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Dissipation is a ubiquitous phenomenon in dynamical systems encountered in nature because no finite
system is fully isolated from its environment. In optical systems, a key challenge facing any technological
application has traditionally been the mitigation of optical losses. Recent work has shown that a new class
of optical materials that consist of a precisely balanced distribution of loss and gain can be exploited to
engineer novel functionalities for propagating and filtering electromagnetic radiation. Here we show a
generic property of optical systems that feature an unbalanced distribution of loss and gain, described
by non-normal operators, namely, that an overall lossy optical system can transiently amplify certain input
signals by several orders of magnitude. We present a mathematical framework to analyze the dynamics of
wave propagation in media with an arbitrary distribution of loss and gain, and we construct the initial
conditions to engineer such non-normal power amplifiers. Our results point to a new design space for
engineered optical systems employed in photonics and quantum optics.
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I. INTRODUCTION

In practice, dynamical systems are never completely
isolated, and they interact with their environment. In
quantum and wave systems, this interaction appears as
dissipation of energy and other system properties. The
conventional route to fighting dissipation relies on either
the minimization of coupling to the environment or an
external energy source that replenishes the energy or
information lost. In optical systems, this is accomplished
by engineering the medium in which radiation propagates
and through an external drive, respectively. Similarly, in
engineered quantum optical systems such as superconduct-
ing circuits [1], recent interest revolves around preservation
of coherence and entanglement by engineering the coupling
to a dissipative environment [2,3], an approach referred to
as quantum bath engineering [4–6]. In optical systems,
manipulation of the spatial distribution of the real part
of the refractive index is the cornerstone of modern
photonics today [7,8]. However, only recently have the
implications of engineering the imaginary part of the
refractive index—that represents gain or loss—become
under scrutiny in nanostructured complex photonic struc-
tures (e.g., Refs. [9,10]) that, in addition, can feature
electrical tunability (see Ref. [11]).

Much of this early work on loss engineering has
focused on optical configurations where the distributed
loss and gain are in perfect balance. Referred to as parity-
time (PT) symmetric [12,13] photonic systems [14–29],
because the equations are isomorphic to quantum mechan-
ics with a non-Hermitian Hamiltonian that is invariant
under combined operations of spatial parity (P) and time-
reversal (T ), these optical systems rely on the perfect
spatial symmetry of the structure. Such novel structures
have been experimentally realized with optical wave-
guides and fiber networks [24–29], as well as with
microcavity lasers [9,10]. They represent a class of optical
systems where the deliberate introduction of loss and its
spatial distribution along with gain can achieve new
functionalities with potential applications as optical iso-
lators and switches [30–33]. Parity-time symmetric sys-
tems in the context of metamaterials [34–36] and active
plasmonics [37–39] have also attracted considerable
attention over the last few years.
Recent experimental work [9,10,24–29], however, has

shown that in most photonic applications, it is difficult to
implement designs in which optical loss and gain are
perfectly balanced. Furthermore, in a number of optical
systems, e.g., active plasmonic structures, the overall loss
easily dominates the optical gain. For the full realization of
the potential of “loss engineering,” it is of interest to
examine the properties of the larger class of systems that we
refer to as “non-normal optical potentials.” These systems
feature arbitrary spatial distributions of gain and loss that
are not subject to any spatial symmetry requirements. Are
there any generic properties of such structures that may
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present an outstanding promise for novel applications? This
is the question we attempt to answer here.
We study wave propagation in multimode optical wave-

guides that feature distribution of gain and loss that is not
balanced, in particular, one where the optical loss domi-
nates. As a direct outcome, all eigenmodes of the system
decay with propagation distance, whether they are confined
by the optical potential (bound modes) or not (radiation
modes). We show that depending on the initial conditions,
the injected power can nevertheless be amplified, in some
cases by several orders of magnitude. We find that the
initial field distributions that give rise to the maximum
growth are not localized only within the gain regions,
contrary to what one would expect. We subsequently show
that the appropriate initial field that leads to the maximum
possible power growth can be calculated using singular
vectors of the propagator of the system. This direction is
largely unexplored in the non-normal optics literature
[11,40–49] and can have potential applications for transient
power amplification and directed energy transfer in inho-
mogeneous media.

II. PHOTONIC STRUCTURES AS NON-NORMAL
DYNAMICAL SYSTEMS

We consider the propagation of optical waves in spatially
inhomogenous photonic structures with a preferred axis for
propagation (z), characterized by a complex-valued index
of refraction that is, on average, loss dominated. Under the
paraxial approximation, the dynamics of the slowly varying
field amplitude Φðx; y; zÞ is captured by a Schrödinger-like
equation, the paraxial equation of diffraction ∂Φ=∂z ¼
ĤΦ, where Ĥ is the evolution operator of the system. This
analogy, with z playing the role of time t, has been used
extensively to map quantum mechanics to the optical
domain and is the basis for a number of photonic quantum
simulation schemes [8,50]. Since the refractive index we
consider is complex, the operator Ĥ is generally non-
normal [51–53]; i.e., it does not commute with its
adjoint ½Ĥ; Ĥ†� ≠ 0.
Assuming translational invariance along the propagation

direction z, our understanding of the beam dynamics is
typically basedon the spectrumof Ĥ. In a non-normal system,
the eigenmodes ϕnðx; yÞ of Ĥ are nonorthogonal, and the
eigenvalues λn¼ γnþ iβn are complex.Using the biorthogon-
ality relationship between the eigenmodes ϕnðx; yÞ of Ĥ
and the associated adjoint eigenmodes ~ϕmðx;yÞ, namely,
hϕmjϕni≡

R
∞−∞dxdy ~ϕ�

mðx;yÞϕnðx;yÞ¼δmn, the dynamics
of any arbitrary field can be written as a superposition:
Φ ¼ P∞

n¼1 cnϕnðx; yÞeiβnzeγnz. This expansion is of course
valid provided that the set of non-orthogonal eigenmodes
is complete. The general approach we are going to take to
investigate the transient growth dynamics, however, as we
showlater, doesnot relyon theexistenceof suchanexpansion.
For a structurewith an overall loss greater than the gain (to be
defined below), the spectrum typically, but not generally,

consists of only decaying eigenvalues (i.e., γn < 0 in the
convention chosen here), and such a system is described as
subject to “modal loss.” In such situations, the input beam
decays over a long propagation distance z. In view of the
above, the answers to the fundamental questions related to a
lossy amplifier (What is the maximum achievable amplifica-
tion? What are the corresponding optimal initial conditions
for maximum amplification at a given distance z? Can the
system exhibit gain in the asymptotic long-distance limit as
well?) appear to be highly nontrivial and counterintuitive.
The systematic examination of these fundamental questions
regarding the transient amplification of decayingwaves is the
main focus of this paper.

