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The dynamics of a weakly anharmonic superconducting qubit in a complex electromagnetic environment
is generally well described by an effective multimode Kerr Hamiltonian at sufficiently weak excitation. This
Hamiltonian can be embedded in a master equation with losses determined by the details of the electromagnetic
environment. Recent experiments indicate, however, that when a superconducting circuit is driven with
microwave signals populating the system with sufficiently high excitations, the observed relaxation rates appear
to be substantially different from expectations based on the electromagnetic environment of the qubit alone. This
issue is a limiting factor in the optimization of superconducting qubit readout schemes. We claim here that an
effective master equation with drive-power-dependent parameters is an efficient approach to model such quantum
dynamics. In this sequence of papers, we derive effective master equations, whose parameters exhibit nonlinear
dependence on the excitation level of the circuit as well as the electromagnetic environment of the qubit. We show
that the number nonconserving terms in the qubit nonlinearity generally lead to a renormalization of dissipative
parameters of the effective master equation, while the number conserving terms give rise to a renormalization
of the system frequencies. Here, in Paper I, we consider the excitation-relaxation dynamics of a transmon qubit
that is prepared in a certain initial state, but is not driven otherwise. A unitary transformation technique is
introduced to study the renormalization of (i) qubit relaxation due to coupling to a generic bath and (ii) Purcell
decay. Analytic expressions are provided for the dependence of the nonlinear dissipative terms on the details
of the electromagnetic environment of the qubit. The perturbation technique based on unitary transformations
developed here is generalized to the continuously driven case in Paper Il [A. Petrescu et al., Phys. Rev. B 101,

134510 (2020)].

DOI: 10.1103/PhysRevB.101.134509

I. INTRODUCTION

Radiative corrections to the properties of a discrete-level
system have an important bearing on any quantum technol-
ogy relying on such systems. It is well understood that the
radiative lifetime of an atom, whether natural or artificial,
sensitively depends on its electromagnetic environment [1,2].
This fact is most transparently expressed by the dependence
of the Purcell decay rate on the imaginary part of the classical
electromagnetic Green’s function computed at the source
position and oscillation frequency [3]. In circuit quantum elec-
trodynamics, the equivalent view expresses the Purcell decay
rate in terms of the admittance seen by the qubit as a classical
oscillator [4]. Although radiative corrections are inherently
quantum in character, their computation at the linear-response
level depends on classical electromagnetic properties most
compactly expressed through the electromagnetic Green’s
function. From this point of view, it does not matter whether
the object that is radiatively damped is a classical antenna or a
quantum object. Here we will focus on the dependence of the
qubit lifetime on (i) the detailed quantum mechanical structure
of the emitter and (ii) the excitation level of the emitter and the
electromagnetic environment.

A detailed understanding of these aspects of radiative
decay is becoming increasingly relevant in superconducting
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quantum computing. A number of the schemes devised for ac-
curate and rapid readout of the quantum state of superconduct-
ing qubits rely on the understanding of the dissipative dynam-
ics in the presence of a resonator excited beyond the linear-
response regime (sometimes referred to as the “nonlinear dis-
persive regime” [5]). In particular, several experiments [6—8]
have observed anomalous state transitions when the resonator
photon occupancy is increased past a certain point. Other
experiments inherently rely on the strong excitation regime
for a rapid readout [9]. Even when the resonator is moderately
excited, a strong renormalization of qubit lifetimes is observed
as a function of resonator occupancy [10,11]. While it is clear
that a number of different mechanisms are at play in the renor-
malization of qubit lifetimes at finite excitation [5,7,8,12—
15], an improved understanding of the renormalization of the
qubit lifetime due to purely radiative processes (i.e., due to the
open nature of the electromagnetic environment) is vital to the
implementation of rapid high-fidelity readout protocols.

The goal of these two papers, referred to as Paper I
and Paper 11, is to develop a systematic perturbation theory
based on unitary transformations to derive an effective master
equation whose parameters depend on the nonlinearity of a
weakly anharmonic Josephson artificial atom (e.g., a transmon
[16]) and its electromagnetic environment. In particular, we
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show how the effective relaxation rates are renormalized by
the qubit nonlinearity. These results were made public in
Refs. [17,18]. Here, we provide the detailed discussion.

In this first paper, we discuss renormalization effects in
the absence of a coherent microwave drive. This is the basic
physics of spontaneous emission, but departing from the con-
ventional approach, we analyze the impact of the specific non-
linearity of the qubit. The central result of this calculation is
the delineation of the important role of number nonconserving
terms in the renormalization of the qubit lifetime. The driven
case requires a sufficiently different technical approach to
warrant a separate discussion, which we undertake in Paper II
[19].

In what follows, we focus on a qubit coupled (i) to a flux
bath (pure qubit relaxation), and (ii) to an open single-mode
resonator (Purcell). However, the technique of unitary trans-
formations presented here can be extended to other possible
sources of decoherence as well as the multimode case, where
hybridized modes can be found via a first-principles calcu-
lation [20-22]. Our results naturally complement and extend
the black-box quantization technique [20], which drops the
number nonconserving terms in the Josephson nonlinearity.

The remainder of this paper is organized as follows: In
Sec. II, we provide a brief summary of the main results
and discuss our modeling of a circuit-QED setup involving a
weakly anharmonic qubit. In Sec. III, we introduce a perturba-
tion theory based on a unitary transformation to systematically
compute the correction to frequency and radiative lifetimes
of weakly anharmonic qubits. We apply this method to two
specific environments to which the qubit can be coupled,
in Secs. IVA and IV B. Appendices A and B contain the
details of the first and second orders of our perturbation
theory, respectively. Appendix C provides a derivation of the
effective master equations used in the numerical simulation. In
Appendix D, we discuss the derivation of equations of motion
for relevant physical observables based on our effective master
equations.

II. MODEL AND MAIN RESULTS

The subgap dynamics of a superconducting circuit con-
taining a weakly anharmonic artificial atom can generally be
described by a multimode Kerr Hamiltonian [20] at suffi-
ciently weak excitation. Such a Hamiltonian has the virtue
that the linear hybridization described by Maxwell’s equations
is fully accounted for in the effective parameters of the Kerr
Hamiltonian. The Kerr parameters have a direct experimental
relevance in the dispersive limit: the self-Kerr interaction
terms give rise to a nonlinear dependence of the oscilla-
tor frequencies on the excitation level, while the cross-Kerr
coupling between the qubitlike and resonatorlike modes give
rise to a qubit-state-dependent shift in resonator normal-mode
frequencies. The latter forms the foundation of dispersive
readout schemes, discussed in Paper II.

Here, we focus on the impact of number nonconserving
terms in the original Josephson nonlinearity of the qubit, when
the system is prepared in an initial state but is not driven
otherwise. Results presented in this paper and summarized
below suggest the use of an effective multimode master equa-
tion with renormalized dissipative parameters that, like the
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FIG. 1. (a) A weakly anharmonic qubit (E; > E.) linearly (ca-
pacitively) coupled to an open cavity. (b) Separation of linear and
anharmonic parts of the Josephson potential. (c) Josephson potential
and its perturbative spectrum for a weak anharmonicity characterized
by E; = 50E.. The solid black curve shows the normalized Josephson
potential, while the dashed black and dashed-dotted blue curves
are the resulting quadratic and quartic theories along with their
corresponding energy levels.

transition frequencies, depend nonlinearly on the excitation
level in the initial state [see Eqs. (31) and (40) below].

Our starting point is a weakly anharmonic superconducting
qubit coupled to an open resonator as depicted in Fig. 1(a).
Although the results below can be generalized to a multimode
cavity [21,22], the basic mechanism of lifetime renormaliza-
tion is already contained in the case of a single-cavity mode,
which we focus on here. The Hamiltonian describing the setup
is [21]

Ho=Hs + o + Ha, M
where the system Hamiltonian
7:25 a + 7:ZC + ,?:Zac

P2 - cos(\/EXa):| + T(

NS h

@

and the resonator is in contact with a bath described by the
bath Hamiltonian 7:Lb = Zk wkﬁzf?k and the resonator-bath
coupling 7-Alsb = ﬁ Zk gkYk. Here, we have used )?, = (f+
it), ¥, = —i(f — I) to denote the unitless phase and number
operators of the qubit (cavity), such that ¢; = ¢; ,,¢X; and 7 =
n[Yprf}] for [ = a, c. Moreover, the bare modes are denoted
with a bar notation, in order to distinguish from the normal
modes of the system, to be introduced shortly, which are more
relevant to the development of our perturbation technique.
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In addition, @, is the bare cavity frequency, @, = ,/8EjE.
is the bare qubit frequency, and € = ,/2E./E; is a measure
for the anharmonicity of the qubit, with E. and E; being
the charging and Josephson energy scales. The qubit-cavity
coupling strength is denoted by g, which can be found via the
second quantization of the underlying circuit [23].

Based on Hamiltonian (2), there are two independent mix-
ing mechanisms between the bare qubit and cavity modes.
First, there is a linear coupling of strength g, which is respon-
sible for the mixing of the qubitlike and cavitylike degrees of
freedom at the linear level. We refer to this as “hybridization,”
and to the resulting basis, in which the linear Hamiltonian is
diagonal, as the “normal-mode basis” [20]. Second, because
the qubit mode is intrinsically anharmonic, there will be a
nonlinear mixing of the modes on top of hybridization.

To separate the two aforementioned sources of mode-mode
mixing, it is helpful to first express Hamiltonian (2) in the
normal-mode basis, where the effect of linear hybridization is
exactly accounted for. In this basis, the Hamiltonian reads as

. 1 1
A = a)a(eﬁa + 5) +a)c<éT6 + E)

Wy - n—1 [uaal@ + &T) + Uye(C + et )]Zn
+ 5 g(_ey :

2n)! )

Here, ua,, Uy, Uca, and u. are hybridization coefficients relat-
ing the bare and normal-mode X quadratures, and w,, @, are
the resulting normal-mode frequencies. The corresponding
hybridization for the Y quadratures are denoted by v. Together
we write

Xa _ | Uaa Uy Xa Y a| _ |Vaa Vac ?a
A | = s 1, |2 | = s 1. 4)
X Uea  Uee || X Y. Vea  Uee || Ye

The hybridization coefficients in Eq. (4) can be found in terms
of bare parameters via successive application of scaling and
rotational transformations, as discussed in Appendix A 2.

