzero diagonal inversion matrix elements Dmm. As a re-
sult, the requirement of D0m ̸= 0 for nonzero m in a ring laser
necessitates non-stationary inversion, accounted for within the
framework of CFTD.

We now present results of the CFTD stability analysis en-
abled by Eqs. (20), which evaluates the stability of each mode
pair {m,−m} via the eigenvalues of the dynamical matrix
Mm. As an example, we plot the largest real part of the
eigenvalue spectrum, Re Λm, for a selection of mode pairs in
Fig. 4, as a function of pump power. We see that with increas-
ing pump power, the eigenvalue for a specific mode pair can
cross the instability threshold (its real part becomes positive).
These shaded regions correspond to mode pairs experiencing
gain and growing around the single-mode lasing solution, as
depicted in the lower panel. However, note that the eigen-
value flow can be highly monotonic, so that a specific mode
pair can become sub-threshold again with increasing pump
power. At any pump power, the predicted unstable mode pairs
are marked with solid lines in Fig. 4(a), where they coincide

perfectly with the RNGH instability region for the parameters
considered.

Importantly, pump powers also exist where the CFTD
modal LSA predicts no unstable mode pairs. For such pump
powers, the RNGH stability analysis predicts an unstable fre-
quency, but this frequency does not coincide with that of a
cold cavity mode (dotted vertical lines). The CFTD analysis
indicates that for such pump powers, there will be no multi-
mode instability; we will verify these predictions numerically
in the following section.

The modal LSA enabled by CFTD therefore agrees well
with the original RNGH analysis for the considered parame-
ters, but is based on a more general expansion that could be
applied to studying multimode instabilities in alternative laser
geometries.

B. Good cavity regime and slow polarization relaxation
γ⊥/γ∥ ≲ 2.0

We are now in a position to simulate the dynamics of ring
lasers in parameter and pump regimes where both the approx-
imate ST stability analysis and its modal counterpart enabled
by CFTD predict multimode instabilities. We will do so by
integrating the exact CFTD equations, Eqs. (12), and compare
the results against integration of the MBEs under the slowly-
varying envelope approximation, Eqs. (4a)-(4c). To begin, we
focus on the “good cavity” regime where κ < γ⊥+γ∥, consid-
ering γ⊥ = 1.0, γ∥ = 0.5, κ = 0.1 and nR = 1.96; dynamics
in the “bad cavity” limit are analyzed in Sec. VI. Note that
γ⊥ < ∆ = 2π

nR
, so the emergent instability would typically be

characterized as of the LH type. Finally, as the carrier and
polarization decay rates are similar (hence, their ratio is rel-
atively small), this regime may be representative of so-called
class A lasers, depending on the choice of κ. This class of
lasers includes dye lasers, HeNe lasers and quantum cascade
lasers.

We simulate the CFTD equations to obtain
{Em(t), Pm(t), Dnm(t)} for m ∈ −5, . . . , 5 (i.e. N = 11
spatial modes). This allows us to reconstruct the electric field
using Eq. (10a), namely E(x, t) =

∑
m Em(t)φm(x), as a

function of normalized pump powers p over a large range
past the single mode lasing threshold, evolving for t = 1000
roundtrips at each pump power. This detailed study is greatly
aided by the numerical efficiency of the CFTD equations,
which provide a significant simulation speedup in comparison
to spatiotemporal schemes like FDTD (see Sec. VII). We
first extract the resulting normalized frequency spectrum of
the electric field at x = 0, F{E(x = 0, t)/Ess|2}, which is
shown in Fig. 5(a), with amplitudes depicted according to the
listed color scale.

Until the RNGH threshold pth is reached, a single-mode
lasing regime is clearly observed. Past this threshold, the pre-
dicted instability of single mode lasing dynamics is observed,
giving way to a stable waveform exhibiting a frequency comb
in its electric field frequency spectrum. Importantly, the dom-
inant unstable sidebands occur at Ω ±∆, consistent with the
prediction of both LSA methods. This instability propagates
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FIG. 5. Emergence of frequency combs via the LH instability in ring lasers for loss parameters γ⊥ = 1.0, γ∥ = 0.5, κ = 0.1, and nR = 1.96.
(a) Frequency spectrum of the electric field as a function of pump power obtained using CFTD. Shaded regions mark the continuous frequencies
predicted to be unstable by the ST LSA, while yellow boxes mark the discrete mode pairs predicted to be unstable by the modal LSA. Cold
cavity mode frequencies are shown in dashed black, while the horizontal dashed line is the instability pump threshold pth. (b) Normalized
electric field spectra at specific pump powers, and (c) their corresponding time traces |E(x = 0, t)|2 scaled by Ess, computed using both
CFTD (blue) and FDTD (red) for a direct comparison. Right panel: Spatial distribution of the steady-state pulsing electric field in the ring
cavity at a fixed time, |E(x, t = 450)/Ess|2 (marked by (1) in (c)), computed using CFTD across the three pump powers simulated in the
previous panels.

to a broad frequency comb with a spacing of one FSR. A more
detailed look at the observed comb is presented in Fig. 5(b)
for p = 16, which also shows the comparison between CFTD
and FDTD, finding excellent agreement. Fig. 5(c) shows the
CFTD and FDTD simulations in the time domain, demonstrat-
ing the ability of CFTD to capture not only the steady-state
frequency comb but also the transient approach to this state.

Finally, the right panel of Fig. 5 (c) shows the spatial elec-
tric field profile at t = 450 (roundtrips), reconstructed from
the CFTD solution. In this particular regime, each Em(t) as-
sociated with the spatial mode φm evolves at a single domi-
nant frequency; hence the multiple frequency components ob-
served in Fig. 5 (b) indicate a waveform that consists of sev-
eral spatial modes of the cavity being coherently excited. This
yields a localized propagating pulse in the laser cavity, some-
times referred to as a Turing roll in the spatiotemporal pat-
tern formation literature [53]. We verify these CFTD results
against the FDTD and SSRK (not shown), finding excellent
agreement once more.