III. WAVE PROPAGATION IN NON-NORMAL
OPTICAL WAVEGUIDES

We begin our analysis by considering optical wave
propagation in a generic non-normal potential. These
potentials can be generated using either planar waveguides
or optical fibers, like those depicted in Fig. 1(a). Such
potentials are, on average, lossy and characterized by a
complex index of refraction nðrÞ ¼ n0 þ δnðrÞ. Here, n0 is
the real-valued background index guiding the propagating
wave, and δn is the complex-valued refractive-index
spatial modulation (typically δn ≪ n0). The optical wave
Ψðr; tÞ of frequency ω can be expressed as
Ψ ¼ Φðx; y; zÞeiðn0k0z−ωtÞ, with k0 ≡ ω=c ¼ 2π=λ0, where
c is the speed of light in vacuum, λ0 is the optical
wavelength, and Φðx; y; zÞ is the slowly varying field
amplitude in the propagation direction z. The normalized
paraxial equation of diffraction for the electric field
envelope takes the following form [8]:

i
∂Φ
∂z þ ∂2Φ

∂x2 þ ∂2Φ
∂y2 þ Vðx; yÞΦ ¼ 0: ð1Þ
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FIG. 1. Schematic depiction of non-normal photonic wave-
guide structures in (a) semiconductor slab waveguide and an
optical fiber. In both figures, the green and red shaded regions
represent the lossy and gainy regions, respectively. The propa-
gation distance is denoted by z. (b) Real (blue curve) and
imaginary (red curve) part of the non-normal optical potential
that we consider in the text, for g ¼ 0.5. The green filled areas
denote the lossy parts of the potential, while the red filled areas
stand for the gain parts.
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The above equation can be written in the dynamical system
form ∂Φ=∂z ¼ ĤΦ, where Ĥ is the evolution operator of
the system given by

Ĥ ¼ i

� ∂2

∂x2 þ
∂2

∂y2
�
þ iVðx; yÞ: ð2Þ

One can easily see the non-normal nature of Ĥ for a
complex optical potential V ≡ nRðx; yÞ þ ignIðx; yÞ. We
choose nI to be positive (negative) for loss (gain). For
convenience, we introduce a dimensionless constant g to
adjust the relative magnitude of the imaginary part of the
index to the real part without modifying the loss-gain
distribution. Note that for all cases, the overall imaginary
part of the index is much smaller than the real part because
V is the index fluctuation on top of a large real background
index n0. The class of optical potentials that we investigate
is characterized by a spatial average corresponding to net
loss, i.e.,

R∞−∞ dxdynIðx; yÞ > 0. Note that this quantity is
independent of g. Such inhomogeneous gain-loss land-
scapes neither require any stringent spatial symmetries nor
can they be mapped to an equivalent PT-symmetric optical
potential [14–23]. In particular, we shall focus on the
regime where the structure is characterized by a net modal
loss; i.e., all the eigenvalues are in the loss plane (γn < 0),
in contrast to gain-guided homogeneous potentials with net
modal gain [42].
This class of lossy potentials can still be used as power

amplifiers because of the physical existence of gain
material. To show this, we study the evolution of the
integrated intensity along the z direction. In particular,
we can derive the following expressions that describe the
dynamics of power PðzÞ≡ R

∞−∞ dxdyjΦðx; y; zÞj2 along
the z direction. We can characterize the dependence
of power on z in terms of dP=dz ¼ −2g R∞−∞ dxdynIjΦj2
and d2P=dz2 ¼ 4g

R
∞−∞ ∇nIðx; yÞ · S⊥ðx; y; zÞdx, where

S⊥ðx; y; zÞ is the transverse component of the Poynting
vector, defined as S⊥ ¼ i=2ðΦ∇Φ� − Φ�∇ΦÞ. For the
simple case of only loss (gain), we immediately find
dP=dz < 0ð> 0Þ for every value of the propagation
distance z, indicating power decay or amplification. The
situation is different for potentials that involve both gain
and loss. In particular, we can understand from these
relations that the power growth dynamics is not easily
described since we do not know a priori the diffraction
evolution of a given input waveform and thus the sign
of dP=dz.

IV. DECAYING EIGENVALUE SPECTRUM
OF LOSSY AMPLIFIERS

Let us first consider a specific example of a one-
dimensional non-normal multimode waveguide that is loss
dominated. Our findings for this case are sufficiently

general, as illustrated for a two-dimensional (2D) system
in Appendix B. Before proceeding with the analysis of the
power growth, it is crucial to first examine the nature of
the eigenvalue spectrum of our lossy amplifier. Consider
the loss-dominated waveguide system depicted in
Fig. 1(b). For propagation through such a waveguide
(g ¼ 0.5 in this case), all eigenvalues are located in the
left-half part of the complex plane (“loss plane”), as is
shown in Fig. 2(a). Even if the averaged nI is loss
dominated, since the system physically exhibits gain in
some regions, one would expect that it can, in principle,
amplify the propagating light. Basic theoretical consider-
ations tell us, however, that in the large-z limit, the total
power will eventually always decay exponentially to zero
for a waveguide characterized by modal loss. On the other
hand, it is a basic fact of non-normal operator theory
[51–53] that even if all the eigenvalues are in the loss plane,
the system may exhibit nonexponential transient behavior
[51–55] before eventually entering the exponential decay
regime. Indeed, in Fig. 2(b), we can see the beam dynamics
versus the propagation distance z, when the light is initially
(z ¼ 0) coupled only to the gain regions. The inset depicts
the integrated intensity [optical power PðzÞ] over the
propagation distance. The total power is initially amplified
(by a factor of 1.5), but within a short distance, light
diffracts out of the gain region and the total power then
eventually decays to zero with z, as expected. We show
below that coupling light to the gain regions is not the
optimal initial condition to achieve maximum transient
amplification.
Another important aspect is the dependence of the

eigenvalue spectrum on the parameter g. As we increase
its value from zero, we see that after some critical threshold
(gc ¼ 3.65), some eigenvalues cross the imaginary axis of
the complex plane and experience gain, as is depicted in
Fig. 3. For g > gc, the system displays a transition to a
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FIG. 2. (a) Eigenvalue spectrum for g ¼ 0.5 plotted in the
complex plane. (b) Intensity wave dynamics for the intuitive
initial conditions. Namely, the light is coupled only at the gain
regions. For that initial condition, the inset depicts the optical
power versus the propagation distance z. The two black regions
represent the two waveguides, and the inset represents the power
versus the propagation distance z.
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globally amplifying behavior; i.e., in the asymptotic z → ∞
limit, the power increases exponentially. This is found to
be consistent with an eigenvalue of the system crossing
over to the gain plane. This resembles the mathematical
“phase transition” that characterizes all PT-symmetric
Hamiltonians [12–29]. The difference is that we do not
encounter exceptional points here. We emphasize that the
system is still characterized by an overall loss. As pointed
out before this fact is independent of the magnitude of g.
From the discussion above, it is clear that the eigenvalue

spectrum may completely fail to capture the transient
dynamics in certain situations. Thus, a different approach
is used in order to systematically study and classify
transient dynamics. Such an approach is based on the
notion of the pseudospectrum of non-normal evolution
operators [51–53].