At this point, the bath modes can be integrated out and in
the Born-Markov approximation a Lindblad master equation
can be obtained for the system density matrix as

ps(t) = —ilFLs, ps(t)] + 2k Dlvecélps(t) + 2, Dveaddl ps(t),
)

where D[C](e) = C(e)CT — 1/2{CTC, (o)} represents the
dissipator for a collapse operator C. The loss rates are given in
terms of the bath spectral function as 2k, . = Syy (@a), where
Syy (@) = [7 dt e T [p(O(D) ()] ¥y = 3, el
is the noise operator that the cavity quadrature couples to
and pyp(0) = (1/Zy)e~"o/%T is the bath density matrix that
is assumed to obey thermal distribution. We assume here the
bath modes to be thermalized at T = 0 and that the qubit
sees no other loss channel than the radiative one through the
resonator.

It is important to note that the loss rates calculated above
account for what is typically referred to as the Purcell [1,2]
losses of the qubit (and similarly to resonator losses modified
by the hybridization with the qubit). Here, this loss rate is ex-
pressed through a properly secularized Markov approximation
[24] as also discussed in Refs. [20,22]. This approximation

is accurate for resonators with nonoverlapping resonances
(i.e., in the high-finesse regime). For low-finesse cases, the
calculation of the exact linearized qubit dynamics beyond the
Markov approximation can be implemented as well [21]. We
assume a high-finesse situation here to most transparently
reveal the effects we are after, namely, the role of the number
nonconserving terms in the nonlinearity.

An explanation of terminology to be used is in order before
discussing our distinct treatment of the nonlinearity. In what
follows, we employ the more generic terminology of secular
and nonsecular, commonly used in the theory of classical
dynamical systems [25,26], to refer to number conserving
and number nonconserving terms in the hybridized basis,
respectively. The distinction between the two terminologies
is as follows. The terms number conserving and noncon-
serving refer to the category of operators that commute with
the number operator of a given set of bosonic modes. This
definition does not necessarily require the modes to be the
actual normal modes of the system. Therefore, whether a
nonlinear term is number conserving or not depends on the
choice of the modal expansion that is employed. However,
“secularity” has a unique meaning in the sense that it is only
defined with respect to the normal modes that up to quadratic
theory are unique. In the normal (hybridized) basis [used in
Eq. (3)], such terms will appear also as number nonconserving
terms. That would not be the case had we carried out the
perturbation theory in the bare basis employed in Eq. (2).
The transformation to the hybridized basis is essential for the
development of a systematic perturbation theory.

In pursuit of an accurate effective model in the low-
excitation regime, we will devise an appropriate unitary trans-
formation to remove the Josephson nonlinearity [last line of
Eq. (3)] to successively higher orders in the parameter €.
Such an approach has been implemented before in the context
of superconducting circuits for the Jaynes-Cummings model
[12,14], for the Rabi model [27], multilevel Jaynes-Cummings
model [28,29], and for lattice models [30,31]. The treatment
here is distinct, as it accounts for the Josephson nonlinearity
perturbatively rather than making a two-level approximation
or rotating-wave approximation. The existence of a small pa-
rameter € for weakly anharmonic qubits, such as the transmon
qubit, allows for a controlled expansion for the parameters
of the effective master equation obtained. This limit is the
opposite to that in which the qubit can be approximated as
a two-level system, and which underlies the Rabi and Jaynes-
Cummings models.

Consider applying a unitary transformation to the full
Hamiltonian including the system and bath as

Heir = e T, (6)

where G is an unknown anti-Hermitian operator that acts
as the generator of this transformation. We then expand the
system Hamiltonian and the generator formally in powers of
€:

7:ls=7:lz—€7:l4+627%e+~-., (7a)
G=eGs+e*Ge+ -, (7b)

where 7%,, can be found, e.g., from Eq. (3) for the model
discussed here. The conditions for successive removal of the
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nonlinearity in the Hamiltonian yield, as shown in Sec. III,
hierarchical operator equations for G, which can be solved
through computer algebra.

An important feature that emerges in this framework is that
such a unitary transformation can only remove the nonsec-
ular (number nonconserving) terms, while the secular terms
are left behind contributing to an effective Hamiltonian that
is diagonal in the Fock space. The lowest-order effective
Hamiltonian is the two-mode Kerr (multimode Kerr if more
resonator modes are retained), identical to the one obtained
when the number nonconserving terms are neglected from the
outset in Eq. (2) as implemented in Ref. [20].

The role of nonsecular terms is revealed when accounting
for the system-bath coupling under such transformation. The
effect of the removal of the nonsecular terms reappears in the
action of the transformation on the system quadratures that
couple to the bath, i.e., ?a,c, in turn giving rise to corrections
to the decay rates. To be more accurate, the corrections ap-
pear as operator-valued renormalizations of the corresponding
collapse operators. These corrections to collapse operators
can be recast into effective master equations, whose param-
eters display a nonlinear dependence on the excitation level
of the system. These corrections are then organized into a
perturbative expansion in the small parameter € that describes
the weak anharmonicity of the qubit. The excitation level
is set here by the initial conditions. In Paper II, we show
that, for systems driven with coherent microwave signals, the
appropriate excitation level to consider is set by the amplitude
and the frequency of the drives.

The rest of the paper presents the implementation of the
above approach to lowest order in € for two cases, a weakly
anharmonic qubit coupled to (i) a generic bath [Eq. (31)],
(ii) an open single-mode resonator [Eq. (40)]. To succinctly
explain the concept of an effective master equation as used
here, we discuss the final results for case (i) and defer the
presentation of the results for case (ii) to Sec. IV B:

pa(t) = =ilFuer, D01 + 26D (14 (1 + ) )a] o)

+2K33D[%a3]i)a(t>, ®)

where Haerr = (1 — §)waity — gwait? + O(e?) and 7, = ata
is the qubit number operator. Moreover, the effective dynam-
ics to lowest order contains a one-photon loss term at the
rate k, = Syy(w,), and a three-photon loss term at a rate
Ka3 = Syy (3w,).

II1I. HIERARCHICAL EQUATIONS FOR GENERATORS

In this section, we discuss a procedure to find the unitary
transformation that can effectively account for the nonlin-
earity of a Josephson junction artificial atom embedded in
a general electromagnetic environment. When the Josephson
nonlinearity is weak, as in the case of a transmon, a pertur-
bative expansion can be found for the generator G of this
unitary transformation. Here, we will not make any specific
assumptions about the electromagnetic environment to which
the qubit is coupled, merely considering a generic situation
where the system Hamiltonian can be expanded in a small

parameter € as is the case of Eq. (3):
Ho=Hy—eHs+He+ - . ©)

Note that the linear part of Hamiltonian (9) (referred to
as H, in this section) shall always be expressed in terms
of the normal-mode coordinates (of the original linearized
circuit) and that 7, contains polynomials of degree n in the
bosonic creation and annihilation operators corresponding to
the normal modes. We will seek a unitary transformation

ﬁs,eff = e_G/}:ZseJer (10)

that will remove all the nonsecular terms at any arbitrary order
€". To solve for the generator G, we consider the following
ansatz, written as a series expansion in the small parameter €
as

G=eGy+ G+ --- . (11)

Let us look into the condition for the removal of the
nonsecular terms at order €. Using the Baker [32], Campbell
[33], and Hausdorf [34] (BCH) formula

TA A4 A A ox | RPN
e Be* =B+ [B, A+ 5[[B, ALA1+..., (12
we obtain the lowest-order expansion as
e Rt =T + (Tl + [T, G} + 0. (13)

We then determine G4 in order to simplify the effective
Hamiltonian (13). Importantly, we observe that there is no G4
such that [7:12, G4] cancels secular contributions in 7:[4. The
reason is that the commutator of the harmonic Hamiltonian
7:[2 with any nonsecular term remains nonsecular, while with
any secular term it is zero. On the other hand, all nonsecular
terms can be in principle canceled through this procedure.
These commutator relations can be reduced to the following
three rules:

[sec, sec] = 0, (14a)
[sec, nonsec] = nonsec, (14b)
[nonsec, nonsec] = sec + nonsec. (14c¢)

We therefore write 7:14 = 5‘4 + /\74, where S stands for secular
and A for nonsecular terms, and construct the generator Gy
such that it satisfies

(2, G4l — Ny = 0. (15)

Consequently, the system Hamiltonian is renormalized by the
remaining secular terms as

ﬁs!eff = 7‘22 — 634 + 0(62). (16)

Equation (16) contains, up to lowest order, only the number
conserving terms that contribute to transition frequency renor-
malization, in agreement with with the common rotating-wave
approximation (RWA) that leads to the Kerr theory.

Next, we briefly discuss how we can solve for the generator
G4 based on Eq. (15). The key to a systematic and practical
construction of G, is the normal-ordered form of M. To
see this explicitly, consider the simple case of a harmonic
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oscillator with H, = bth + % The commutator of the normal-
ordered quadratic Hamiltonian with any normal-ordered oper-
ator monomial, i.e., a term of the form (ET )’”5”, is proportional
to that monomial:

[y, (B))"b"] = (m — n)(B)"D". (17)

Therefore, based on Egs. (15) and (17), we conclude that
G4 should include all of those monomials contained in N,
but with modified coefficients. Note that in contrast to the
secular terms, which can always be written in a compact form
in terms of the quadratic Hamiltonian, there is in general a
large number of nonsecular terms and bookkeeping might
seem challenging at first glance. However, the term-by-term
calculation that becomes possible based on identity (17)
allows us to solve for the corresponding G, regardless of
the number of nonsecular terms, given that we have access
to sufficient and fast symbolic computing power. We have
developed a computer algebra code in Mathematica to solve
for the generator of the transformation as well as the resulting
renormalization of any system operator.! Importantly, the
term-by-term computation based on identity (17) allows us to
solve for and categorize the terms in G, that contribute to a
particular relaxation process (see Table III). Even though the
calculation presented in this paper is only for a single-cavity
mode and up to lowest order in €, this procedure could in
principle be generalized to any order and any number of
modes.