With increasing pump power, the frequency comb suddenly
collapses back to stable single mode lasing operation. Here,
even though the ST LSA predicts a continuous instability
band, no specific mode falls into this band. The modal linear
stability approach, on the other hand, predicts discrete pairs
of unstable modes, and here finds no such pairs to be unsta-
ble, consistent with the simulated dynamics. At a represen-
tative pump power p = 30, the observed frequency spectrum
in Fig. 5(b) using both CFTD and FDTD shows no comb for-
mation, and the time traces in Fig. 5(c) exhibit no oscillations,
instead settling into the single mode steady state solution Ess,
with a uniform spatial distribution as viewed in the right panel.

With further increase in pump power, the frequency comb
emerges again, now with a 2-FSR spacing. Here, the unstable
sidebands at Ω± 2∆ fall in the instability region, and are also

predicted to be unstable by the modal LSA. Again at the rep-
resentative value of p = 50, CFTD and FDTD show excellent
agreement in capturing the extent of the frequency spectrum
of the comb in Fig. 5(b), oscillations in the time domain in
Fig. 5(c), and the spatial profile in the rightmost panel, which
now displays two peaks and half the propagation period, con-
sistent with the higher spacing of peaks in the frequency spec-
trum.

In summary, in this regime of slower polarization re-
laxation, we find excellent quantitative agreement between
FDTD simulations of the MBE and our CFTD approach, as
well as between the ST LSA and its modal counterpart derived
from the CFTD equations. We also note that in this regime,
both methods agree with the SSRK method specific to ring
lasers (not shown).

C. Good cavity regime and slow polarization relaxation
γ⊥/γ∥ ≳ 20.0

The ratio γ⊥/γ∥ plays an important role in the features of
the ST LSA as explained by Eq. (18b). Thus far we have
explored regimes for which γ⊥/γ∥ ≤ 2, and have found
the CFTD to provide excellent quantitative agreement with
exact integration using FDTD, while providing the speedup
advantages afforded by a temporal scheme as opposed to
a spatiotemporal one. As the ratio γ⊥/γ∥ increases, both
the threshold frequency at which instability occurs and the
width of the instability band increase, leading to more in-
volved comb formation dynamics at high pump powers. In
these more complex regimes, we find that the CFTD still pro-
vides very good qualitative agreement with more numerically-
expensive methods. For a concrete demonstration, we con-
sider the ratio γ⊥/γ∥ = 20, with decay parameters γ⊥ =
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10.0, γ∥ = 0.5, κ = 0.1 (for supplementary simulations with
different parameters, see Appendix G). Now, γ⊥ > ∆, so the
emergent instability would generally be characterized as the
RNGH instability. We note also that this case where the po-
larization decay rate is significantly larger than the population
decay rate typically describes lasers in class B, depending on
the value of κ [54]. This class includes lasers of high tech-
nological value such as semiconductor lasers and solid state
lasers.

As the ratio of decay parameters increases, so does the num-
ber of relevant modes that must be included in the simulation.
In this case, the number of modes increases up to ∼ 21 (cor-
responding to Ω ± 10∆). We then once again calculate the
frequency spectrum of the electric field using CFTD, with the
results shown in the left panel of Fig. 6.

With increasing pump power beyond the RNGH threshold
pth, a stable frequency comb emerges from the single-mode
lasing state, as before. However the observed spacing is now
equal to 3 FSRs, as the increased ratio of γ⊥/γ∥ increases
the unstable mode frequency ωinst via Eq. (B1). Importantly,
the unstable mode pair is exactly that predicted by both LSA
schemes. With further increase in pump power, the predicted
unstable mode pair moves outwards relative to the single-
mode lasing frequency. Importantly, the CFTD simulations
show an increase in the comb FSR with pump power, con-
sistent with both LSA methods. Furthermore, the observed
combs can even possess multiple, non-commensurate domi-
nant frequency components, unlike the simpler dynamics at
lower values of γ⊥/γ∥.

In contrast, in these regimes our benchmark FDTD method
performs rather poorly. In Fig. 6(b), we compare simulated
time traces using CFTD and FDTD for 700 roundtrips for
three selected pump powers p = 14, p = 25 and p = 50.
While CFTD demostrates sustained oscillations as necessi-
tated by the comb spectra observed Fig. 6(a), the FDTD sim-
ulation exhibits a suppressed amplitude and quickly settles to
Ess. The difference is further highlighted by a detailed look at
the frequency spectrum of the electric field at p = 14 shown
in Fig. 6(c) for both CFTD and FDTD. The FDTD simulation
clearly does not yield a broad frequency comb like the CFTD
approach; rather the central mode and only two sidebands are
the main active frequencies. The “washing out” of higher fre-
quency components is a known issue of FDTD methods, due
to the increased rate of accumulation of phase errors of higher
frequency components, whose the phase evolves more rapidly.
By explicitly operating in the frequency domain, the CFTD
appears more robust to such effects.

Deeper in this regime of fast polarization relaxation where
increasing disagreements are observed between the CFTD and
FDTD, the SSRK scheme provides a more exact method that
can be used to understand the discrepancies. However, we re-
call at the outset that the SSRK is subject to a number of limi-
tations. First, it is tailored to ring geometries only, whereas the
CFTD can accommodate arbitrary geometries. Second, sim-
ulation times for the SSRK are similar to the FDTD; hence
the CFTD remains a considerably faster method. Finally,
the SSRK cannot be easily extended to simulate photonic
molecule or other coupled laser arrangements.

FIG. 6. RNGH instability and comb formation for decay parame-
ters: γ⊥ = 10.0, γ∥ = 0.5, κ = 0.1, and nR = 1.96. (a) Frequency
spectrum of electric field as a function of pump power obtained using
CFTD. Shaded regions mark the continuous frequencies predicted to
be unstable by the ST LSA, while yellow boxes mark the discrete
mode pairs predicted to be unstable by the modal LSA. The horizon-
tal dashed line marks the RNGH instability threshold. (b) Side by
side comparison of |E(x = 0, t)|2 scaled by Ess for the first 700
roundtrips of the CFTD (blue) and FDTD (red) results. The number
of modes included in the CFTD simulations is N = 19. (c) Fre-
quency spectrum of the electric field for p = 14 for CFTD (blue)
and SSRK (orange) in the left panel, and FDTD (red) in the right
panel, calculated for 1100 roundtrips. Note the qualitatively good
agreement between the CFTD and the SSRK, and the significant de-
viations of FDTD.