V. TRANSIENT POWER GROWTH AND
SINGULAR VALUE DECOMPOSITION

Before we establish the requisite mathematical frame-
work to analyze the transient behavior [54,55], it is crucial
to define the meaning of the central quantity of interest in
our study, the power amplification ratio for a given
propagation distance z:

GðzÞ≡ PðzÞ
Pð0Þ ¼

∥Φðx; zÞ∥2
∥Φðx; 0Þ∥2 ; ð3Þ

where ∥f∥ is the usual Euclidean norm of a function,
∥f∥2 ≡ R∞−∞ dxjfðxÞj2. Because GðzÞ depends strongly on
the input waveform, we will first discuss its upper bound at
a given z for all possible input waveforms:

GmaxðzÞ ¼ sup
∥Φðx; zÞ∥2
∥Φðx; 0Þ∥2 ¼ ∥ezĤ∥2; ð4Þ

where the right-hand side is the square of the matrix norm
of the propagator of the system ezĤ. At this point, we have
to note the conceptual difference of the growth ratios
described by Eqs. (3) and (4). In the first case, G is the
ratio of the output over input power for a specific initial
condition. On the other hand, Eq. (4) describes the
maximum amplification ratio for all possible initial con-
ditions at z ¼ 0. As such, we are first interested in finding
estimates for GmaxðzÞ as a preliminary characterization of
our lossy amplifier.
As opposed to Hermitian or normal systems for which

the spectrum of Ĥ characterizes the entire dynamics, it is
the pseudospectrum of Ĥ that is the relevant construction
for these estimates. In particular, the lower and upper
bounds of GmaxðzÞ can be estimated using functional
analysis theorems of non-normal operators [51–53] and
are directly associated with the extension of the
pseudospectrum cloud to the right-half complex plane
(Appendix A). The ϵ pseudospectrum σϵðĤÞ of a non-
normal operator Ĥ is defined by the union of all its
eigenvalues in the complex plane, when subjected to all
possible system perturbations below a certain magnitude.
Practically speaking, the pseudospectrum is a pattern in the
complex plane that shows how sensitive the eigenvalue
spectrum σðĤÞ is to random perturbations. For Hermitian
operators, the spectrum and the pseudospectrum are almost
identical. But for non-normal operators, the two patterns
can differ significantly, depending on the degree of the
nonorthogonality of the corresponding eigenmodes.
The pseudospectrum analysis presented in Appendix A

is very useful since it provides a geometrical method
that can be used to estimate the magnitude of the maximum
transient growth in a non-normal optical potential.
However, it does not provide direct insight into which
initial conditions lead to maximum amplification. We
present below a method based on the singular-value
decomposition of the non-normal propagator ĜðzÞ ¼ ezĤ

to construct these special initial conditions for a given
structure. It can be shown that

GmaxðzÞ ¼ ∥Ĝ∥2 ¼ maxðσnÞ2; ð5Þ

in which we have used the well-known property that the
matrix norm of an operator is given by its maximum
singular value [54,55]. Based on the above analysis, we
calculate (Fig. 4) the maximum growth as a function of z
and for different values of the gain and loss amplitude g. We
note that the maximum growth GmaxðzÞ is achieved by
using a different input waveform for each value of z. If we
plot the power dynamics versus propagation distance for
each one of these optimal initial conditions that lead to
maximum growth, their upper envelope should give
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FIG. 3. Eigenvalue trajectories in the complex plane as g
increases from zero. At g ¼ 0, the system is Hermitian and
the eigenvalues are real. The red arrows denote the motion of the
eigenvalues in the complex plane as the gain-loss amplitude g
varies.
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GmaxðzÞ. In other words, the upper envelope of all the GðzÞ
curves is the GmaxðzÞ curve. We note that the exact bounds
found through this analysis [Fig. 4(a)] agree very well with
the pseudospectrum-based estimates given in Appendix A
for g ¼ 1, namely, 2 ≤ Gmax ≤ 12. Figure 4(b) shows that
the peak amplification rate increases dramatically as g
approaches the critical value gc ¼ 3.65.
We note that amplification in non-Hermitian structures is

a well-studied effect in the context of PT optical systems
[14–29,49,59]. Close to an exceptional point, the interfer-
ence between nonorthogonal eigenmodes leads to large
amplitude-contrast power oscillations. The understanding
of the maximal amplification ratio and under what con-
ditions it can be achieved in a generic non-normal potential
(non-PT and in the absence of any exceptional point) is a
direction largely unexplored in the field of non-Hermitian
photonics. The nontrivial initial conditions that lead to
such maximal amplification for a given value of the
propagation distance z, and their connection to the eigen-
value spectrum, are the subject of the next section.

VI. OPTIMAL INITIAL CONDITIONS AND
THEIR TRANSIENT DYNAMICS

So far, we have not analyzed the physical content of the
input waveform that leads to the maximum transient growth
at a given z. We show below that the initial conditions for
maximum amplification are complicated and, most remark-
ably, are not localized merely in the gain regions. The input
waveform to achieve the maximum transient growth at z is
given by the corresponding right-singular vector νnðxÞ,
defined by

ĜνnðxÞ ¼ σnvnðxÞ; Ĝ†vnðxÞ ¼ σnνnðxÞ; ð6Þ

where vnðxÞ are the left-singular vectors. We note that the
singular values σn are real and non-negative even for a

non-Hermitian operator. The conclusion (5) can be shown
by writing

GðzÞ ¼ hΦðx; 0ÞjĜ†ĜjΦðx; 0Þi
hΦðx; 0ÞjΦðx; 0Þi ; ð7Þ

which is maximized when Φðx; 0Þ is the eigenvector
corresponding to the largest eigenvalue of the Hermitian
operator Ĝ†Ĝ, which is exactly the right-singular vector of
Ĝ with the largest σn:

Ĝ†ĜνnðxÞ ¼ σnĜ
†vnðxÞ ¼ σ2nνnðxÞ: ð8Þ

Intuitively speaking, one would expect that if the input
waveform is coupled to the gain regions only, it will
probably lead to the maximum power growth. This is,
however, not true, as we show below.
To illustrate this important and counterintuitive result,

we consider two other examples of non-normal potentials
with net loss. The first one is that of a single waveguide
with an asymmetric gain-loss profile [Fig. 5(a)], and the
second one is that of a multimode waveguide with random
spatial distribution of gain and loss [Fig. 5(b)]. In both
cases, the optimal input waveform that achieves the
maximum power growth (at z ¼ 20 and z ¼ 180, respec-
tively) resides in both the gain and the loss regions, as we
can see from its spatial distribution in Figs. 5(a) and 5(b). In
all cases, the common intuitive picture of coupling the input
light only to the gain regions leads to a fast and small power
growth and, in any case, not in the maximum achievable
growth. On the other hand, the calculated initial field
distributions lead to the maximum possible power growth
for longer propagation distances.
Returning to our initial example of the non-normal

multimode waveguide in Fig. 1(b), we analyze the optimal
initial conditions for maximal growth in Fig. 6. More
specifically, to reach the corresponding maximum growth
at z ¼ 25, a highly nontrivial input waveform is required
[red curve in Fig. 6(a)], which has a significant overlap with

FIG. 4. (a) Power amplification for g ¼ 1 versus the propaga-
tion distance, for many different optimal initial conditions (thin
blue curves). (b) Transient power growth in logarithmic scale as a
function of the propagation distance z for different values of the
gain and loss amplitude g. The system is the same as the one
considered in Fig. 1. Each Gmax curve is the envelope of many
different G curves.

In
te

n
si

ty
 

In
te

n
si

ty
 

(a) (b) 

x x 

0

0.5

0

0

0.5

0

–20 0 20 –50 0 50

FIG. 5. Intensity plots (red lines) of the optimal initial con-
ditions that lead to maximum transient growth for (a) a single
waveguide and (b) a multimode waveguide with random dis-
tribution of its imaginary part. In both plots, the blue lines
represent the imaginary part of the non-normal optical potential.
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the loss region. Inspecting the power dynamics more
closely, we find that such input indeed achieves the
maximum achievable amplification [Gmaxðz ¼ 25Þ ¼ 7],
and an interesting diffraction pattern follows [seen in
Fig. 6(c)] that has a prolonged overlap with the gain
regions, as it propagates in the z direction and achieves
the maximum possible growth at z ¼ 25, many wave-
lengths away from z ¼ 0. For an initial condition corre-
sponding to peak amplification at a larger value of
propagation distance z ¼ 100 [Fig. 6(b)], the transient
dynamics is illustrated in Fig. 6(d). The beam follows an
Airy-beam [56] like diffraction pattern outside the wave-
guide region, in order to achieve, at the specific propagation
distance, the maximum growth. This can also be viewed as
a focusing effect that takes place under the confluence of
gain or loss and diffraction.
In the previous paragraphs, we showed that the input

waveform that leads to the maximum transient growth
at propagation distance z is given by the right singular
mode of the propagator ezĤ that corresponds to the largest
singular value, for a particular propagation distance z. So a
natural question to ask is what the relationship is between
the optimal waveform for maximum amplification and the
eigenmodes of Ĥ. This can be studied by projecting the
optimal initial condition Φoptðx; z ¼ 0Þ ¼ νnðxÞ, which
leads to the maximum power growth, onto the biorthogonal
eigenbasis of Ĥ that consists of the set of eigenfunctions
ϕn; ~ϕn. More specifically, the superposition coefficients cn

of the projected optical input beam Φopt to the biorthogonal
basis are given by cn ¼ hϕnjΦoptðx; z ¼ 0Þi=hϕnjϕni. This
expression provides us with an alternative interpretation of
the transient growth. We note, at this point, that all the
projection coefficients considered here lead to convergent
series expansions [57]. For high enough values of the
projection coefficients cn, one expects to see transient
power growth for small values of propagation distance z. In
order for the coefficients cn to attain large values, two
conditions should be satisfied. The first condition is that the
numerator has to be large. In order for this to happen, the
initial condition Φopt must be nearly orthogonal to the

adjoint eigenmodes ~ϕn. The second condition is related to
the small values of the denominator, which is directly
linked to the Petermann excess noise factor [43,58,59]
Kn ¼ 1=jhϕnjϕnij2. In laser physics, this factor determines
the deviation of the quantum-limited laser linewidth of
leaky cavities from its Schawlow-Townes value. We have to
note, at this point, that the distribution of the values of the
Petermann factor for different modes follows the distribu-
tion of the absolute value of the projection coefficients. In
Figs. 7(a) and 7(b), the absolute value of the projection
coefficients jcnj is plotted versus the mode number for the
optimal field inputs at z ¼ 25; g ¼ 1 and z ¼ 38; g ¼ 3.

FIG. 6. (a,b) Intensity profiles of two different inputs (thick red
curves), along with the imaginary part of the refractive index for
reference (thin blue line). (c,d) Beam diffraction dynamics of the
corresponding input waveforms in (a) and (b). The two insets
depict the optical power versus the propagation distance z for the
initial conditions given in (a,b).

FIG. 7. Absolute value of projection coefficients versus the
number of modes of the initial condition that achieves the
maximum power growth for (a) z ¼ 25; g ¼ 1 and (b) z ¼ 38;
g ¼ 3. The second diagram is in the logarithmic scale. The red
bars correspond to bound modes, whereas the blue ones corre-
spond to radiation modes of the eigenvalue spectrum. Also, the
modes are sorted based on the imaginary part of their corre-
sponding eigenvalues.
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The second figure is plotted in the logarithmic scale, and
we can see which modes of the eigenspectrum contribute
more to the superposition of the optimal input. Red denotes
the bound modes of the potential. We can see that the
optimal initial beam is composed of both bound and
radiation modes, but most of its energy is contained in
the most nonorthogonal bound modes. In other words, the
modes that contribute most to the pseudospectrum cloud
also have the highest projection coefficients and, as a result,
contribute more to the transient growth. We can also
understand that the eigenmodes with the highest values
of the Petermann factor (an alternative measure of non-
normality) correspond to the eigenmodes with the highest
projection coefficients cn. Finally, we can conclude by
saying that the optimal initial conditions (for a particular
value of the propagation distance z) that lead to maximum
transient growth are superpositions of bound and radiation
nonorthogonal modes with weights depending on their
Petermann factor.
In Appendix B, we find the optimal initial conditions and

bounds for transient growth in 2D potentials, demonstrating
the generality of the findings discussed above. However,
for 2D potentials with complex spatial distributions of gain
and loss, it is computationally very demanding to compute
the exact singular-value decomposition (this requires the
exponentiation of a large matrix), which is important for
validation of our pseudospectrum estimates. To overcome
this problem, we present in Appendix B an efficient
computational method to truncate the propagator to a
reasonable size, yielding evolution with controllable accu-
racy for a given z.