The discussion for the lowest-order corrections so far can
be generalized to include the €” contributions in the expansion
of Eq. (13). A similar equation can be found for Ge (see
Appendix B):

[Ha., Gol + N — [S4, Gal = SN (NG, Gs]) =0, (18)

where we use S(e) and N (e) to refer to the secular and
nonsecular parts of a contribution. This equation as well as the
equations for higher order G, are hierarchical equations that
depend on the previous lower-order generators, and therefore
can be solved in a recursive way. Note that the structure
of Eq. (18) for G is exactly the same as that of Eq. (15)
for G4. In both cases, the unknown generator appears inside
a commutator with the quadratic Hamiltonian %, plus a
collection of known nonsecular terms. Employing the identity
(17) and the discussion after it, one can determine Gg term
by term such that it cancels the corresponding monomials.
Moreover, the corresponding Hamiltonian up to second order
can be obtained as

Hoert = Fo — €84+ €[S — 38(IN4, GaD] + 0(e¥). (19)

To summarize the main results of this section, Egs. (15)
and (18) provide the conditions to determine the generator G,
up to first and second order in €, respectively. These equations
can be be solved for using computer algebra. Furthermore, the
effective system Hamiltonian is determined by a collection of
secular terms as given by Egs. (16) and (19) up to the first and
second orders in €, correspondingly.

I'This package is available for public use. Please contact the authors
to request a copy. It is based on the SNEG library made available by
the university of Ljublijana [35].

IV. EFFECTIVE MASTER EQUATIONS

The method of unitary transformations discussed above
can eliminate the number nonconserving terms in the Joseph-
son nonlinearity to a given order in €. The resulting system
Hamiltonian is then diagonal in the Fock state representation.
At order €, this is the multimode Kerr Hamiltonian that
would have been obtained had the number nonconserving
terms in the Josephson nonlinearity been neglected from the
start, e.g., in Eq. (3) for a single-mode resonator. At higher
order, the effective Hamiltonian includes more information
[see last term of Eq. (19)] than the Hamiltonian obtained by
simply dropping the number nonconserving terms from the
Josephson potential.

At first sight, it may appear that the nonsecular terms
do not have an impact other than providing a Kerr-type
effective Hamiltonian (at order €). Their impact is, however,
revealed in two places: (1) coupling to the bath, and (2)
initial density matrix. According to Eq. (15), the generator
is merely determined by a subset of the terms (nonsecular)
in the system Hamiltonian, and hence the resulting unitary
transformation commutes with any bath operator. Therefore,
to obtain corrections to the relaxation rates, we only need to
transform the system part of the system-bath Hamiltonian up
to lowest order as

Ya,c - Ya,c + 6[YAva,c» G4] + 0(62)~ (20)

Consequently, when the bath degrees of freedom are inte-
grated out to obtain a properly secularized master equation,
the effective collapse operators contain now nonlinear terms
in powers of €. The form of the resulting effective master
equation depends on the particular model considered. Finally,
in order to be consistent, the initial density matrix also needs
to be mapped into the new frame under the same unitary
transformation:

ps(0) = 3(0) + €[ps(0), Gal + O(€?). 2y

In the next two sections, we derive effective master equa-
tions (“EME”) up to order € for a qubit coupled (i) to a
generic bath coupling to the X quadrature, and (ii) to an
open single-mode resonator, respectively. We then compare
the results from EME to both linear and the commonly used
Kerr master equations. More details on derivation of the EME
can be found in Appendix C.

A. Case (i): Pure qubit relaxation

In this section, we study the renormalization of pure re-
laxation that originates as the interplay between qubit flux
noise and its anharmonicity. This case is also a pedagogical
simplification of the model introduced in Sec. II. The deriva-
tion and the final structure of the effective master equation,
however, contain the key elements of the general argument
more transparently.

The derivation here will focus on an effective master
equation at the lowest order in €. As discussed in Sec. III,
at this order it is sufficient to retain only the quartic term in
the Josephson potential. We start with the Hamiltonian of the
form

H=H,+ Hep + o (22)
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where the system Hamiltonian is given by

ﬂ-—w(wa+1)—fmma+ﬁf (23)
e 2) 487" ‘
We note that, in the absence of a cavity mode, there is no
hybridization and hence we denote all quantities without re-
sorting to a bar for simplicity. We consider a bath Hamiltonian
Hy =, a)kBZBk for the qubit with the system-bath cou-
pling 7:le =X, Dk gka. This would for instance represent
flux noise acting on a transmon qubit, the dominant source
of decoherence for recent weakly anharmonic tunable qubit
designs [16].

For simplicity, we denote the unitless quadratic and quartic
parts of 71, as

Ho=h,+3%, Hy=@+ah, (24)

where 71, is the number operator. The first step is to separate
the quartic anharmonicity in terms of secular and nonsecular
parts as H; = S, 4+ Nj. In this rather simple case, it is possible
to categorize all the terms in 84 and Ny,. There are six distinct
secular terms that can be expressed as a polynomial of H, as
(see Appendix A 1)

Sy = 602 + 3 = 6/ + 6/, + 3. (25)

We showed in Eq. (16) that the Hamiltonian is renormalized
only by the secular terms up to lowest order. Therefore, we
obtain the lowest-order correction to the effective Hamiltonian

€w,

ﬁa,eff = waﬁa - 3 [_}aZ + 0(62)

(26)
€ . € .5 5
= (1 — —)a)ana — —w,iiy + 0(€”),
8 8
where the second line explicitly shows the quadratic as well
as the quartic self-Kerr corrections to the transition frequency
of the qubit.
Next, we focus on the nonsecular contributions. The re-
maining 10 nonsecular terms can be expressed in normal-
ordered form as

Ny = a* + @"* 4+ 4[a'a® + @'y’ al + 6[a*> + @")*]. 27)

Then, we construct the e-order generator such that it cancels
the nonsecular contributions, which results in

[Ha, Gal — 354 = 0. (28)

Employing the identity (17), we are able to build the generator
G, term by term. The result is

Gy = 1@ — a1+ %l@a—a'a’1+ Lia@'? - a’.
(29)

Even though the nonsecular terms are completely removed
from the system Hamiltonian, their effects are at the end
translated to modifications to the relaxation rates after the
transformation is applied to system-bath coupling. For the
model system considered here, the qubit couples through
the quadrature X,. The transformation of this quadrature pro-
duces a variety of multiphoton transition processes, which up

TABLE I. The contributions in [X,, Gs], which provide the
lowest-order renormalization of the system quadrature. The left
column shows each operator entering the sum, and the right column
shows its coefficient.

Operator Coefficient
a+H.c. 3
ataa +He. é

& +Hec. _1

to € order can be written as (see also Table I)

e 0% et = [1 T %(1 + ﬁa)]& — :—Seﬁ T He. 4 0(2).
(30)

The resulting effective master equation to order € is ob-
tained:

patt) = =ilFuar, P01 + 26D (14 (1 + ) )a] o)
€

ZaD[
+ 2Kq3 16

a3]pa(z), 31)

where 2k, = Sxx(w,), 2k,;3 = Sxx (3w,). It is important to
notice the operator nature of the relaxation renormalization,
which becomes manifest with the appearance of a nonlinear
collapse operator correction at order €. In arriving at the EME
(31), we have assumed that the bath spectral function is insen-
sitive within an O(e) window around the qubit frequency. A
more exact representation can be achieved by projecting onto
the qubit eigenbasis in which the Hamiltonian is diagonal. The
derivation and connection between these two representations
is discussed in Appendix C.

Next, we compare the numerical predictions from our
effective master equation to the Kerr and linear master equa-
tions. A summary of the expected renormalizations is pre-
sented in Table II. In the case of Kerr theory the nonsecu-
lar terms in the qubit anharmonicity are removed manually
from the outset through an RWA, keeping only effective
nonlinear interactions of the form a‘afaa. Alternatively, our
perturbation finds the proper transformation, order by order,

TABLE II. Comparison of the different master equations up to
lowest order in €. The Kerr master equation contains the corrections
from the secular terms 34 in the system Hamiltonian through an
RWA, while neglecting the nonsecular terms Nj. The effective
master equation, on the other hand, accounts for those nonsecular
terms through a unitary transformation and provides renormalized
relaxation processes. We note that the RWA under consideration
is with respect to the nonlinearity of the qubit and hence is not
applicable to the linear theory as specified in the table.

Calculation RWA? Corrects Freq.? Corrects Diss.?
Eff ME No Yes Yes
Kerr ME Yes Yes No
Linear ME N/A No No
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between the starting quartic and the Kerr frames. Therefore,
even though the system Hamiltonian for both models is the
same, namely, ’Hs ot = Ho — €84, the system evolution in
each case occurs through different rotating frames. This being
said, for the example under consideration, the linear, Kerr,
and effective master equations have the following forms up
to lowest order in €:

Linear: p,(t) = —i[tla, pa(t)] + 2k, Dlalpa(t),  (32)
Kerr: pu(t) = —i[Ha — €Sy, pu(t)] + 2k, DIa)pa(t),  (33)

Effective: po(t) = —i[Ha — €84, pal?)]

+ ) 2(@))DICei(@))1palt), (34)
J
where in the case of effective master equation one finds a
renormalization of single-photon and multiphoton transitions
in the transformed frame as was shown in Eq. (31).

The corrections in the effective theory, compared to Kerr,
can be summarized in terms of two separate effects. First,
note that the starting order-¢ qubit Hamiltonian (23) does not
commute with and hence does not conserve the qubit number
operator i, as opposed to the Kerr Hamiltonian (26). This
suggests that the Kerr theory predicts circular constant energy
contours, while the true constant energy contours are noncir-
cular and obey X? + Y — €/12X;} = C. Within the context
of our method, the information about number nonconserving
terms is implicitly encoded in the transformation exp(—eGy),
which needs to be consistently applied to the density matrix at
all times ¢ > 0 when calculating the expectation values [see,
e.g., the discussion under Eq. (21)]. Second, on top of this
noncircular time evolution, the EME provides renormalized
dissipators, that cause an increase in both the effective single-
photon and three-photon relaxation rates.