With these caveats, we present comparisons of the CFTD
against the SSRK in regimes of fast polarization relaxation,
where the FDTD performs poorly. For γ⊥/γ∥ = 20, the
SSRK generally shows good agreement with the CFTD. An
example of the electric field frequency spectrum in the unsta-
ble regime is shown in orange in the lower panel of Fig. 6
revealing a 3-FSR comb for p = 14; the prominent frequency
peaks show good agreement with the corresponding spectrum
using CFTD shown in blue in the left panel, and strongly dis-
agrees with the FDTD in red in the right panel.

For even larger γ⊥/γ∥ ratios, we expect the CFTD to re-
quire the retention of even more spatial modes for simulation,
leading to diminishing returns in terms of the relative simu-
lation time advantage in comparison to the SSRK, and also
possibly introducing numerical errors. We illustrate one such
regime where γ⊥/γ∥ = 50 in Fig. 7, showing the electric
field frequency spectrum obtained using the SSRK method in
orange and the CFTD in blue. We note that the SSRK pre-
dicts more than 100 distinct frequency components to be ex-
cited. In the CFTD simulation we include 35 spatial modes,
which leads to a reasonable simulation time (shorter than for
the SSRK) and no obvious numerical artefacts. While CFTD
is not restricted to only exhibiting as many frequency compo-
nents as included spatial modes (See Ref. [46, 49] and discus-
sion in Sec. III A), here we see the CFTD spectrum is signifi-
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FIG. 7. SSRK and CFTD comparison for decay parameters: γ⊥ =
25.0, γ∥ = 0.5, κ = 0.1, and nR = 1.96. The selected pump power
is p = 30. Shown on the left is the frequency spectrum of the elec-
tric field as computed Fourier Transform from 1100 roundtrips of the
SSRK result showing more than 100 modes. Shown on the right is
the frequency spectrum of the electric field as obtained from 1000
roundtrips of the CFTD with N = 35 modes included in the simula-
tion.

cantly restricted in comparison to the SSRK. However, while
CFTD may not be ideally suited to simulating such extremely
broadband dynamics in ring lasers where the SSRK exists as
an alternative, the generalizability to arbitrary geometries still
makes CFTD an attractive proposition for analyzing multi-
mode instabilities in more general laser systems.

VI. CHAOTIC DYNAMICS

Not all multimode instabilities yield desired stable fre-
quency combs. In this section, we will show that the CFTD
can also efficiently capture a broader class of multimode in-
stabilities, namely chaotic lasing dynamics. To this end, we
now consider a different parameter regime to our prior simu-
lations: we maintain γ∥ = 0.5, but set γ∥/γ⊥ = 1, and im-
portantly now choose κ = 1.1, which is just large enough for
the laser system to operate in the “bad cavity” regime, where
κ > γ⊥ + γ∥. Note that we again have γ⊥ < ∆, the regime
of the LH instability, which in conjunction with the bad cavity
limit is known to feature chaotic emission at high pump pow-
ers [44, 55]. We now demonstrate that this is indeed the case,
and analyze CFTD performance in such regimes.

In Fig. 8 we show the spectrum of the electric field as a
function of pump power using CFTD. For pump powers past
pth up to around p ∼ 30, the single-mode lasing regime
persists. This is consistent with the modal LSA, which pre-
dicts no unstable mode pairs in this pump range, and the ST
LSA as no cold mode frequencies fall in the predicted in-
stability region. For higher powers up to p ∼ 55, a sta-
ble frequency comb solution emerges, initially with an FSR
predicted by both LSAs, but exhibiting complex frequency
pulling at higher pump powers.

Such dynamics is similar to that observed in simulations in
the good cavity regime in Sec. V. However, beyond p ∼ 55,
the spectrum of the electric field suddenly broadens into sev-
eral finely spaced, but still coherent, peaks. At even higher
pump powers around p ∼ 70, however, any sharp peaks deco-
here into an elevated and extremely broad noise floor, features
typical of chaotic regimes. This qualitative change in lasing

FIG. 8. Emergence of chaotic behavior for decay parameters
γ⊥ = 0.5, γ∥ = 0.5, κ = 1.1, and nR = 1.96. (a) Frequency
spectrum of the electric field as a function of pump power obtained
using CFTD with N = 17 retained modes. Shaded regions mark
the continuous frequencies predicted to be unstable by the ST LSA,
while yellow boxes mark the discrete mode pairs predicted to be un-
stable by the modal LSA. The horizontal dashed line indicates the
instability threshold. (b) Side by side comparison of |E(x = 0, t)|2
scaled by Ess for the first 2000 roundtrips of the CFTD (blue) and
FDTD (red) results. (c) Fourier Transform of |E(x = 0, t)|2 for
p = 80 where we find chaotic behaviour in both the CFTD (blue)
and FDTD (red) simulation.

dynamics coincides with regions where the instability bands
of the ST LSA, which are symmetric with respect to the cen-
tral frequency, start to overlap. Such an overlap requires a
system operating in the bad cavity regime (see Appendix B),
as we consider here.

At a specific pump power p = 80 in this regime, a more
detailed look at the frequency spectrum of the electric field
is shown in Fig. 8(c), using both CFTD and FDTD schemes.
Both show clear signatures of chaos: a broadband, noisy spec-
trum with several active frequencies and no significant coher-
ent peaks. Time traces of the electric field using both CFTD
and FDTD are also shown in Fig. 8(b). For p = 80, both
methods are in good agreement, showing noisy traces with no
recurrent oscillations. We also see that for specific pump pow-
ers in the other two aforemention regimes, CFTD and FDTD
also show very good agreement.