VII. DISCUSSION AND CONCLUSIONS

In summary, we present and study an unusual character-
istic of a large class of non-normal photonic structures with
distributed gain and loss but that are, on average, lossy. For
wave propagation in such a medium, the common expect-
ation is that the total optical power decays with increasing
propagation distance. This is based on our notion of
eigenvalues. If all eigenvalues are in the complex half-
plane corresponding to decaying eigenmodes, any propa-
gating beam will decay. In this paper, we show that
depending on the spatial distribution of the gain and loss,
there are optimal initial conditions for which the injected
power can be amplified by several orders of magnitude,
even though all the eigenmodes of the system are decaying.
We systematically examine the characteristics (maximum
amplification rate, transient growth dynamics, and optimal
initial conditions) of such non-normal power amplifiers in
multimode photonic waveguides.
We note that our analysis based on pseudospectrum and

singular-value decomposition of non-normal operators is
generic and can be applied to any non-normal optical
system. In particular, our results most likely have direct
implications for the growing field of active plasmonics.

To contrast our work to some earlier studies in this field,
coupled (PT) symmetric plasmonic systems have been
proposed, for instance, in Refs. [37–39] for optical switch-
ing in a directional coupler that employs one gainy and one
lossy channel. Given a coupled system of gain and loss
waveguides, the gain that is required under single-channel
excitation (fixed initial conditions) for switching was
examined. All the analysis was based on the spectrum of
the evolution operator that contained an exceptional point,
hence only capturing the asymptotically large propagation
distance behavior. In contrast, our analysis shows that the
transient dynamics may be nontrivial, which we show
cannot be captured by looking at the spectrum, and we
identify the special initial conditions that lead to such
nontrivial dynamics. We show that such behavior may not
be related to the existence of an exceptional point.
Furthermore, the maximum growth studied here is not
due to any switching from loss to gain regions but to a
collective effect of all the modes (bound and radiation) of
the total system. In the most general case of an inhomo-
geneous gain-loss landscape studied here, it can been
shown that mapping of such a potential to an equivalent
PT-symmetric Hamiltonian [24–29] or a homogeneous
loss or gain profile [42] is mathematically impossible.
This implies that the physics and the methodology to
understand the transient dynamics of lossy amplifiers is
fundamentally different from both PT optics [24–29] and
gain-guiding physics [42]. Unlike such previous studies,
our work applies the most general approach to understand
and quantify the power growth in any dissipative system
that has an arbitrary amount of gain but may still be
characterized by overall loss. In view of the above, we
believe that the answers to our questions will have
important implications for the efficient design of active
plasmonic devices.
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APPENDIX A: ESTIMATION OF TRANSIENT
POWER GROWTH IN TERMS

OF PSEUDOSPECTRA

Before we present the pseudospectrum analysis for the
transient growth estimates, it is important and useful to first
examine the spatial dimensions of our system. In particular,
the normalizations for the spatial coordinates x; z, and the
corresponding physical values for the gain-loss and the
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waveguide length are given in Refs. [14–23]. As an
example, for n0 ¼ 3.25, λ0 ¼ 1.55 μm, δn ¼ 0.001, one
normalized unit of x corresponds to 2λ0, while one
normalized unit of propagation distance z corresponds to
163λ0. This means that the waveguide dimensions are
several times larger than the optical wavelength, and as a
physical consequence, the structure supports many guided
modes. For the waveguide of Fig. 1(b), the spatial structure
of these eigenmodes can be seen in Fig. 8. Specifically, the
field amplitude of the ten bounded modes of the non-
normal potential [Figs. 8(a)–8(j)], their eigenvalues in the
complex plane [Fig. 8(k)], and their corresponding propa-
gation dynamics [Fig. 8(l)] are illustrated. Most of the
spatial profiles of the modes are extended in both gain and
loss regions, and their eigenvalues (complex propagation

constants) correspond to decay with the propagation
distance z.
After understanding the properties of the eigenvalue

spectrum, we show how one can use a more appropriate
construction, the pseudospectrum, to characterize the
transient growth generated by non-Hermitian operators.
The ϵ pseudospectrum of a non-normal operator Ĥ is
defined by the union of all its eigenvalues in the complex
plane, when subjected to all possible system perturbations
below a certain magnitude, i.e., σϵðĤÞ≡ fz ∈ σðĤ þ ÊÞ;
∀∥Ê∥ < ϵg. Here, σðĤÞ denotes the spectrum of Ĥ. The
norm of the operator Ĥ is generally defined by
∥Ĥ∥≡ supf∥Ĥf∥=∥f∥, where ∥f∥ is the usual
Euclidean norm of a function, ∥f∥2 ≡ R∞−∞ dxjfðxÞj2.
The parameter ϵ characterizes the strength of the random
perturbations. Practically speaking, the pseudospectrum
σϵðĤÞ is a pattern in the complex plane that shows how
sensitive the eigenvalue spectrum σðĤÞ is to random
perturbations. For Hermitian operators, the spectrum and
the pseudospectrum are almost identical. But for non-
normal operators, the two patterns can differ significantly,
depending on the degree of the nonorthogonality of the
corresponding eigenmodes. As seen in Fig. 9, showing the
0.1 pseudospectra for g ¼ 0.5; 1; 2; 3, the closer we get to
the critical value gc ¼ 3.65 for the emergence of positive
eigenvalues of the unperturbed Ĥ, the more extended the
pseudospectrum cloud becomes in the complex plane. This
indicates an increased degree of non-normality as the angle
between some of the eigenmodes becomes smaller, and
the spectrum is more sensitive to random perturbations. By
visual inspection of Fig. 9, one can immediately identify
the modes that become more skewed and contribute more
to the non-normal behavior. The geometrical characteristics
of the pseudospectrum cloud are directly related to the
transient dynamics of the paraxial equation of diffraction.
As such, we are interested in finding order-of-magnitude
estimates for the Gmax in order to characterize our lossy
amplifier. In particular, the lower and upper bounds of
GmaxðzÞ can be estimated using theorems of functional
analysis of non-normal operators [51–53] and are directly
associated with the extension of the pseudospectrum cloud
to the right half complex plane for all ϵ ≪ 1:

∥ezĤ∥ ≤
Lϵ exp½zαϵðĤÞ�

2πϵ
; ðA1Þ

∥ezĤ∥ ≥ sup
ϵ

αϵðĤÞ
ϵ

: ðA2Þ

Here, the pseudospectral abscissa is defined as αϵðĤÞ≡
maxz∈σϵðĤÞRe½z� and is a measure of the extension of the
pseudospectrum pattern into the upper half of the complex
plane, whereas Lϵ is a measure of the geometrical size of
the whole pseudospectrum cloud. This approach is based

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

(l)