The first effect can be clearly observed by turning off the
dissipation and plotting the phase space of the qubit for the
first oscillation period [Fig. 2(a)]. The Kerr theory predicts
a circular orbit and lies on top of the linear theory (e = 0).
This is expected since the Kerr theory is diagonal in the
number basis and only corrects the transition frequencies,
hence, in phase space the oscillator only rotates with a slower
angular frequency. On the other hand, the effective theory
accounts for the effect of nonsecular terms which renormalize
the constant energy contours. We stress that this effect is
encapsulated in the unitary transformation (6) and in the
subsequent application of this unitary onto the density matrix
in order to convert results back to the laboratory frame. In the
absence of dissipation, both the effective theory and the Kerr
theory evolve according to the same Kerr Hamiltonian, but
they do so in different frames. The transformation between
these frames accounts for the contributions of the nonsecular
terms. Next, we turn on dissipation and compare the dynamics
for the phase space as well as the qubit ocupation number in
Figs. 2(b) and 2(c), respectively. On top of the noncircular
phase-space evolution, that leads to a nonexponential decay
in the occupation number dynamics, we observe that the
effective theory predicts a faster rate compared to the Kerr
theory which is more or less the same as that of the linear
theory.

—Eff
! ---Lin
= L \ Kerr
= N
~0.5F N *
0 20 40 60 80

@,t
(c)

FIG. 2. Comparison between different theories mentioned in
Table II for E; =50E. (¢ =0.2) and qubit initial condition
|W,(0)) = f Zm _o Im). This initial condition is adopted to have
nonzero matrix elements for both single- and three-photon relaxation
processes. (a) Phase space during the first period for «, = k3 = 0,
(b) phase space, and (c) qubit occupation number for «, = k3 =
w,/25. The bath spectral function Syy(w) is assumed to be flat for
simplicity.

B. Case (ii): Purcell physics

This section is devoted to the case of a weakly anharmonic
qubit coupled to a single open resonator mode as a typical
setup for studying the Purcell effect [1,2]. This is the model
introduced in Sec. II. With respect to the case treated in the
previous section, here the focus will be on the physics of mode
mixing and its implications on both frequency and decay rate
renormalization. We derive an effective master equation that
accounts for this renormalization at order ¢, for which it is
sufficient to retain only the quartic terms in the Josephson
potential. Additional details for the calculations presented in
this section can be found in Appendix A 2.

In the normal-mode basis, the system Hamiltonian is

N 1 1
H, = w(aTa + 5) +a)c<6‘L6 + 5)

- Rl +ah) +ue@+ N, G3)
up to lowest order in the anharmonicity. In the following, we
apply a unitary transformation such that the effect of the weak
quartic anharmonicity in # is explicitly accounted for both
the Hamiltonian and relaxation rates up to lowest order.

We start by decomposing the quartic anharmonicity given
in Eq. (35), Hy = [ua(@ + ahy + ge (& + eH1t into secular
and nonsecular terms as H; = 8, + N,. When expanded in
terms of qubitlike and cavitylike bosonic operators, there are
a total of 256 distinct monomials in Hy. The secular terms Sy
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can be expressed in terms of the number operators 71, ¢ as
Sy = 6(u + 2uml dC)nﬁl +6(u +2u(ld AC)
+6ut 22 + 6ut A% + 24u% 1P Ay (36)

aa a ac C aa“"ac
Following our previous discussion in Sec. III, only nonsecular
terms can be removed by a unitary transformation, and hence
the secular terms S4 provide the lowest-order correction to the
Hamiltonian as (see Appendix A 2 for details)

ﬁs,eff = |:wa - %( + 2”3d“§c)i|n

€y
+ |:a)C ~ 3 ( +2u§cu§a)i|n
€W,
8
Equation (37) describes the normal-mode oscillations of a
qubit-resonator system renormalized by self-Kerr and cross-
Kerr contributions, whose strength is determined by the hy-
bridization coefficients. This result is consistent with the
common Kerr theory, which is derived by applying RWA to
the original model (2).

The generator G4 that removes the nonsecular terms in Hy

can be found by solving

(ujd d + udC c + 4udduandnC) (37)

N A A Wy A
[w,H, + wcHe, G4] — 4—§N4 =0, (38)

where we have replaced 7:[2 = w,H, + w.H. and /\74 =
@,/48N, in the generic condition (15). Due to the large
number of distinct monomials in IV4, it is not straightforward
to bookkeep them manually. The resulting correction to the
qubitlike and cavitylike quadratures are presented in Table 111,
which accounts for all the processes involving single- and
three-photon nonlinear interaction with the bath.

Which of the single- or the three-photon interactions are
dominant in the qubit dynamics depends on the system pa-
rameters (e.g., the relative normal-mode frequencies) as well
as the initial conditions. For example, assuming that the qubit
is initially prepared in the linear combination of the ground
and the first excited states, then the three-photon processes
play little role in the dynamics. With this assumption, keeping
only the renormalization originating from the single-photon
system-bath interactions, we obtain from Table II1

e 0Pl = —ia+ zga)— g, (Ul + uZ, + ushy + 2uac”c)a
i% wf_w 2uu(u2 Ul Ul + 2ul iy )
+H.c. + O(e?), (39a)

e Y.el = —ic + lgi— s (up, + uly + U e + 20l 1,) 8
i% wg’a_wa guacuaa (uzc + uia + uzaﬁa + 2u§cﬁc)&
+H.c. + O(?). (39b)

According to Egs. (39a) and (39b), we find that the interaction
of each normal mode with the bath obtains corrections that are
proportional to both itself and the other normal mode. At zero

TABLE IIL. The contributions in [¥,, G4], which provide the
lowest-order renormalization of the qubitlike quadrature. The left
column shows each operator entering the sum, and the right col-
umn shows its coefficient. The double horizontal lines separate
the contributions into three distinct categories from top to bottom:
(1) self, (2) cross, and (3) mixed. The result for cavitylike quadrature,
ie., [Yc, 64], can be immediately found from this table by the si-
multaneous replacements u,, <> U,., w, <> w., d <> ¢, while the bare
qubit frequency &, remains intact. For every monomial in the table,
the Hermitian conjugate monomial also appears in the expansion of
[Y,, G,], with the complex-conjugate coefficient.

Operator Coefficient

a é %udzd (udd + udC)
ataa P

@ 76 o s

6 i(w:rwc - m)uddudt(u + M )
etee % ( w:‘fwc pr—— )uddu3
63 é ( a)ai;mc - W%)uaaugc
¢fea ;%ugaugc

&T&@ %(méfmt - ma we )M3 Uae
&a s (G + o)
@)’a § (52 — B,
azé i ( we +;u)d wc +a)a ) Uyc uia
(&T )26 i ( a):_iaa)a we i);ma )Mac u;a

coupling, i.e., where g = 0 and hence u,, = 1 and u,. = 0, we
recover the linear correction for case (i) in Eq. (30). Moreover,
we need to recall thaE the bare cavity quadrature coupling to
the bath translates to ¥, = v Y. + veY, in terms of the normal
modes. Combining the linear and nonlinear renormalizations,
we can obtain an effective e-order Lindblad equation as

ps(t) = —i[Hsetrs Ds] + 2k DICeetr] s(t)
+ 2KaD[éa,eff]/A75 ), (40)

where 2k, . = Syy(wa,c). Moreover, the effective qubitlike
and cavitylike single-photon collapse operators read as

A € 0y 2 (2 2 2 A 2 A
Coeff = |:vca — gw—vcauaa (uaa + uy, + uy, My + Zuacnc)
a
€ W,

2w —w?

24,2 2 5 2 2\
Veclacllaa (uac+uaa + Uy, + 2uacnc)]a,
C

(41a)

A € (0y 2 (2 2 2 A 2 A
Cc,eff = |:ch - g o Vecllye (uac T+ Uy T U Tle + 2Maana)
c

[ONOR 2 2 2 A 2 A\ |A
— = Veallaaltac (U5, + U, + U fic + 2u3,fiy) €.
2 w; — wy

(41b)

Next, we examine the dissipator renormalizations (41a)
and (41b) of each normal mode in more detail. We observe
that the dissipator renormalizations depend on the hybridiza-
tion coefficients as well as on the relative position of the
qubitlike and cavitylike frequencies. While for a qubit directly
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41—
0.5 2t J
7”(1@
—Ugqc 0
0 Ucq 2
el ] 4
0 0.2 0.4 0 0.2 0.4
g/ 9/®c
(a) (b)
1.2 —Tq
1 0.04 —Te
0.8
0.6 0.02
04 -
—w, /@,
0.2 — .
0 0.2 0.4 0 0.2 04
g/‘Dc g/@c

(c) (d)

FIG. 3. Hybridization as a function of g for @, = 0.8@.
(i, < @¢). (a), (b) Show hybridization coefficients obtained from
Egs. (A32a) and (A32b), (c) show the normal-mode frequencies
obtained from Egs. (A30a) and (A30b), and (d) show the order-e
correction to the normal-mode dissipators according to Egs. (42a)
and (42b). The last value of g is chosen in each case such that the
lower normal-mode frequency hits 0.

coupled to a generic bath [case (i)], the relaxation rate to low-
est order can only increase when increasing the anharmonicity
parameter €, the additional dependencies here suggest a richer
possibility for corrections.