We therefore clearly see that the CFTD is able to capture
chaotic dynamics, as well as transitions from stable comb for-
mation regimes to chaotic regimes. This makes the CFTD
approach promising to identify - and avoid - regions of pa-
rameter space that do exhibit multimode instabilities, but do
not allow useful, stable frequency comb formation.
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FIG. 9. Simulation time comparison between the CFTD method for
various numbers of modes included in the simulation (circles) and
the FDTD method (triangle). The CFTD is at least two orders of
magnitude faster, even when a relatively large number of modes is
included in the simulation.

VII. SIMULATION TIME COMPARISON

Having explored the numerical fidelity of the CFTD in
comparison to more standard simulation schemes, we now
quantify the speedup in simulation time provided by the
CFTD. In Fig. 9, we show the simulation time for the CFTD
as a function of the number of included modes N , and the
simulation time for an equivalent FDTD integration for com-
parison. The results shown are for the laser system defined
by parameters γ⊥ = 5.0, γ∥ = 0.5, κ = 0.1, nR = 1.96,
and a fixed pump power p = 25; however they are represen-
tative of the speedup typically observed using the CFTD. We
note that to ensure a fair comparison, the number of roundtrips
simulated and the spatial discretization used is kept the same
between both methods.

We consider various mode numbers from N = 7 to N = 19
for the CFTD, even though N = 15 is sufficient for the CFTD
to yield accurate results in this particular example. The simu-
lation time for the CFTD increases with the number of modes,
but even for the highest mode numbers it remains about two
orders of magnitude faster than the FDTD. This highlights one
of the main advantages of our spectral CFTD approach: its
computational speed, attained by the ability to reduce the in-
tegration of multidimensional PDEs to a set of ODEs in time
only. The stark difference in the one-dimensional ring laser
case explored here will only become larger for simulations of
larger laser systems in two- or three-dimensions.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we have demonstrated a spectral approach,
CFTD, as a viable and efficient method to simulate one of
the most complex time-dependent phenomena in lasers: the
emergence and resultant dynamics of coherent multimode in-
stabilities. Our approach projects the standard MBEs of laser
dynamics onto a suitably chosen spatial basis accounting for

the lasing cavity geometry and losses, obtaining a set of time-
dependent coefficients of the electric field, polarization, as
well as inversion which is captured via a projected set of ma-
trix elements. Expanding far beyond our previous work [46],
we have considered regimes where non-stationary inversion
plays a crucial role in the emergence of coherent multimode
instabilities. By benchmarking the CFTD method with an
FDTD approach, as well as an SSRK scheme specific to ring
lasers, we have found excellent qualitative agreement across
a very wide parameter space, and quantitative agreement in
regimes with up to ≈ 30 relevant modes. We reveal the abil-
ity to capture various waveforms and complex phenomena in
our analysis, starting from single mode behavior to frequency
combs of different FSR spacings to broadband chaotic spec-
tra.

Our method provides not only an increase in simulation
speed of at least two orders of magnitude over standard spa-
tiotemporal integration schemes, but also more analytic in-
sight into the system under study, via a linear stability analy-
sis based on discrete included modes. While we have analyzed
here a single ring laser, the CFTD method we introduce is a
fast and efficient tool that can easily be extended to study com-
plex time-dependent phenomena in much more general laser
systems, a research area of significant contemporary interest.
Such systems include complex cavity geometries without spe-
cific spatial symmetries, as well as coupled laser arrays. The
complexity of analyzing such systems with conventional nu-
merical schemes is substantial even in standard multimode
lasing regimes (i.e. with stationary inversion), let alone co-
herent instabilities with nontrivial population dynamics. This
only highlights the utility of the CFTD method.
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Appendix A: MBEs in the slowly-varying envelope
approximation

A standard approach to analyzing the dynamics of the
MBEs of Eqs. (1a)-(1c) begins by extracting the fast fre-
quency dependence from the atomic transition frequency:

E(x, t) = Ec · E(x, t)
1√
L
ei(nRΩ/c)xe−iΩt (A1a)

P(x, t) = Pc · P (x, t)
1√
L
ei(nRΩ/c)xe−iΩt (A1b)

D(x, t) = Dc ·D(x, t) (A1c)
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Following the above ansätze, the primary transformation hap-
pens in the wave equation for the electric field, Eq. (1a):

∂2
xE +

i2nRΩ

c
∂xE +

i2n2Ω

c2
Ė +

n2 − n2
R

n2

Ω2

c2
E − n2

c2
Ë =

µ0ϵ0P̈ − i2µ0ϵ0ΩṖ − µ0ϵ0Ω
2P (A2)

where we have used the explicit forms of Ec, Pc as defined
in Eq. (3). The slowly-varying envelope approximation relies
on the fact that the spatio-temporal evolution of the envelope
functions E,P will unfold at rates smaller than Ω and Ω/c.
More precisely, this requires (Ω/c)∂xE ≫ ∂2

xE, ΩĖ ≫ Ë,
and with analogous conditions holding for the polarization
field. Dropping these second-order derivatives, the electric
field wave equation reduces to an advection equation of the
form:

iĖ =

[
−i

nR

n2
c ∂x − n2 − n2

R

n2

Ω

2

]
E − Ω

2n2
P (A3)

where we have also used µ0ϵ0 = 1
c2 . Now recalling that n =

nR + inI where nI

nR
≪ 1, we can write the two respective

contributions above to lowest nontrivial order in nI

nR
:

nR

n2
=

1

nR

(
1 + i

nI

nR

)−2

≃ 1

nR
− i

2nI

n2
R

n2 − n2
R

n2
= 1−

(
1 + i

nI

nR

)−2

≃ i
2nI

nR
(A4)

Using these results allows us to write the advection equation
to lowest nontrivial order in nI

nR
,

iĖ =

[
−i

c

nR
∂xE − 2nI

n2
R

c ∂xE − i
2nI

nR
· Ω
2

]
E − Ω

2n2
P

(A5)

If we now define the cold cavity loss rate as

κ ≡
(

nI

nR

)
Ω, (A6)

we finally obtain:

Ė = − c

nR

(
1− i

2nI

nR

)
∂xE − κE + i

Ω

2n2
R

P (A7)