FIG. 8. (a-j) Spatial field amplitudes (normalized to 1) of the
10 bounded modes (red curves) of the non-normal potential of
Fig. 1(b), for g ¼ 1 as a function of the transverse coordinate x.
The blue curves represent the imaginary part of the potential.
(k) The eigenvalue spectrum in the complex plane. The red dots
denote the ten guided modes of the structure. The eigenvalues are
sorted based on the magnitude of their imaginary part. (l) Power
decay (normalized to 1) of the individually excited eigenmodes
versus the propagation distance z.
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on the Hille-Yoshida theorem and provides the necessary
and sufficient condition for transient growth [54,55].
Namely, the pseudospectrum cloud must extend to the
right-half plane more than its ϵ ¼ 0.1 value. Another way
of accurately computing the pseudospectra is based on an

alternative definition of the pseudospectrum of a non-
normal operator in terms of the norm of its resolvent
[51–53]. In this case, the contour plot of Fig. 10 describes
many different pseudospectra patterns in the complex plane
for different values of ϵ. By using both Figs. 9 and 10,
we can find order-of-magnitude estimates for the transient
growth, based on the above two inequalities. For the
specific potential that we are studying (g ¼ 1), we find
that L0.1 ∼ 0.8 and αϵðĤÞ ∼ 0.01, leading to ∥ezĤ∥ ≤
1.27 expð0.01zÞ. By calculating this upper bound for
various values of the propagation distance z, we find that
the maximum of the upper bound of GmaxðzÞ is reached
roughly at z ¼ 100, with ∥ezĤ∥2 ≤ 12. We also estimate
the lower bound for the transient growth for different values
of ϵ, and we find ∥ezĤ∥2 ≥ 1.45. Therefore, our estimation
for the maximum power growth for the case of g ¼ 1
is 2 ≤ Gmax ≤ 12.

APPENDIX B: TWO-DIMENSIONAL
LOSSY POTENTIALS

In this section, we extend our analysis to consider optical
wave propagation in a non-normal 2D potential. In this
case, the beam evolution is still governed by the two-
dimensional paraxial equation of diffraction. This is a
Schrödinger-like equation ∂Φ=∂z ¼ ĤΦ, with the evolu-
tion operator

Ĥ ¼ i
∂2

∂x2 þ i
∂2

∂y2 þ iVðx; yÞ: ðB1Þ

We still require that the potential has net loss, meaning that
the integral of Im½Vðx; yÞ� ¼ gnIðx; yÞ in the transverse
plane is positive. A particular example of a multimode
circular waveguide is depicted in Fig. 11(a). The real part of
its refractive index is a constant inside the black dashed
disk, and its imaginary part is given by the color scheme.
The methods of the previous section can be applied directly
to this problem as well. Since it is computationally very
intensive and inaccurate to directly calculate the singular
values and eigenvectors of a two-dimensional propagator,
we use an alternative expansion method [54,55] to calculate
the transient growthGmaxðzÞ. This method is valid provided
that the eigenmode expansions are convergent and lead to
accurate reconstruction of the projected field [57]. In
particular, by expanding the optical field to the biorthog-
onal eigenmode basis fϕnðx; yÞg and keeping only a finite
number (N) of them, the field can be written as Φðx; y; zÞ ¼P

N
n¼1 cnϕnðx; yÞeiβnzeγnz. One can show analytically that if

F is the Cholesky factorization of the Hermitian matrix
Bmn ¼ hϕmjϕni, then the transient power growth can be
calculated by

GmaxðzÞ ¼ ∥F · expðzΛÞ · F−1∥2; ðB2Þ

FIG. 9. Four ϵ ¼ 0.1 pseudospectra of the non-normal potential
shown in Fig. 1, where the gain and loss amplitudes g are equal to
(a) 0.5, (b) 1, (c) 2, and (d) 3. All plots are shown in the complex
plane, and the red dots depict the eigenvalue spectrum and the
green line the imaginary axis.

FIG. 10. Contour plots of different ϵ pseudospectra in the
complex plane of the non-normal potential shown in Fig. 1(b), for
g ¼ 1. The red dots depict the eigenvalue spectrum.

ANOMALOUS TRANSIENT AMPLIFICATION OF WAVES IN … PHYS. REV. X 4, 041044 (2014)

041044-9



where Λ is the diagonal matrix with the N complex
eigenvalues of the highest imaginary part. Here, instead
of considering the propagator Ĝ, we consider its finite
approximation Ĝ ≈ F · expðzΛÞ · F−1. In this way, we
calculate the optimal input waveforms that achieve the
maximum growth at z ¼ 2; 6 [Figs. 11(b) and 11(c)]. As we
can see from these figures, their spatial patterns are far from
what one would intuitively expect and are not localized
in the gain regions, similar to what we found before for
one-dimensional potentials. In Fig. 11(d), we compare the
power dynamics of these two input waveforms and of that
localized only to the gain regions. Again, the power growth
for the latter is much less than what can be achieved
using the optimal input waveforms determined by the
right-singular vectors of F · expðzΛÞ · F−1 with the largest
singular values.

[1] R. J. Schoelkopf and S. M. Girvin, Wiring Up Quantum
Systems, Nature (London) 451, 664 (2008).

[2] K.W. Murch, U. Vool, D. Zhou, S. J. Weber, S. M. Girvin,
and I. Siddiqi, Cavity-Assisted Quantum Bath Engineering,
Phys. Rev. Lett. 109, 183602 (2012).

[3] C. Aron, M. Kulkarni, and H. E. Türeci, Steady-State Entan-
glement of Spatially Separated Qubits via Quantum Bath
Engineering, Phys. Rev. A 90, 062305 (2014).

[4] J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum Reservoir
Engineering with Laser Cooled Trapped Ions, Phys. Rev.
Lett. 77, 4728 (1996).

[5] B. Kraus, H. P. Buchler, S. Diehl, A. Kantian, A. Micheli,
and P. Zoller, Preparation of Entangled States by Quantum
Markov Processes, Phys. Rev. A 78, 042307 (2008).

[6] D. Marcos, A. Tomadin, S. Diehl, and P. Rabl, Photon
Condensation in Circuit QED by Engineered Dissipation,
New J. Phys. 14, 055005 (2012).

[7] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Photonic
Crystals: Putting a New Twist on Light, Nature (London)
386, 143 (1997).

[8] D. N. Christodoulides, F. Lederer, and Y. Silberberg,
Discretizing Light Behaviour in Linear and Nonlinear
Waveguide Lattices, Nature (London) 424, 817 (2003).

[9] H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides,
and M. Khajavikhan, Parity-Time–Symmetric Microring
Lasers, Science 346, 975 (2014).

[10] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang,
Single-Mode Laser by Parity-Time Symmetry Breaking,
Science 346, 972 (2014).

[11] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J.
Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S.
Rotter, Reversing the Pump Dependence of a Laser at an
Exceptional Point, Nat. Commun. 5, 4034 (2014).