To this end, let us consider first the case where the qubit
is detuned below the cavity mode. We study the hybridization
coefficients as well as the sign of relaxation renormalization
(Fig. 3). This choice of parameters leads to a nontrivial
hybridization of each normal-mode coupling to the bath with
opposite signs, i.e., v > 0 and v, < O [Fig. 3(b)]. To assess
the overall sign of relaxation correction, we need to compare
the sign of O(e) corrections in Egs. (41a) and (41b) to the
O(1) values of u,. and uc,. Although the O(e) corrections
inside the dissipators are operator valued, we can assess the
sign in terms of the following quantities:

€ Wy 2 € W, 2 )
Fa = —\| 5 Vcalt + =5 5 VecllaclUaa | \U, + uy.),
(8 W, N 2w — w? (1 + 1)
(42a)
€Wy 5, € @Dy 2 2
re = —| o —Veclly, + = —5—5 Vcallaallac | Uy, + U
(8 o, 20—} (1 + tc).
(42b)

that are obtained by setting n,. =0 in these corrections.
We find that both r,. are positive for w, < w. and for all
values of g as seen in Fig. 3(d). Given the fact that any
dissipator of the form D[C] is quadratic in terms of its collapse

1 10—
va(’
5 Ve
05 — o By
—Uge 0 %
0 Uca
\\ 5
—Uee
0 0.5 0 0.5
g/‘*‘_)c g/@c
(a) (b)
15 0.05
1 0
0.5 —
—Wa/We -0.05 | Ta
7wc/a]c —Tec
0 0.5 0 0.5
g/@c g/‘Dc
(c) (d)

FIG. 4. Hybridization as a function of g for @, = 0.8@,
(@, > @.). (a), (b) Show hybridization coefficients obtained from
Egs. (A32a) and (A32b), (c) show the normal-mode frequencies
obtained from Egs. (A30a) and (A30b), and (d) show the order-e
correction to the normal-mode dissipators according to Eqs. (42a)
and (42b). The last value of g is chosen in each case such that the
lower normal-mode frequency hits 0.

operator € and that ug, is negative for w, < w,, we find that
the single-photon relaxation is enhanced (suppressed) for the
normal cavity (qubit) mode. We note that setting w, > w,
will reverse the result, in which the single-photon relaxation
is enhanced (suppressed) for the normal qubit (cavity) mode
(Fig. 4). A summary of the sign of single-photon relaxation
renormalizations is given in Table IV.

Next, we compare the dynamics predicted by the EME
(40) to the corresponding Kerr and linear master equations.

TABLEIV. Summary of the renormalization of the single-photon
relaxation rates. The labels 4+ and — show the sign of a quantity,
while the arrows 1 and | show whether a quantity is increased or
decreased, respectively.

Parameters W, < W, W, > W,
Ugas Vaa + +
Uac, Vac + -
Uca, Uca - +
Uec, Vee + +
Ta + +
e + —
,D[C:‘a,eff] »Jr T
D[Cc,eﬁ] T \L
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1%00(0)) = (

0(19(: > +
7

\ —Eff
0.4 7\,\ e KT
{@\ \‘\ - --Lin
S02F N\ I
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wet
(b)
—Eff
0.4 7\,\ - Kerr
o \ ---Lin
L2020 X\ |
0 50 100 150
Wt

(c)

FIG. 5. Comparison of different theories given in Table II
for E; =50E. (¢ =0.2), w, = 0.80., and g~ 0.27&,, resulting
in hybridized quantities w, & 0.55w., w. = 1.15w., Uy = Uy ~
0.69, and v, = v, & 0.76. We assume a flat-bath spectral func-
tion Syy (w,) = Syy (w,), such that @, = w,/[v%Syy (w,)] ~ 20.7 and
0. =w./ [vchyy (w.)] ~ 42.7. Low-Q values are chosen for simplic-
ity and are irrelevant under the flat-bath assumption. The qubit and
cavity initial conditions are set as |W;/c(0)) = (|0y/c) + |la/c))/«/§.
(a) Schematic of the harmonic parameters, (b), (c) qubit and cavity
occupation numbers. We note that the parameters chosen here corre-
spond to a sizable hybridization g &~ 0.27&. (sometimes referred to
as ultrastrong coupling [36-38]).

In order to show the possibility of a qualitatively different
behavior compared to the direct bath coupling discussed in
case (i), we consider the scenario where the qubit is de-
tuned below the cavity as in Fig. 3. Moreover, we fix the
light-matter coupling g such that the anharmonicity is almost
equally shared between the two normal modes (i.e., Uy, ~
u,. > 0), hence, the cross-mode correction in the renormal-
izations (41a) and (41b) becomes significant. This choice of
parameters is demonstrated schematically in Fig. 5(a). The
occupation number plots 5(b) and 5(c) reveal that the Kerr
theory barely provides any renormalization with respect to
the linear exponential decay. On the other hand, the EME
show an increase (decrease) in the relaxation of the nor-
mal cavity (qubit) mode with respect to the linear Purcell
rates.

V. CONCLUSION

We presented a computational framework to derive an
effective master equation for the dynamics of a weakly an-
harmonic superconducting qubit (e.g., a transmon) embedded
in a given electromagnetic environment. An effective master
equation was presented for two different cases of the electro-
magnetic environment: (i) a flux bath, (ii) a single-mode res-
onator coupled to an open resonator. The procedure based on
unitary transformations yields in each case an effective master
equation whose parameters (frequencies, self- and cross-Kerr
terms, relaxation rates) depend nonlinearly on the initial exci-
tation level in a systematic expansion in the small parameter
characterizing the weak anharmonicity, € = /2E./E;.

Our findings in case (i) show that the relaxation rate of
the qubit increases with the strength of the anharmonicity
€ and with the initial excitation. The presented approach
explicitly shows that the renormalization of the relaxation
rate originates from the number nonconserving terms in the
nonlinearity of the qubit. Findings in case (ii) demonstrate the
complex dependence of the renormalization of the relaxation
rates on the hybridization of the qubit with its electromagnetic
environment, allowing for the distinct situations where the
qubit relaxation rate may increase or decrease.

We note that for an anharmonicity that corresponds to the
typical experiments with transmon qubits (Ej/E. ~ 50 cor-
responding to € &~ 0.2), and initialization in the first excited
state of the transmon, the transient dynamics as captured by
the effective master equation is not substantially different
from either the (hybridized) linear theory or the Kerr result.
The differences may not be observable in an experiment.
Nonetheless, these results have an important implication.
When either the electromagnetic environment is highly ex-
cited or the Josephson junction is initialized at a higher ex-
citation level, the Kerr theory (as the linear hybridized theory)
will display discernible deviations from the exact transient
dynamics. In the effective master equation these differences
will be captured by the occupation-dependent relaxation rates
as well as three-photon loss terms that get activated at higher
excitation. The most dramatic appearance of these renormal-
ization effects will be when the resonator-qubit system is
driven by a coherent microwave tone, as in a typical quantum
nondemolition readout setup. The mathematical procedure
to extract an effective master equation in that case involves
additional techniques, and will be discussed in Paper II.

The methodology for the derivation of an effective master
equation discussed here is broadly applicable to multioscil-
lator superconducting circuit devices. In combination with
an accurate computational technique for modeling complex
electromagnetic environments presented in Refs. [21,22], the
approach presented here provides a compelling theoretical
framework for studying the quantum dynamics of large inte-
grated quantum circuits in a way that is accurate and resource
efficient.
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APPENDIX A: FIRST-ORDER PERTURBATION THEORY

In this Appendix, we discuss the details of the first-order
perturbation theory in order to calculate the effect of the weak
anharmonicity of a qubit on both transition frequencies and
relaxation rates of the system. The main results are presented
as effective Lindblad equations with renormalized Hamilto-
nian and dissipators. In Appendix A 1, we consider the case
of a weakly anharmonic qubit coupled to bath through its flux
quadrature. Next, in Appendix A 2, we discuss the case of a
weakly anharmonic qubit coupled to an open resonator.

1. Qubit coupled to a bath

We model this system by the overall Hamiltonian

o= Ha+ Hao + Ha, (AD)
where the system Hamiltonian is given by
N N . € 4
Ha= 2 (2412 - SR + o)
sia L € i atyd 2
=w,| a a+§ — &wa(a+a )"+ O(e7). (A2)

We describe the bath by a continuum set of modes Hy =
> wkézék that models the flux noise of the qubit through the
system-bath coupling Hg, = X, > ok 8k By + 1§£). For notation
simplicity, we define unitless quadratic and quartic operators
as

A

A, =1@'a+ad"=a"a+ 1, (A3a)
H, = @a+ah* (A3b)

Our analysis begins by applying a unitary transformation
to the overall Hamiltonian (A1) as

Herr = e “He™, (A4)
where G is an anti-Hermitian operator and the generator of
the transformation. We seek an order-by-order solution for
this generator in such a fashion that the system Hamiltonian
becomes simpler as we see in the following. Up to lowest
order in € we can write

G = eGy + 0(?), (A5)

where the subscript “4” is chosen to match the lowest-order
nonlinear expansion of the Hamiltonian that is quartic. Upon
inserting Eqgs. (A2) and (A5) into Eq. (A4), we obtain the
lowest-order transformation of ’}-A[a,eff as

A~ A € A A A
P = wu(Ha = 15Hs) + €A, G + 0()). (A6)

Then, G4 needs to be determined such that the transformed
lowest-order Hamiltonian, i.e., €w,([Hy, G4] — ﬁ[—h), gets
simplified. After we obtain the desired operator G, the overall
Hamiltonian (A1), and in particular the system-bath coupling,
also need to be transformed accordingly.

It is important to note that any higher-order anharmonicity
can be partitioned into secular and nonsecular contributions.