Finally, using Eq. (5), the above equation can be expressed in
dimensionless form:

Ė = − 1

nR

(
1− i

2nI

nR

)
∂xE − κE + i

Ω

2n2
R

P (A8)

Next, we substitute the ansätze into Eq. (1b) and simplify,
which yields:

Ṗ = −γ⊥P − iγ⊥ED (A9)

Finally, substituting the ansätze into Eq. (1c) and simplifying
using Eq. (5), we obtain:

Ḋ = −γ∥(D −D0) + i
γ∥

2
(EP ∗ − E∗P ) (A10)

Appendix B: Review of main results of RNGH LSA

For completeness, we present here the results of the original
spatiotemporal (ST) LSA from Ref. [27], in the notation of
the main text. This LSA predicts minimum and maximum
unstable frequencies at any pump power p given respectively
by:

ωmax,min =

√
γ∥

2

(
3γ⊥(p− 1)− γ∥ ±R

)
×(

1− 2κ

γ⊥(p− 3)− γ∥ ±R

)
(B1)

where:

R =
√

γ2
⊥(p− 1)2 − 2γ⊥(p− 1)(4γ⊥ + 3γ∥) + γ2

∥ (B2)

We define as ωinst the value of the unstable frequency at
the emergence of the instability of single mode lasing. Here
ωmax = ωmin, and hence R = 0. This also provides the value
of the pump power threshold for the instability:

pth = 5 + 3

(
γ∥

γ⊥

)
+ 2

√
4 + 6

(
γ∥

γ⊥

)
+ 2

(
γ∥

γ⊥

) 2

(B3)

To lowest order in γ∥
γ⊥

, we recover the often-quoted value for
the second thresold, pth → 9. We note that this is only true in
the large γ⊥ limit.

Defining ∆inst = ωmax−ωmin, considering the near thresh-
old regime, we present results to lowest order in κ

γ⊥
,
γ∥
γ⊥

are
presented in Eqs. (18a), (18b).

The unstable frequency ωinst can become zero under spe-
cific circumstances. Requiring ωinst = 0 using Eq. (B1), we
find that this condition is met at a pump power p given by:

p(ωinst = 0) =
κ

γ⊥
·
γ∥ + 3γ⊥ + κ

κ− γ∥ − γ⊥
(B4)

Clearly for this pump power to be positive and hence physical,
we require:

κ > γ∥ + γ⊥ (B5)

which is the “bad cavity” limit of laser operation.

Appendix C: Lossy modes of multimode ring cavity

In this appendix section we will solve the Helmholtz equa-
tion, Eq. (6), for the modes of a lossy multimode ring cavity.
For convenience we reproduce the equation below, specialized
to the one-dimensional ring cavity:

d2

dx2
φm(x) = −n2ω2

m

c2
φm(x) (C1)

We begin by writing the equation in dimensionless parame-
ters, as defined by Eq. (5),

d2

dx2
φm(x) = −n2ω2

mφm(x) (C2)
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The above Helmholtz equation can be solved by assuming
ansätze for the mode functions φm(x) of the form:

φm(x) = Neikmx (C3)

where km is a dimensionless wavevector, related to the di-
mensionful wavevector km via km = Lkm, and where N is
a normalization constant. Note that for Eq. (C3) to satisfy the
Helmholtz equation for the ring cavity, it must satisfy periodic
boundary conditions, so that:

eikmx = eikm(x+1) =⇒ km = 2mπ, m ∈ Z (C4)

Substituting the above and simplifying, we obtain the relation:[
−k2m + n2ω2

m

]
φm(x) = 0 (C5)

The above immediately yields the dispersion relation:

ωm =
1

n
km (C6)

Recalling that n is complex-valued, the eigenfrequencies ωm

must also be complex, and describe the decay of field intensity
for the lossy ring cavity modes (in the absence of pumping and
subsequent lasing).

ωm =
1

nR + inI
km

≃ km
nR

− i
km
nR

nI

nR
≡ νm − iκm (C7)

Recalling that we have chosen parameters such that ν0 = Ω,
we find:

ν0 =
k0
nR

= Ω, κ0 =
k0
nR

nI

nR
= Ω

nI

nR
= κ (C8)

Finally, imposing the orthogonality relationship in Eq. (7), we
find that N = 1√

L
, so that the final expression for lossy ring

cavity modes takes the form:

φm(x) =
1√
L
eikmx, kmL = 2mπ, m ∈ Z (C9)

with complex eigenfrequencies given by Eq. (C7).

Appendix D: Derivation of CFTD equations

We will derive here Eq. (12) starting with the Maxwell-
Bloch equations for the scalar electric field amplitude E(x, t),
polarization P (x, t) and inversion density D(x, t), Eqs. (1a)-
(1c). The procedure for obtaining the CFTD equations can
be summarized as follows: we substitute the CF ansätze,
Eqs. (10a), (10b) into each of the Maxwell-Bloch equations,
integrate out the spatial component by taking advantage of
properties of the CF states, and apply the slowly varying en-
velope approximation to eliminate second-order time deriva-
tives.

Beginning by substituting Eqs. (10a), (10b) into Eq. (1a),
we obtain:

∑
m

[
Em

Ec
∇2 − n2

c2
Ëm − i2ΩĖm − Ω2Em

Ec

]
e−iΩtφm(x)

= µ0

∑
m

P̈m − i2ΩṖm − Ω2Pm

Pc
e−iΩtφm(x) (D1)

Using Eq. (C1) the above equation simplifies to:

∑
m

[
−n2

c2
ω2
mEm

Ec
− n2

c2
Ëm − i2ΩĖm − Ω2Em

Ec

]
e−iΩtφm(x)

= µ0

∑
m

P̈m − i2ΩṖm − Ω2Pm

Pc
e−iΩtφm(x) (D2)

Multiplying through by φn(x) and integrating over the spatial
domain of the cavity, we find:

∑
m

[
−n2

c2
ω2
mEm

Ec
− n2

c2
Ëm − i2ΩĖm − Ω2Em

Ec

]
e−iΩt×∫

dx φn(x)φm(x)