[12] C. M. Bender and S. Boettcher, Real Spectra in
Non-Hermitian Hamiltonians Having PT Symmetry, Phys.
Rev. Lett. 80, 5243 (1998).

[13] C. M. Bender, Making Sense of Non-Hermitian Hamilto-
nians, Rep. Prog. Phys. 70, 947 (2007).

[14] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z.
Musslimani, Beam Dynamics in PT Symmetric Optical
Lattices, Phys. Rev. Lett. 100, 103904 (2008).

[15] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z.
Musslimani, Theory of Coupled Optical PT-Symmetric
Structures, Opt. Lett. 32, 2632 (2007).

[16] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z.
Musslimani, PT Symmetric Optical Lattices, Phys. Rev. A
81, 063807 (2010).

[17] O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro,
Exponentially Fragile PT Symmetry in Lattices with
Localized Eigenmodes, Phys. Rev. Lett. 103, 030402
(2009).

[18] H. Ramezani, T. Kottos, R. El-Ganainy, and D. N.
Christodoulides, Unidirectional Nonlinear PT-Symmetric
Optical Structures, Phys. Rev. A 82, 043803 (2010).

[19] Y. D. Chong, L. Ge, and A. D. Stone, PT-Symmetry Break-
ing and Laser-Absorber Modes in Optical Scattering
Systems, Phys. Rev. Lett. 106, 093902 (2011).

[20] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and
D. N. Christodoulides, Unidirectional Invisibility Induced
by PT-Symmetric Periodic Structures, Phys. Rev. Lett. 106,
213901 (2011).

[21] L. Ge, Y. D. Chong, and A. D. Stone, Conservation Rela-
tions and Anisotropic Transmission Resonances in One-
Dimensional PT-Symmetric Photonic Heterostructures,
Phys. Rev. A 85, 023802 (2012).

0 5 10

0.6

0.8

1

x 

z 

(a) 

z 

(c) (d) 

x 

y 

x 

y 

y 

(b) 

P(z) 

z 

(a) 

FIG. 11. (a) Spatial profile of a 2D non-normal optical potential
in the transverse x-y plane. The real part of the refractive index is
a constant inside the dashed black curve, and its imaginary part is
given by the color scheme: Positive values represent the lossy
regions, whereas the negative values represent the gain regions.
(b,c) intensity of optimal initial conditions for achieving maxi-
mum transient growth at z ¼ 2; 6, respectively. The dashed white
circles represent the gain spatial regions. (d) Power dynamics
versus the propagation distance z for three different input
waveforms. The black curve represents an intuitive waveform
localized inside the gain regions. The red and blue curves
represent the optimal waveforms shown in (b,c) that achieve
the maximum growth at z ¼ 2; 6, respectively.

K. G. MAKRIS, L. GE, AND H. E. TÜRECI PHYS. REV. X 4, 041044 (2014)

041044-10

http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1103/PhysRevLett.109.183602
http://dx.doi.org/10.1103/PhysRevA.90.062305
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1088/1367-2630/14/5/055005
http://dx.doi.org/10.1038/386143a0
http://dx.doi.org/10.1038/386143a0
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1126/science.1258480
http://dx.doi.org/10.1126/science.1258479
http://dx.doi.org/10.1038/ncomms5034
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1103/PhysRevA.81.063807
http://dx.doi.org/10.1103/PhysRevA.81.063807
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevLett.103.030402
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevLett.106.093902
http://dx.doi.org/10.1103/PhysRevLett.106.213901
http://dx.doi.org/10.1103/PhysRevLett.106.213901
http://dx.doi.org/10.1103/PhysRevA.85.023802


[22] P. Ambichl, K. G. Makris, L. Ge, Y. Chong, A. D. Stone,
and S. Rotter, Breaking of PT Symmetry in Bounded and
Unbounded Scattering Systems, Phys. Rev. X 3, 041030
(2013).

[23] L. Ge and A. D. Stone, Parity-Time Symmetry Breaking
beyond One Dimension: The Role of Degeneracy, Phys.
Rev. X 4, 031011 (2014).

[24] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M.
Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N.
Christodoulides, Observation of PT-Symmetry Breaking
in Complex Optical Potentials, Phys. Rev. Lett. 103,
093902 (2009).

[25] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christo-
doulides, M. Segev, and D. Kip, Observation of Parity-Time
Symmetry in Optics, Nat. Phys. 6, 192 (2010).

[26] L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F.
Chen, Y. Fainman, and A. Scherer, Nonreciprocal Light
Propagation in a Silicon Photonic Circuit, Science 333, 729
(2011).

[27] A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov,
D. N. Christodoulides, and U. Peschel, Parity-Time
Synthetic Photonic Lattices, Nature (London) 488, 167
(2012).

[28] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B.
Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer,
Experimental Demonstration of a Unidirectional Reflec-
tionless Parity-Time Metamaterial at Optical Frequencies,
Nat. Mater. 12, 108 (2012).

[29] A. Regensburger, M. A. Miri, C. Bersch, J. Näger, G.
Onishchukov, D. N. Christodoulides, and U. Peschel, Ob-
servation of Defect States in PT-Symmetric Optical Lattices,
Phys. Rev. Lett. 110, 223902 (2013).

[30] N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N.
Christodoulides, F. M. Ellis, and T. Kottos, Observation of
Asymmetric Transport in Structures with Active Nonlinear-
ities, Phys. Rev. Lett. 110, 234101 (2013).

[31] F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej-Farshi,
D. N. Christodoulides, and T. Kottos, Optical Isolation via
PT-Symmetric Nonlinear Fano Resonances, Opt. Express
22, 9574 (2014).

[32] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li,
G. Wang, and M. Xiao, Parity Time Symmetry and Variable
Optical Isolation in Active Passive-Coupled Microresona-
tors, Nat. Photonics 8, 524 (2014).

[33] B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,
G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
Parity-Time-Symmetric Whispering-Gallery Microcavities,
Nat. Phys. 10, 394 (2014).

[34] L. Ge and H. E. Türeci, Antisymmetric PT-Photonic Struc-
tures with Balanced Positive and Negative Index Materials,
Phys. Rev. A 88, 053810 (2013).

[35] N. Lazarides and G. P. Tsironis, Gain-Driven Discrete
Breathers in PT-Symmetric Nonlinear Metamaterials, Phys.
Rev. Lett. 110, 053901 (2013).

[36] G. Castaldi, S. Savoia, V. Galdi, A. Alu, and N. Engheta, PT
Metamaterials via Complex-Coordinate Transformation
Optics, Phys. Rev. Lett. 110, 173901 (2013).

[37] J. Ctyrosky, V. Kuzmiak, and S. Eyderman, Waveguide
Structures with Antisymmetric Gain/Loss Profile, Opt.
Express 18, 21585 (2010).