In particular, the quartic anharmonicity H, consists of 6
secular and 10 nonsecular terms such that we can write

Hy = 84 + Ns. (A7)

Moreover, the secular terms can be written in terms of the
harmonic Hamiltonian H, as

S, =afataa + ataata + ataaa® + aaata’ + aataat
+aatata

= 6H + 3 = 6/} + 6i, + 3. (A8)

From the algebra of the bosonic operators, we find that there
does not exist any operator G, such that [H,, G4] could cancel
any of the secular contributions in 4. The reason is that the
commutator of the harmonic Hamiltonian H, with any non-
secular term remains nonsecular, while with any secular term
is zero. The discussion can be summarized by the following
commutator rules:

[sec, sec] = 0, (A9a)
[sec, nonsec] = nonsec, (A9b)
[nonsec, nonsec] = sec + nonsec. (A9c)

As aresult, all the nonsecular terms in the system Hamiltonian
can be in principle canceled through this procedure. There-

fore, we are looking for an operator G4 such that
[Ha, G4] — 3xNs = 0, (A10)

and the lowest-order effective Hamiltonian then becomes

A A €Wy A
Ha,eff = w,H, — 8aHaz + 0(62)
€ R € A2 )
_ (1 _ g)wana — SO+ 0, (Al

where we have replaced Sy from Eq. (A8). Note that the
new effective Hamiltonian (A11) is diagonal in the original
number basis of the harmonic Hamiltonian and agrees with
the common Kerr theory that could alternatively be obtained
by applying the RWA on Hamiltonian (A2) from the outset. As
we will see in Appendix B for the second-order perturbation,
the correspondence to the Kerr theory is coincidental for
the lowest order, while additional corrections appear in the
effective Hamiltonian that a simple RWA can not recover.
The first step toward finding G4 is to obtain different
contributions in Ny and write them in normal ordering as

Ny =a* + @) + 4[ata® + @h’a) + 6[a> + @hH?.
(A12)

Next, we use the fact that the commutator of H, with any
nonsecular monomial is proportional to that monomial as

[H,, @""a"] = (m —n)@"Hy"a". (A13)

To see this explicitly, consider the commutator of H, with each
individual term in Eq. (A12):

[H,,a"] = —4a*, (Al4a)
[A,. @")"] = +4@")", (A14b)
(A, a'a®] = —2ata’, (Al4dc)

[A,, (@")al = +2@")a, (A14d)
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[Hy, &°] = —24°
[H,, (@")?] = +2@@")>.

(Alde)
(A14f)

From Eq. (A13), we understand that the generator G that
obeys the condition (A10) will contain the same set of mono-
mials as 1\74, but only with different coefficients. Therefore, we
directly construct the operator G, in terms of Ny as

Gy = wzl@h —a'1+ @' Ya - a'a’1+ k1@ - a1.
(A15)

Next, we calculate the effect of this transformation on the
full Hamiltonian. Since the generator G, was only determined
in terms of system operators, the resulting transformation only
acts on the system quadrature of the system-bath Hamiltonian.
Therefore, up to lowest order in €, we need to calculate

e 0RetC = X, + €[Ry, Gl + O(ED). (A16)

Using expression (A15) for G4 we obtain

[a, G4 = @) + 3@a— L& +1a',  (Al7a)

[af, Gy] = & + ya'a® — @'y + ja, (A17b)

and by adding them we find
[Xe, Gal = g(@+ah) + gl@h’a+a'a’] — gla* + @,
(Al7¢c)

We observe from Eq. (Al7c) that a variety of multipho-
ton couplings appear up to € order. For instance, the first
and second lines of Eq. (A17c) produce transitions between
successive energy levels of the oscillator, while the third
line causes transitions between every third energy level. In
particular, the single-photon terms can be reexpressed more
compactly in terms of 71, as

a+a+@Ha+ata’> =1 +a)a+He. (A18)

Using identity (A18), the transformation (A16) can be written
in the following compact form:

e 6%,et6 = [1+ (1+na)]a—& 4 He. + 0(e2).
(A19)

Following the common derivation of the Lindblad master
equation, one obtains the e-order effective master equation as

pult) = =T, (O] + 26D (14 51+ 20)a]pute)

+ 2D = |0, (A20)
where x, = Sxx(wa), ka3 = Sxx(3w,) are the single-photon

and three-photon relaxation rates. Moreover, Syy(w) =
[72 dr e t[(1/Zy e~ "o/ Xy () X, (0)] is the bath spec-
tral function with X, = > 8k (B + BT) being the bath-flux
quadrature that couples to the qubit. Note that the cross terms
(mixtures of single- and three-photon couplings) are canceled
out due to the Markov approximation and the resulting secular
condition. It is important to notice the operator nature of the
relaxation renormalization, which is manifest as a nonlinear
collapse operator.

The order-€ effective Lindblad equation (A20) along with
the corresponding renormalized Hamiltonian (A11) dissipa-
tors are the main results of this Appendix, and are employed
in Sec. IV A of the main body of the paper.

2. Qubit coupled to a single-mode open resonator

Here, we return to the problem of a weakly anharmonic
qubit coupled to an open resonator. For simplicity, we con-
sider a single mode, while our results can be trivially general-
ized to a multimode scenario. The system Hamiltonian up to
lowest order in € reads as

>
>

2 € =2 We , 2 2
- —X;‘) +TC(X°2+YCZ)+g Yo,
(A21)

with @, and @, being the qubit and the cavity bare frequen-
cies and g the coupling strength. Furthermore, we consider
a resonator—bath coupling with the bath Hamﬂtonlan Hy =
> a)kB By and the coupling Hamiltonian #g, = Y Zk aiYr.

To 51mp11fy the perturbative calculation, we work in the
normal-mode basis, in which the quadratic part of the Hamil-
tonian (A21) becomes diagonal. The desired transformation
can be obtained by the successive applications of nonuniform
scaling and rotation [39] as shown in the following.

With this aim, we first introduce scaled sets of canonical
cavity /qubit operators

X,=sX, Y,=s'7, (A22a)
X, =s7'%, Yo=s7, (A22b)

where s, = (@c/@,)"/*. In terms of the prime canonical
quadratures, the quadratic part of Hamiltonian (A21) becomes

A~

), ., A
—aY’2+—CYC’2+gYC/Yu',

Ol 1on  on

= —(X X A23
Ho= SRS+ X0) + 00+ (A23)
where o), = (0,0.)"?, o) = (@)/@.)"?, and o] =

(@] /@)%,
Second, we introduce the following unitary rotations

Xa/ | cos(@) sin(6) )?;’
I:Xc/i| - |:- sin(0) COS(Q):| I:}?c//:|a (A24a)
fa’ | cos(@)  sin(0) yau

I:?c/:| = [— sin(0) cos(e)i| [yc//:|a (A24b)

in terms of the new double-prime set of canonical operators.
The rotation angle 6 that removes the off-diagonal terms
in Hamiltonian (A23), i.e., gfc/?a’ , is then found from the
condition
an(20) = — 28 _ 4g2” ——
— @2

(AN P
@ Wy g

(A25)

for which Hamiltonian (A23) becomes

7:2 = acX//Z acX//Z
e

N w, cos?(0) + w. sin*(9) — 2g 5in26) 5.2
4 a

L ! cos?(9) + ), sin*(0) + 2g sin(20) 7,
4

(A26)
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Third, we need to introduce another nonuniform scaling
transformation into the final normal modes (denoted by bar)
as

! O 1/

X! =X, Y/ =s;'%, (A27a)
AC” = 5;: X, ACN = sgl?c. (A27b)

The scales s, and s3 in Eqs. (A27a) and (A27b) are evaluated
as

|:&>§ cos?(0) + @2 sin*(0) — 2g\/ @y, sin(29):| 1/4

S = R
[ONON
(A28a)
d)g cos?(0) + G)Z sin?(0) 4 2g/@,®. sin(20) 1/4
§3 = )
’ ad
(A28b)
such that Hamiltonian (A26) becomes diagonal as
N Wy N We , N
Ho= (R 10 + (R +12). (A29)

The qubitlike and cavitylike normal-mode frequencies read as

w, = [@] cos*(0) + @ sin*(0) — 2g3/ @, sin(20)] 172

(A30a)
w, = [@F cos(0) + @ sin(8) + 2g/@,, sin(26)] .
(A30b)

Putting the result of the three transformations (A22a), (A22b),
(A24a), (A24b), and (A27a), (A27b) together, one can relate
the initial- and normal-mode quadratures via a set of hy-
bridization coefficients

{a — |:Maa uac:| |: Aaj| i (A31a)
Xc Uca Uce c

)?a _ | Vaa  Vac )fa (A31b)
Y, Vea Ve[| Yo

Uaa  Uac| _[s1 O ][ cos(@®) sin@)][s2 O
Uea Uee| |0 sy'[[—sin@) cos(®)]| 0 s
[ sis2cos(6) 5153 sin(@) |
= | silssin@)  slsycos@)] (AR
Vaa  Vac| _ [s70 O[ cos(@) sin(®)][sy' 0
Vea Ve | | 0 i [[—sin(®@) cos(®)[[ O s;l
ro—1 1 11
_ | sy sy cos(8) s sy sin(0)
T sy tsin@®)  sis5 ' cos(9) |0 (4320)

Examples of the dependence of the normal-mode frequencies
and hybridization coefficients on coupling g are studied in
Figs. 3 and 4.

We can then rewrite the system Hamiltonian (A21) in the
normal-mode picture as

o =w aTa+1 +w eTa+1
s — a 2 C 2

€W,

48

[Uaa(@ + a") + upe (@ + DY (A33)
Note that the quartic anharmonicity induces nonlinear mix-
ing between the normal modes, whose intensity is given by
the hybridization coefficients u,, and u,.. Moreover, due to
hybridization, the original system-bath coupling now acts on
both normal modes as

,}:[sb = (Uccfvc + UcaYa) ngf}k'
k

(A34)

In the following, we apply a unitary transformation to the
overall Hamiltonian to obtain corrections to both oscillation
frequency and relaxation rates in orders of weak anharmonic-
ity measure €. Based on Hamiltonian (A33), we introduce the
following unitless operators

H =a'a+ 1, (A35a)
H =éle+ 1, (A35b)
Hy = [ug(@ + a%) + upe(@ + ¢H1* (A35¢)

to simplify our calculation. Expanding the generator of the
transformation up to lowest order in € we can write

~ G G ~ A
Hs,eff =e Hse+ = w,H, + w:H,

+ E{[waﬁa + a)CHCﬂ G4] - Z)_gﬁzt} + 0(62),
(A36)

where in the last step we used Eqgs. (A35a)-(A35c). The
generator Gy is then determined such that the renormalized
Hamiltonian up to lowest order becomes diagonal in the
number basis. We then decompose the quartic Hamiltonian
H, into secular and nonsecular contributions as
Hy = 84+ Ny (A37)
Following our discussion in Appendix A 1, we know that it is
only possible to remove the nonsecular contributions Ny, i.e.,
the generator Gy is determined via
. A A @a
[w.Hy + wcHe, Ga] — ENﬁl =0. (A38)
On the other hand, the secular contributions 5'4 provide the
lowest-order correction to the Hamiltonian.
The secular terms S4 can always be expressed in terms of
the quadratic Hamiltonians. For the current system we find
Sy = 6u* B? + 6u* A% + 241> u> H,H,

aa”"a ac” ¢ aa“"ac

= 6(uia + 2ul u? g + 6(u3C + 2ul i )ic

aa“"ac aa“"ac

4 52 4 52 2,24 4
=+ 6, 1y + O6u, g + 24u, 1y A fic.