= µ0

∑
m

P̈m − i2ΩṖm − Ω2Pm

Pc
e−iΩt

∫
dx φn(x)φm(x)

(D3)

This spatial projection enables us to make use of the orthogo-
nality of the cavity modes {φm(x)}, Eq. (7), which collapses
the sum over modes, finally yielding:[

−n2

c2
ω2
mEm

Ec
− n2

c2
Ëm − i2ΩĖm − Ω2Em

Ec

]
e−iΩt

= µ0
P̈m − i2ΩṖm − Ω2Pm

Pc
e−iΩt (D4)

We now also perform a slowly-varying envelope approxi-
mation to neglect second-order time derivatives as before,
namely Ëm ≪ ΩĖm and P̈m ≪ ΩṖm ≪ Ω2Pm. Also
making use of the explicit form of scaling factors Ec, Pc and
rearranging terms, we arrive at:

−i2ΩĖm − Ω2Em + ω2
mEm =

Ω2µ0ϵ0c
2

n2
Pm (D5)

We will now introduce some replacements and a final set of
approximations. Using µ0ϵ0 = 1

c2 , ω2
m = ν2m−κ2

m−2iνmκm,
and approximating νm

Ω ≃ 1, n ≃ nR(1 + i nI

nR
) ≃ nR, and

scaling time and frequency scales according to Eq. (5), we ar-
rive at the dynamical equation for the electric field amplitude
of the nth mode is given by:

Ėm =
i

2Ω

(
Ω2 − ν2m + κ2

m

)
Em − κmEm +

iΩ

2n2
R

Pm

(D6)
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Which is Eq. (12a) from the main text.
Similarly substituting Eqs. (10a), (10b), into the dynamical

equation for the polarization field, Eq. (1b), we obtain:∑
m

[
−iΩPm + Ṗm

]
φm(x) =

∑
m

(−iΩ− γ⊥)Pmφm(x)

− i
g2

ℏ
Pc

EcDc

∑
m

EmD(x, t)φm(x) (D7)

Multiplying through by φn(x) and integrating over the spatial
domain of the cavity, we find once more:

Ṗm = −γ⊥Pm − iγ⊥
∑
m

Emφ∗
n(x)D(x, t)φm(x) (D8)

where we have also used the explicit forms of Ec, Pc, and Dc.
The term in brackets on the right defines the inversion ma-
trix elements introduced in Eq. (11). Introducing these matrix
elements, the equation of motion for the polarization field ex-
pansion coefficients is given by:

Ṗn = −γ⊥Pn − iγ⊥
∑
m

EmDnm (D9)

The equations of motion for the inversion matrix elements
Dnm are given by:

Ḋnm = −γ∥(Dnm −D0
nm)

+
iγ∥

2

∑
r

[
ErP

∗
n+r−m − E∗

n+r−mPr

]
(D10)

Finally, substituting Eqs. (10a), (10b), into the dynamical
equation for the inversion field, Eq. (1b), we obtain:

Ḋ = −γ∥(D −D0)

+ i
2

ℏEcPc

∑
rs

[ErP
∗
s φr(x)φ

∗
s(x)− E∗

rPsφ
∗
r(x)φs(x)]

(D11)

Multiplying through by the scaling factor Dc, and re-ordering
the sum by a redefinition of labels, we obtain:

Ḋ = −γ∥(D −D0)

+ i
2Dc

ℏEcPc

∑
rs

(ErP
∗
s − E∗

sPr)φr(x)φ
∗
s(x) (D12)

We can project the inversion field onto the spatial basis. We
multiply through by φn(x)φ

∗
m(x) and integrate over the spa-

tial domain of the laser cavity, finally arriving at:

Ḋnm = −γ∥(Dnm −D0
nm) + i

γ∥

2

∑
rs

Anmrs(ErP
∗
s − E∗

rPs)

(D13)

where we have used the explicit forms of the scaling factors,
moved to dimensionless time and frequency variables, and in-
troduced the dimensionless mode overlap tensor of the main
text, Eq. (13):

Anmrs = L

∫ L

0

dr φnφ
∗
mφrφ

∗
s (D14)

Appendix E: Derivation of the single mode threshold

In this appendix section, we derive the pump threshold and
steady-state lasing solution in the regime of single-mode las-
ing. We allow for a general lasing frequency Ωl:

El(t) = Esse
−iΩlt

Pl(t) = Psse
−iΩlt

Dll(t) = Dss (E1)

where the inversion is stationary. Under this ansätz, the modal
equations then simplify to:

Ėss =
i

2Ω

(
2ΩΩl +Ω2 − ν2l + κ2

l

)
Ess − κ0Ess +

iΩ

2n2
R

Pss

(E2a)

Ṗss = (iΩl − γ⊥)Pss − iγ⊥EssDss (E2b)

Ḋss = −γ∥(Dss −D0
00) +

iγ∥

2
(EssP

∗
ss − E∗

ssPss) (E2c)

For steady-state, we require Ėss = Ṗss = Ḋss = 0. In this
regime, Eq. (E2a) reduces to:

Pss =

[
−i

2n2
Rκ

Ω
− n2

R

Ω2

(
2ΩΩl +Ω2 − ν2l + κ2

l

)]
Ess

(E3)

Similarly, Eq. (E2b) yields for the same quantity:

Pss =
iγ⊥

iΩl − γ⊥
· EssDss (E4)

Comparing the two equations, we immediately find for Dss:

iγ⊥
iΩl − γ⊥

·Dss =

[
−i

2n2
Rκl

Ω
− n2

R

Ω2

(
2ΩΩl +Ω2 − ν2l + κ2

l

)]
(E5)

Or, rationalizing the left-hand side:

Ωlγ⊥ − iγ2
⊥

Ω2
l + γ2

⊥
Dss =

[
−i

2n2
Rκl

Ω
− n2

R

Ω2

(
2ΩΩl +Ω2 − ν2l + κ2

l

)]
(E6)

Comparing both sides, the imaginary parts immediately yield:

Dss =
Ω2

l + γ2
⊥

γ2
⊥

2n2
Rκl

Ω
(E7)

while the real parts yield:

Ωlγ⊥
Ω2

l + γ2
⊥
Dss = −

[
n2
R

Ω2

(
2ΩΩl +Ω2 − ν2l + κ2

l

)]
(E8)

Substituting the expression for Dss into the above, we imme-
diately find:

Ωl

γ⊥

2n2
Rκl

Ω
= −

[
n2
R

Ω2

(
2ΩΩl +Ω2 − ν2l + κ2

l

)]
(E9)
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which finally yields:

2n2
R

Ω

(
κl

γ⊥
+ 1

)
Ωl = −n2

R

Ω2

(
Ω2 − ν2l + κ2

l

)
(E10)

or: (
κl

γ⊥
+ 1

)
Ωl = −

(
Ω2 − ν2l + κ2

l

)
Ω

(E11)

Finally, using Eq. (E2c) we find:

0 = −γ∥(Dss −D0
00) +

iγ∥

2

(
iγ⊥

iΩl + γ⊥
− iγ⊥

iΩl − γ⊥

)
Dss|Ess|2

(E12)

which simplifies to:

Dss = D0
00 −

(
γ2
⊥

Ω2
l + γ2

⊥

)
Dss|Ess|2

=⇒ Dss =
D0

00

1 +
γ2
⊥

Ω2
l +γ2

⊥
|Ess|2

(E13)

Using Eq. (E7), we can solve for Ess:(
Ω2

l + γ2
⊥

γ2
⊥

+ |Ess|2
)

2n2
Rκl

Ω
= D0

00 (E14)

which can be rewritten in the form:

|Ess|2 =
Ω

2n2
Rκl

D0
00 −

Ω2
l + γ2

⊥
γ2
⊥

(E15)

The requirement of |Ess|2 > 0 yields:

D0
00 ≥ 2n2

Rκl

Ω
· Ω

2
l + γ2

⊥
γ2
⊥

(E16)

which yields the single-mode lasing threshold Dth:

Dth =
2n2

Rκl

Ω
· Ω

2
l + γ2

⊥
γ2
⊥

(E17)

Clearly minimizing this threshold for fixed damping parame-
ters requires minimizing κl and Ωl. Assuming all modes have

equal damping rates κl = κ ∀ l, the lasing threshold is mini-
mized for mode l that minimizes Ωl. From Eq. (E11), Ωl = 0
if
(
Ω2 − ν2l + κ2

l

)
= 0, which requires:

ν2l =
(
Ω2 + κ2

l

)
=⇒ νl ≃ Ω (E18)

as κl ≪ Ω. Namely, the mode l closest to the atomic transition
frequency will have the lowest single-mode lasing threshold.

Appendix F: Details of the multimode LSA

To analyze the linear stability of single-mode lasing dy-
namics described by the CFTD equations, we substitute the
ansätze of Eqs. (19c) into Eqs. (12a)-(12c), and retain only
terms linear in the fluctuation variables (δEm, δPm, δDnm).
Under this linearization, the equation of motion for the elec-
tric field amplitudes, which is already linear, retains its form
and is given by Eq. (12a):

δĖm =
i

2Ω

(
Ω2 − ν2m + κ2

m

)
δEm − κmδEm +

iΩ

2n2
R

δPm

(F1)

while the equation of motion for polarization field, Eq. (12b),
for sidebands m ̸= 0 take the form:

δṖm = −γ⊥δPm − iγ⊥

E0δDm0 +
∑
l ̸=0

δElD00δml


(F2)

where we have dropped terms involving the product of two
fluctuation terms ∼ O(δEmδDml),m ̸= 0 in the second line.
It is clear that the nontrivial inversion matrix elements that
couple to the emerging sidebands are off-diagonal elements
namely Dm0. Using Eq. (12c), we can write equations of mo-
tion for these inversion matrix elements:

δḊm0 = −γ∥(δDm0 −D0
m0)

+
iγ∥

2
[E0δP

∗
m + δE−mP ∗

0 − δE∗
mP0 − E∗

0δP−m]

(F3)

where we have now dropped second-order terms such as
O(δErδPm+r), r ̸= 0,−m.

Eqs. (F1)-(F3) can be compactly written in matrix form,
yielding the matrix system in Eq. (20) of the main text. The
component matrices are given by:
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Jm =



i(Ω2+κ2
m−ν2

m)−2κmΩ
Ω 0 iΩ

2n2
c

0 0 0

0
i(Ω2+κ2

m−ν2
m)−2κmΩ

Ω − iΩ
2n2

c
0 0

−iD00γ⊥ 0 −γ⊥ 0 −iE0γ⊥ 0
0 iD00γ⊥ 0 −γ⊥ 0 iE∗

0γ⊥
i
2γ∥P

∗
0 0 − i

2γ∥E
∗
0 0 −γ∥ 0

0 − i
2γ∥P0 0 i

2γ∥E0 0 −γ∥


(F4)

The dependence on mode index m arises only via the elec-
tric field sector. The coupling matrices Cm,−m are symmetric
under m → −m are given by:

Cm,−m =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 − i

2γ∥P0 0 i
2γ∥E0 0 0

i
2γ∥P

∗
0 0 − i

2γ∥E
∗
0 0 0 0


(F5)

The coupling matrix has a sparse form, and clearly empha-
sizes that sideband coupling arises via the inversion field sec-
tor of the dynamics (the final two rows).

Appendix G: Additional numerical results

In this section we provide some additional simulation re-
sults that supplement discussions in the main text regarding
the comparison of the two methods as well as other features
of the CFTD.

1. An intermediate polarization regime: γ⊥/γ∥ = 10.0

We consider here an additional intermediate ratio γ⊥/γ∥ =
10 as shown in Fig. 10. The decay parameters are: γ⊥ =
5, γ∥ = 0.5 and κ = 0.1. The ST LSA reveals that the first
mode pair to become unstable is at the frequencies Ω±2∆. As
we have previously seen, we can extract the unstable modes
by looking at the intersection of each pump power and the in-
stability band shaded in pink. The black circles in the same
figure mark the modal linear stability results. The two analy-
ses begin to diverge here for higher pump power as the modal
approach seems to predict a smaller range of instability than
the RNGH analysis.