[38] H. Benisty et al., Implementation of PT Symmetric Devices
Using Plasmonics: Principle and Applications, Opt. Ex-
press 19, 18004 (2011).

[39] A. Lupu, H. Benisty, and A. Derigon, Switching Using PT
Symmetry in Plasmonic Systems: Positive Role of the
Losses, Opt. Express 21, 21651 (2013).

[40] Y.-J. Cheng, C. G. Fanning, and A. E. Siegman, Experi-
mental Observation of a Large Excess Quantum Noise
Factor in the Linewidth of a Laser Oscillator Having
Nonorthogonal Modes, Phys. Rev. Lett. 77, 627 (1996).

[41] A. E. Siegman, Excess Spontaneous Emission in Non-
Hermitian Optical Systems. I. Laser Amplifiers, Phys.
Rev. A 39, 1253 (1989).

[42] A. E. Siegman, Propagating Modes in Gain-Guided Optical
Fibers, J. Opt. Soc. Am. A 20, 1617 (2003).

[43] M. V. Berry, Mode Degeneracies and the Petermann Ex-
cess-Noise Factor for Unstable Lasers, J. Mod. Opt. 50, 63
(2003).

[44] S. Longhi and P. Laporta, Excess Noise in Intracavity Laser
Frequency Modulation, Phys. Rev. E 61, R989 (2000).

[45] F. Papoff, G. D’Alessandro, and G. L. Oppo, State Depen-
dent Pseudoresonances and Excess Noise, Phys. Rev. Lett.
100, 123905 (2008).

[46] M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and
S. Rotter, Pump-Induced Exceptional Points in Lasers,
Phys. Rev. Lett. 108, 173901 (2012).

[47] Y. Chen, A. W. Snyder, and D. N. Payne, Twin-Core Non-
linear Couplers with Gain and Loss, IEEE J. Quantum
Electron. 28, 239 (1992).

[48] B. A. Malomed, G. D. Peng, and P. L. Chu, Nonlinear
Optical Amplifier Based on a Dual-Core Fiber, Opt. Lett.
21, 330 (1996).

[49] V. Konotop, V. S. Shchesnovich, and D. A. Zezyulin, Giant
Amplification of Modes in PT-symmetric Waveguides,
Phys. Lett. A 376, 2750 (2012).

[50] A. Aspuru-Guzik and P. Walther, Photonic Quantum Sim-
ulators, Nat. Phys. 8, 285 (2012).

[51] L. N. Trefethen and M. Embree, Spectra and Pseudospectra
(Princeton University Press, Princeton, 2005).

[52] L. N. Trefethen, Pseudospectra of Linear Operators, SIAM
Rev. 39, 383 (1997).

[53] L. N. Trefethen, Computation of Pseudospectra, Acta
Numer. 8, 247 (1999).

[54] S. C. Reddy, P. J. Schmid, and D. S. Henningson, Pseudo-
spectra of the Orr-Sommerfeld Operator, SIAM J. Appl.
Math. 53, 15 (1993).

[55] S. C. Reddy and D. S. Henningson, Energy Growth in
Viscous Channel Flows, J. Fluid Mech. 252, 209 (1993).

[56] G. A. Siviloglou, J. Broky, A. Dogariu, and D. N.
Christodoulides, Observation of Accelerating Airy Beams,
Phys. Rev. Lett. 99, 213901 (2007).

[57] A. E. Siegman, Lasers without Photons—Or Should It Be
LaserswithTooManyPhotons?,Appl. Phys.B60, 247 (1995).

[58] K. Petermann, Calculated Spontaneous Emission Factor
for Double-Heterostructure Injection Lasers with Gain-
Induced Waveguiding, IEEE J. Quantum Electron. 15,
566 (1979).

[59] M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T.
Kottos, PT Optical Lattices and Universality in Beam
Dynamics, Phys. Rev. A 82, 010103(R) (2010).

ANOMALOUS TRANSIENT AMPLIFICATION OF WAVES IN … PHYS. REV. X 4, 041044 (2014)

041044-11

http://dx.doi.org/10.1103/PhysRevX.3.041030
http://dx.doi.org/10.1103/PhysRevX.3.041030
http://dx.doi.org/10.1103/PhysRevX.4.031011
http://dx.doi.org/10.1103/PhysRevX.4.031011
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1126/science.1206038
http://dx.doi.org/10.1126/science.1206038
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nature11298
http://dx.doi.org/10.1038/nmat3495
http://dx.doi.org/10.1103/PhysRevLett.110.223902
http://dx.doi.org/10.1103/PhysRevLett.110.234101
http://dx.doi.org/10.1364/OE.22.009574
http://dx.doi.org/10.1364/OE.22.009574
http://dx.doi.org/10.1038/nphoton.2014.133
http://dx.doi.org/10.1038/nphys2927
http://dx.doi.org/10.1103/PhysRevA.88.053810
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.053901
http://dx.doi.org/10.1103/PhysRevLett.110.173901
http://dx.doi.org/10.1364/OE.18.021585
http://dx.doi.org/10.1364/OE.18.021585
http://dx.doi.org/10.1364/OE.19.018004
http://dx.doi.org/10.1364/OE.19.018004
http://dx.doi.org/10.1364/OE.21.021651
http://dx.doi.org/10.1103/PhysRevLett.77.627
http://dx.doi.org/10.1103/PhysRevA.39.1253
http://dx.doi.org/10.1103/PhysRevA.39.1253
http://dx.doi.org/10.1364/JOSAA.20.001617
http://dx.doi.org/10.1080/09500340308234532
http://dx.doi.org/10.1080/09500340308234532
http://dx.doi.org/10.1103/PhysRevE.61.R989
http://dx.doi.org/10.1103/PhysRevLett.100.123905
http://dx.doi.org/10.1103/PhysRevLett.100.123905
http://dx.doi.org/10.1103/PhysRevLett.108.173901
http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1364/OL.21.000330
http://dx.doi.org/10.1364/OL.21.000330
http://dx.doi.org/10.1016/j.physleta.2012.07.027
http://dx.doi.org/10.1038/nphys2253
http://dx.doi.org/10.1137/S0036144595295284
http://dx.doi.org/10.1137/S0036144595295284
http://dx.doi.org/10.1017/S0962492900002932
http://dx.doi.org/10.1017/S0962492900002932
http://dx.doi.org/10.1137/0153002
http://dx.doi.org/10.1137/0153002
http://dx.doi.org/10.1017/S0022112093003738
http://dx.doi.org/10.1103/PhysRevLett.99.213901
http://dx.doi.org/10.1007/BF01135870
http://dx.doi.org/10.1109/JQE.1979.1070064
http://dx.doi.org/10.1109/JQE.1979.1070064
http://dx.doi.org/10.1103/PhysRevA.82.010103