(A39)
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Therefore, up to lowest order, we obtain the effective system
Hamiltonian as

. €d .
Hs et = |:wa 8a(u +2uaa ac):| Ny

+ |:a)c 6;) (. + 202 u aa)}ﬁc

4 A 4 A 2
(uaana + Uy T + 4uaauacnanc)

(A40)

According to Eq. (A40), the Hamiltonian for each normal
mode is renormalized due to two contributions, self-Kerr and
cross-Kerr, whose strength is determined by the hybridization
coefficients. )

Next, we solve for the generator G4 from Eq. (A38).
For this matter, we use the fact that the commutator of
the quadratic Hamiltonian with any monomial of creation
and annihilation operators is proportional to that monomial
as discussed in Eq. (A13). The generalization for the two-
bosonic-mode case is found as

[Ha, @) a" (&) e") = [waHa + weHe, (a")"a" @") ¢
= [(m—n)w, + (I — p)o )@y a" ") er.
(A41)
As aresult, if there is a monomial of the form N @hyman@tler
in N4, we require G4 to contain the same monomial but with

modified coefficients determined by Eq. (A38) and identity
(A41) as

®a

= 48[(m — n)w, + (I — p)wc]

(A42)

Note that there are 4* = 256 distinct terms in H4, among
which 36 are secular and 220 nonsecular. Therefore, due to
high number of nonsecular terms, the bookkeeping can not be
done manually. Note that due to the term-by-term calculation
that is possible based on solution (A42), we can categorize all
the terms that contribute to a particular multiphoton process.

Up to here, we have found the required transformation to
remove the nonsecular terms from the system Hamiltonian.
We need to consistently apply this transformation to obtain the
renormalization to the system-bath Hamiltonian as well. The
system quadratures Y, are transformed up to lowest order as

— Y a.c + E[Yd(.v G4] + 0(62)

The e-order correction to the qubitlike and cavitylike quadra-
tures, i.e., [fa,c, 64], are categorized in Table III including a
multitude of single- and three-photon nonlinear interaction
with the bath.

In particular, the single-photon contributions can be added
together to give the renormalizations

e Y, 0 (A43)

6o & Dy

e Ye” = —ia+ lg— aa(uaa + 2, 4wy + Zuacnc)a
WaWe 2 2 2 A 2 A\
+ lzmuaauac (uaa + uy, + up e + 2uaana)c

a

+H.c. + 0(>), (Ad4a)

_Go G A €Wy 5 o 2 2 A 2 A \a

e "Ye” = —ic + i e (uy + uly + up e + 2ul,ny)é

C

€ W . .

+1i 5 @ = 2 5 u;wl/taa(uic + uﬁa + uiana + 2u§cnc)a
C

+H.c. + 0(e?). (A44b)

From Egs. (A44a)—(A44b), we find that due to nonlinear mix-
ing the quadrature of the qubitlike and cavitylike modes will
transform into linear combinations of both normal quadra-
tures, with coefficients that depend on both the hybridization
coefficients as well as the relative position of the normal-mode
frequencies.

According to Eq. (A34), the bare cavity quadrature cou-
pling to the bath translates as Ve + veY, in terms of the
normal modes. Combining the linear and nonlinear renormal-
izations, we can obtain an effective e-order Lindblad equation
as

ps(t) = —ilHsefrs Ds] + 26 DICerr] ps(t)

+ 266, D[C ) s (1), (A45)

where 2k, . = Syy(wa) the effective qubitlike and cavitylike
single-photon collapse operators read as

A € 0y 2 (.2 2 2 A 2 A
Coei = [vca — g;vcauaa (uaa + ul, + uj,fy + 2Macnc)
a

(ONON 7 2 2 A 2 A \|A
— = Veclaclaa (U5, + s, +us i, + 2u n)a
2 o Vechac aa( ac aa aa’'a ac’'C ’
2w —w?
(A46a)
N € W, )
Coeft = [vcc 3o o Veelly, (uac + uaa + uacnC + Zuaana)

€ Wy 2 2 2 A 2 A\ |a
_ Eaﬁvcauaauac (uaa + uy, + uy A + 2uaana) C.
C a

(A46b)

The effective Lindblad equation (A45) along with the renor-
malized Hamiltonian (A40) and collapse operators (A46a)
and (A46b) are the main result of this Appendix.

APPENDIX B: SECOND-ORDER PERTURBATION
THEORY

In this Appendix, we discuss the generalization of our per-
turbation to second order in weak anharmonicity €. Contrary
to Appendix A, we only provide the generic conditions for fre-
quency and lifetime renormalization. In practice, these higher-
order results can be applied to the specific cases studied in
Appendices A 1 and A2 only by symbolic computer algebra,
due to the large number of terms that grow exponentially with
the order of perturbation.

We start by a unitary transformation of the form

Ao = e CHetC, (B1)

where G is the generator of this transformation and # stands
for the total Hamiltonian. Next, we employ the following for-
mal expansions of the system Hamiltonian and the generator:

He = Hy — eHy + 2He + O(3), (B2a)
G = €6, + €2Ge + O(€?), (B2b)
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where the alternating sign in the system Hamiltonian ex-
pansion (B2a) is chosen to be consistent with the Taylor
expansion of the Josephson potential.

To calculate the generator of this transformation, we first
focus on how the system Hamiltonian transforms. Employing
the BCH formula we can expand the transformed system
Hamiltonian as

A A A

Hs,effZeic,HseJrG = ,}:Ls + [ﬁs’ G] + _[[ﬁs’ G]a G] + -
(B3)
Keeping the BCH formula up to the second order in G and
plugging Egs. (B2a) and (B2b) we obtain
Hoett = Ho — ey + ¥ He + [Ho — €Hy, €6y + €2G6)
+ %[[7:[2 — 67:[4, EG4 + 6266], 664 + 6266]
+0(€?). (B4)
Collecting distinct powers of € in Eq. (B4) results in
Hoott = o + e{=Hy + [T, G4}
+e*{Hs + [Ha. Gl — [Ha, Gal+ 2 ([Ha, Gul. G4l
(B5)

from which we can determine G4 and G6 order by order such
that it simplifies the system Hamiltonian.

Next, we partition both the quartic and the sextic contribu-
tions 7:{,4 and 7:16 into secular and nonsecular parts according
to

7:[2;1 == SZn +-/(/-2,nv

and plug them into the second-order expansion (BS5). As
discussed in Sec. III, G4 is determined such that it cancels
all the nonsecular terms up to the first order as

[H2, G4l — Ny =0,

(B6)

B7)

leaving behind the secular terms S, to renormalize the system
Hamiltonian. We next focus on the second-order contributions
in Eq. (B5). Using the the first-order result (B7), we are able
to simplify the following terms as

—[Ha, Gal + 3[[#a, Gul, Gal = =[S, Gal — 3ING, Gal.
(BY)

To proceed, we need to categorize the remaining contri-
butions in Eq. (B8) into secular and nonsecular. Based on
Egs. (A9a)—(A9c) and the fact that Gy only includes non-
secular terms, we find that [5‘4, G4] only contains nonsecular
contributions, while [M, G4] includes both types. We then use
S(e) and N (e) to denote the secular and nonsecular parts of
an operator-valued expression, respectively. Using Eq. (BS)
and the fact that only the nonsecular terms in Eq. (BS5) can be
removed, we obtain the condition to determine Gy as

[#2, Gol + N — [84, Gal — 3N (IN4, Gul) = 0. (B9a)

Moreover, we find that the Hamiltonian is renormalized due to
secular contributions that originate both directly through the
system Hamiltonian as well as indirectly via the remaining

commutators as
Aot = Ho — €Sy + 62[36 - %S(U\Afm 64])] + 0(€?).
(B9b)

Equations (B9a) and (B9b) are the generic main results for the
second-order perturbation theory. From here on, one needs to
apply the resulting transformation on the system-bath interac-
tion to determine the renormalization of the dissipators.

APPENDIX C: EFFECTIVE MASTER-EQUATION
DERIVATION

Here, we provide a derivation for the EMEs discussed in
Appendix A as well as Sec. IV of the main body of the paper.
The discussion here makes the distinction between the two
possible representations of the EME, namely, Eqgs. (31) and
(C15a), more clear.