In this case, we show numerical CFTD and FDTD simula-
tions for pump powers p = 25 and p = 70. In these cases
only a single mode becomes unstable at frequencies Ω ± 3∆
and Ω± 5∆ respectively. The time traces of the electric field
computed using both CFTD and FDTD simulations show sus-
tained oscillations in these cases, while the frequency spectra
of the fields will reveal prominent peaks at the unstable mode
pairs (not shown). However, this qualitative agreement is ac-
companied by certain discrepancies, such as the rate at which

FIG. 10. CFTD and FDTD comparison for decay parameters: γ⊥ =
5.0, γ∥ = 0.5, κ = 0.1, and nR = 1.96. Left panel: ST LSA where
red dashed line marks the instability threshold and black dashed lines
mark pump powers where time traces are shown. Regions marked by
black open circles show the results of the modal LSA. Right panel:
Side by side comparison of |E(x = 0, t)|2 scaled by Ess for the first
2000 roundtrips of the CFTD (blue) and FDTD (red) results.

solutions reach steady state, and the steady-state oscillation
amplitude.

The intermediate pump power result, p = 55, describes a
special case: here, two mode pairs are simultaneously pre-
dicted to be unstable by the ST LSA (Ω±4∆ and Ω±5∆ fall
simultaneously in the instability band). As seen in Fig. 5, for
simpler instabilities with a single unstable seed mode pair, this
mode number determines the FSR spacing of the emergent
multimode comb. With two adjacent unstable mode pairs, the
nature of the comb waveform is not a priori obvious, as the
mode numbers are incompatible with a fixed FSR comb. The
time domain electric field traces shown in Fig. 10 using both
simulation methods reveal that the dynamics is more complex
than the single mode pair case.

2. The role of the retained number of modes

As a modal approach, one of the main parameters in the
CFTD simulations is the number of modes. Generally, a larger
number of modes leads to greater accuracy as defined by the
discrepancy with the FDTD solution; however, if the number
of modes is too large, it will lead to a greater simulation time
without any benefit in accuracy and may even give rise to arti-
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facts. In our analysis in the main text, the choice of number of
modes has been guided by two factors. First, in order to pro-
duce an initial pulse that closely resembles a Gaussian pulse,
at least 11 modes have been included in each simulation re-
gardless of the relevant number of modes in the system. For
some of the regimes we have considered, this is a sufficient
number of modes. The second factor we have consulted is the
LSA by including at least enough modes to cover the insta-
bility bands. To highlight the importance of the number of
modes, we have shown in Fig. 11 a comparison of two sim-
ulations where the difference lies only in the total number of
modes included. The top panel shows the CFTD and FDTD
time traces as well as spectra for a greater number of modes,
in this case 15. We do see a discrepancy between the two
methods in the time domain, where the FDTD is slower to
reach the steady state oscillations. As we have analyzed in the
main text, this parameter space belongs to a relatively com-
plex regime, where the agreement between the two methods
is more qualitative. However, the agreement over the modes
present in each simulation is very good. In the bottom panel
we show the same comparison between the two methods but
now the number of modes included in the CFTD is only 9.
The results are now qualitatively very different between the
CFTD and FDTD where the CFTD settles to steady state and
thus shows fewer modes to be present. In fact, the few side-

bands that are present in the CFTD spectrum are due to the
transient dynamics in the beginning of the time trace.

FIG. 11. Comparison of dynamics of the scaled electric field inten-
sity |E(x = 0, t)|2 and its FFT using CFTD (blue) and FDTD (red),
above the instability threshold (p = 25) for two different numbers
of modes included in the CFTD simulation. Decay parameters are
γ⊥ = 5.0, γ∥ = 0.5, κ = 0.1, and nR = 1.96.
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bility in mid-infrared Fabry–Pérot quantum cascade lasers. Op-
tical and Quantum Electronics, 52(2):91, January 2020.

[8] Marco Piccardo and Federico Capasso. Laser Frequency
Combs with Fast Gain Recovery: Physics and Applications.
Laser & Photonics Reviews, 16:2100403, February 2021.
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Beck, and Jérôme Faist. Femtosecond pulses from a mid-
infrared quantum cascade laser. Nature Photonics, 15(12):919–
924, November 2021.

[10] Najmeh S. Mirian, Michele Di Fraia, Simone Spampinati, Fil-
ippo Sottocorona, Enrico Allaria, Laura Badano, Miltcho B.
Danailov, Alexander Demidovich, Giovanni De Ninno, Si-
mone Di Mitri, Giuseppe Penco, Primož Rebernik Ribič, Carlo
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Manfredda, Lorenzo Raimondi, Marco Zangrando, Oksana
Plekan, Kevin C. Prince, Tommaso Mazza, Richard J. Squibb,
Carlo Callegari, Xi Yang, and Luca Giannessi. Genera-
tion and measurement of intense few-femtosecond superradiant
extreme-ultraviolet free-electron laser pulses. Nature Photon-
ics, 15(7):523–529, May 2021.

[11] Koji Sugioka. Progress in ultrafast laser processing and future
prospects. Nanophotonics, 6(2):393–413, March 2017.

[12] Renato Torre, Paolo Bartolini, and Roberto Righini. Structural
relaxation in supercooled water by time-resolved spectroscopy.
Nature, 428(6980):296–299, March 2004.

[13] R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter,
and A. Leitenstorfer. How many-particle interactions develop
after ultrafast excitation of an electron–hole plasma. Nature,
414(6861):286–289, November 2001.
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milian Beiser, Nikola Opačak, Yongrui Wang, Shantanu Jha,
Johannes Hillbrand, Michele Tamagnone, Wei Ting Chen,
Alexander Y. Zhu, Lorenzo L. Columbo, Alexey Belyanin, and
Federico Capasso. Frequency combs induced by phase turbu-
lence. Nature, 582(7812):360–364, June 2020.
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