Our starting point is the von Neumann equation for the full
density matrix as

p@) = —ilH. p)], (Ch)
where . is the full Hamiltonian given by
H=H+ Hp + He. (C2)

We take the following steps to derive the desired effective
master equation. First, we apply a unitary transformation to
the von Neuman equation (C1). The generator of this transfor-
mation is solved for such that it removes the nonsecular term
from the system Hamiltonian #,. The resulting equation for
the generator has been discussed in Appendix B in Egs. (B7)
and (B9a) up to the first and second order in perturbation,
respectively. Second, to be consistent, we need to apply the re-
sulting unitary transformation on the system-bath interaction.
Third, we move to the resulting interaction picture and obtain
a Redfield equation [24,40], from which a Lindblad master
equation is derived.
We apply the following unitary transformation:
p(t) > e p(t)e”, (€3)
where the new density matrix p’(¢) obeys the transformed von
Neumann equation
p(t) = —ile™“FHe®, po)]. (C4)
The generator G = €6y + O(€?) is determined such that it
eliminates the number nonconserving terms in the system

Hamiltonian, resulting in the condition
[, G4l = Ni, (C5)

up to lowest order in €. Then, the effective von Neumann
equation reads as

p(t) = —ilHserr + Ho + Fp.etr, DO, (C6)

where 7:ls and ’}:lsb are found as
Hoit = Ho — €Sy 4+ O(€2), (C7a)
Hpeit = Hap + €[Hgpr G4l + O(€?). (C7b)
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Next, we move to an interaction picture with respect to
the effective system and bath Hamiltonian ﬁs,eff + 7:lb. Ac-
counting for the new effective system-bath interaction ﬁsb,eff
perturbatively under Born approximation, we arrive at the
Redfield equation [24,40]

Aut) = — / 'ty [ B, [t @): 5o(t") @ po(O)]],
0
(©8)

where interaction picture operators are denoted by a tilde and
are defined as

(’2)([) = ei(ﬂs,etf"!‘ﬂb)f@e—l‘(’}:[sxn._;r’}:lb)l. (9)

The system-bath Hamiltonian in the interaction picture can be
written as

Hsb,eff(t) — ot |:Z o (B + Bl)}eiﬂb[ ® ol(Fla—eSu)
k

x (X, + €[X,, Gal}e TS0 1 0(?). (C10)

For simplicity, we denote the transformed bath quadrature as

)?h(l) = ¢/t |:Z k(B + B}: )j| ¢t

k (C11)

=Y gBremion + Blow),
k

The correction to the system quadrature, i.e., commutator
[X;, G4], can be assembled from the result for G, as provided
in Tables I and III for the cases of a qubit coupled to a flux
bath and a single-mode cavity, respectively.

In the following, we show the route to arrive at two pos-
sible representations of the EME, namely, the number-state
representation of dissipators as in Eq. (31) and the compact
operator represenatation of dissipators as in Eq. (C15a) of
Sec. IV A for case (i).

To arrive at the first representation, we note that the renor-
malized system quadrature (C10) can be expressed in the
number basis, that are also eigenstates of the system evolution
operator exp[—i(ﬁz — e8], as

ei(ﬁz—és‘zu)l {Ys + E[XASv G4]}e—i(7'l2—€$4)t

= 3 I, ne) (na, nel (X + €lXe, +Gal)

na,ns
T, ffic

X |[my, me) (my, me| ei(w"a'nc e )t

= Z C‘eff((,()j)eiiwjt. (C12)
J

In the second line of Eq. (C12), we have considered the
case of a qubit coupled to a single-cavity mode, while the
discussion here is generic for a multimode system. In order
to go from the second to the third line of Eq. (C12), one
needs to calculate the nonzero matrix elements, and hence
obtain the corresponding state-dependent frequency of each
individual process. The system transition frequencies {wy, ».}
are easily accessible due to being diagonal in the number basis
as provided, for example, in Eq. (37). Moreover, the sum in the
last step of Eq. (C12) has, in general, less terms than the sum

from which it originates: first, there may be processes between
distinct states that have the same frequency (as would be the
case, for example, in a harmonic oscillator); second, certain
matrix elements may be vanishing.

Last, by taking the time integral in the Redfield equation
(C8), under Markov approximation, each individual process
appears as an independent relaxation channel as

p(t) = —ilHyer, HOT+ Y 26 (@)DICei(w))1P(1),
J
(C13)

where the relaxation rate x(w) is found in terms of the bath
spectral function as

[e¢]

dt e try[ P (0)Xs (1) X (0)].
(C14)

24e(@) = Syy (@) = /

—00

Equation (C13), together with the definition of C’eff(a)j) in
Eq. (C12), forms the most general form of the EME up to
lowest order in €.

As an example, applying this procedure on case (i) of
Sec. IV A, one would arrive at

Nc
pa(t) = —ilHemr, Pa(] + Y 260 Dlln — 1) (n[19a(t)

n=1

N
+ ZZK%&"’D['” —3) (n”/ba(t)a

(C15a)
n=3
with «, , and k3 ,, defined as
€ 2 €
Kon = [1 +oa+ n)] nSxx<[1 - Zn]a)a), (C15b)

2 3
Kasn = (%) n(n —1)(n — 2)SXX<[1 - ZE(” _ 1)}03).

(Cl15¢)

The above representation of the effective master equation
shows that the interplay of qubit anharmonicity with the flux
bath appears as relaxation rates that nonlinearly depend on the
initial excitation and the weak anharmonicity measure € of the
qubit.

To obtain the alternative representation of the EME, we
take the following steps. First, instead of expanding over the
number basis, we can rewrite the interaction-picture system
quadrature as

ei(?-Alz—eS;)t{X\vs + 6[}25, 64]}6—1‘(7:[2—634)1
_ ei(ﬁz—e&)z)?se—i(ﬁz—e&)z + Eei?:[zt[)?s, G4]e—i7-lzz
+0(€?), (C16)

where in order to keep terms only up to lowest order in e,
the correction to the system quadrature has to transform with
the zeroth-order harmonic Hamiltonian 7:12. This makes the
computation of the third line of Eq. (C16) rather trivial, as
the result for [X;, G,4] (Tables I and III, for example) can be
immediately used by replacing & — 4~ and & — &=/,
Second, we drop the term —634 in the time evolution of the
bare system quadrature X, [second line of Eq. (C16)], which
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amounts to corrections from the Kerr Hamiltonian to the
eigenfrequencies. This will in turn change the argument of the
bath spectral function by order € relative to the normal-mode
frequencies. We assume that the bath spectral function is flat
enough close to frequencies of interest such that one can write

Syy(w; + €wj) = Syy(w;) + €w;Syy (@) + O(e?)

(C17)
~ Syy (w;),

for any relevant system transition frequency corrected by
the nonlinearity, expressed generically as w; + ew;. Under
this approximation, one obtains the EMEs (31) for the qubit
coupled to flux bath, or (40) for the qubit coupled to an open
driven resonator.

APPENDIX D: EQUATIONS OF MOTION FOR PHYSICAL
OBSERVABLES

In this Appendix, we discuss the derivation of equations of
motion for physical observables based on the results for the
lowest-order effective Lindblad equation. The main motiva-
tion for this calculation is to understand how the renormalized
single-photon dissipators become manifest at the level of the
equations of motion for relevant physical observables such as
expectation values of the qubit quadratures.

We begin by finding the equations of motion for the expec-
tation value of an arbitrary operator O from a generic Lindblad
equation

b = —ilH, p] + 2« DIC1p, (D1)

with arbitrary Hamiltonian 7 and collapse operator €. Multi-
plying Eq. (D1) by O and taking the trace we obtain
d 1
dt

A+ 2K<CTOC _

(0) = —i([0 ete, 0}>, (D2)

[\

where the expectation value is defined as

(0) = Tr{p(1)O}.

The terms in the dissipator contribution can be rewritten in a
more symmetric form as

(D3)

CTOC — 1{C1C, 0y = 110, C1+ 4(CT. 01C (D4)
in terms of which Eq. (D2) becomes

d . A A A SR

—(0) = —i([0, H]) + x(C'[0,C1+ [CT, 01C).  (D5)

dt

In the following, we consider the case of a weakly anhar-
monic qubit coupled to a flux bath, discussed in Appendix
A1, as the simplest example. We intend to obtain effective
equations of motion for the quadratures, i.e., (X,) and (¥,)
starting from Eq. (D5). We showed in Eqgs. (A11) and (A18)
that the Hamiltonian and the single-photon dissipator of the
effective Lindblad equation up to lowest order read as

A A € A
Haetr = waHy — gwaHf + O(e?), (D6a)
A € A

Cootr = &+ My, 2} + O(€?). (D6b)

We first focus on the equation of motion for (X,), by setting
O = X, in Eq. (D5). There are multiple contributions. The

Hamiltonian part simplifies to
s A N PO A
Ko Huerl = i0[F =~ S TN ©D)

We then calculate the terms originating from the dissipator in
Eq. (D5) one by one. The first commutator is found as

XA N € s
[Xa, Caert] = [Xa, a] + R X,, {H,, a}]

=1+ %([Xa,ﬁaa] +[X.al,)  (DSa)
=—-1- E(Zﬂa - i{f}as ajp).

Consequently, the first term in the dissipator of Eq. (D5) takes
the form

€l Coenl = =[a + -1, a1
x [1 n 16—6(2Ha — iy, a})]. (D8b)
The second commutator is obtained as
(Clope R = (61 R) + (A, ). £
——1+—([Ha X +a'H, X,0)  (DSc)

-—1- 1—6(2Ha +i{f,, at).

Therefore, the second term in the commutator of Eq. (D5)
reads as

€ A PN
[ a,eff? a]Caeff = _[] + 1_6(2Ha + i{Y,, aT})]

A 6 Y ~
X [a + 1—6{Ha, a}].
Adding Eqgs. (D8b) and (D8d) and keeping the terms up to
lowest order in € we obtain

Cl K, Coerr] + [C] . Rl Coerr

—(??a + E{I:Iav Ya}>

(D8d)

— 16—6[af(21{fa — ilYy, a}) + H, + i{Y,, a")a]. (DY)
We then simplify the terms in the second line of Eq. (D9) as
a'(2H, — i{Y,, a}) + (2H, + iY,, a'})a
= (Xa — i), + HKa + %) + ilF,, a'a)
= {Hy, X} — il Ha] + ilY, Ha] = (A, Xa)-
Plugging the result (D10) into Eq. (D9) we find

(D10)

A A A A A A N € A~ A
Cieff[Xav Ca,eff] + [Cleffv Xa]Ca,eff = _(Xa + g{Hav Xa})-
(D11)

Finally, by inserting the Hamiltonian part (D7) and the dis-
sipator part (Dl 1) into the generic Eq. (DS5) we obtain the
dynamics of (X,) as

%(Xa) + K<[X +
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Following the same procedure, we obtain an equation for ()
as

(D12b)

From the lowest-order results (D12a) and (D12b), we find
that the oscillation frequency is decreased as expected due to
the softening nature of the quartic correction in the Josephson
potential. More importantly, in contrast to the frequency, the
decay rate increases with the same exact slope. Equations
(D12a) and (D12b) explain the noncircular nature of the
phase-space orbits as shown in Fig. 2(b).
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