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We investigate the long-time dynamics of the Sine-Gordon (SG) model under a class of perturbations whose
quantum field theoretic analog — via bosonization — corresponds to the massive Schwinger model describing
1+1D relativistic QED of Dirac fermions. Classical SG solutions offer critical insight into non-perturbative
effects in this quantum theory, but capturing their long-time behavior poses significant numerical challenges.
To address this, we extend a coarse-graining method to spacetime using a dual-mesh construction based on the
Minkowski-metric. We first validate the approach against the well-studied variant of the SG model describing
magnetic fluxon dynamics in Josephson transmission lines (JTLs), where analytical and numerical benchmarks
exist. We then apply the method to the Schwinger-inspired SG model and uncover long-lived bound states —
“Schwinger atoms” — in which a soliton is trapped by a fixed central charge. In certain regimes, the system
exhibits limit cycles that give rise to positronium-like states of oppositely charged solitons, while in others such
formation is suppressed. Accessing such long-time solutions requires a rigorous implementation of outgoing
boundary conditions on a finite computational domain that provide radiative dissipation to allow relaxation
toward states that exist only in an infinite domain. Here we provide such a construction. Our results also suggest
the possibility of analog quantum simulation of relativistic quantum field theories with JTLs. These results
demonstrate the utility of spatio-temporal coarse-graining methodology for probing non-perturbative structure
formation in non-linear field theories.

I. INTRODUCTION

The Sine-Gordon (SG) equation has emerged as a funda-
mental model for investigating the formation and evolution of
coherent electromagnetic structures in long Josephson junc-
tions or an array of short Josephson junctions, commonly
known as Josephson Transmission Lines (JTLs) [1–8]. The
SG model in particular describes the dynamics of supercur-
rent vortices, known as fluxons, which can be accelerated by
bias current up to the Swihart velocity [9] — the characteris-
tic speed at which electromagnetic waves propagate along the
tunneling region. These particle-like nonlinear wave packets,
along with their bound states - formed by soliton-antisoliton
pairs oscillating around a common center of mass (breathers)
- and their interactions - establish a bridge between the realms
of condensed matter physics, quantum information science,
and relativistic field theory [4–8, 10–16]. Beyond their well-
characterized classical relativistic dynamics, it was shown that
individual fluxons can exhibit intrinsically quantum behav-
iors [11], further adding to the rich physics that these soli-
tons have in store. The remarkable stability and robustness of
these particle-like, macroscopic quantum entities have spurred
proposals for their deployment in a variety of advanced tech-
nologies. Proposed applications range from analog quantum
simulation [17] and cryogenic memory [18] to single-shot de-
tectors [19], quantum flux shuttles [20], logic circuits [21],
and amplifiers [22], among many others [23–26].

The purpose of this paper is to (1) highlight a fundamentally
different connection between the SG equation and relativistic
physics, specifically its relation to the relativistic electrody-
namics of electrons and positrons in 1+1 dimensions (1+1D),
(2) propose and implement a numerical methodology that en-
sures stable long-time evolution of its solutions; and (3) armed
with that investigate a particular class of long-lived coherent
structures that manifest as stable, atom-like solutions. We will
then put forward the conjecture that these classical solutions

can serve as fundamental components in the corresponding
second-quantized theory, the Schwinger Model. This perspec-
tive will be presented at the end of the paper, with a more
detailed investigation of the full quantum theory deferred to
future work.

The connection we wish to build on – between the SG
model and the relativistic electrodynamics of electrons and
positrons – is well-known in high-energy physics: the zero-
charge sector of the massive Schwinger Model describing
the quantum electrodynamics of charged fermions in 1+1D
has been shown [27, 28] to be equivalent to the Quantum
SG Model, but with important additional terms. This con-
nection has played a pivotal role in exploring phenomena in
quantum gauge theories that lie beyond the scope of field-
theoretical perturbation methods, such as confinement [29],
chiral symmetry breaking, axial anomaly [30], and fermion
condensation [27]. One of these phenomena of interest here,
the Sauter–Schwinger effect (also called the Schwinger ef-
fect) [31, 32], is a conjecture in Quantum Electrodynamics
(QED) that suggests the possibility of spontaneous creation of
electron-positron pairs out of vacuum when subjected to an
electric field above a certain threshold. This prediction is sig-
nificant and has been intensely investigated [33–38] because
it suggests a non-perturbative phenomenon that indicates the
scale of electromagnetic field strength at which nonlinear ef-
fects in vacuum become evident. This problem has originally
been studied in the context of the massive Schwinger Model
[39]. Here, we are specifically interested in the long-time evo-
lution that follows spontaneous electron-positron (e-p) cre-
ation and relaxation towards coherent, stable structures in the
long-time limit of this model.

A second point we wish to make in this paper is the pos-
sibility to analyze non-perturbative quantum electrodynam-
ics with an analog simulator based on JTLs. The condi-
tions under which such analog simulation will be interest-
ing and relevant to phenomenology of relativistic QED are
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subtle, and we leave a full analysis to a future paper. In
this manuscript, we focus on the Schwinger process viewed
from the lens of a semiclassical analysis of the bosonized
Schwinger model, and how that semiclassical model, under
conditions investigated here can be realized in JTL. We are
particularly interested in the formation and the electromag-
netic stability of particle-like wavepackets as well as their
interactions and backreaction in the presence of an “exter-
nal” electric field created by an immobile and structureless
charged particle at the origin (representing a proton). In the
bosonized Schwinger model, the Dirac field is thought to cor-
respond to soliton solutions of the associated sine-Gordon
(SG) model [27, 28]. This correspondence has been firmly
established only in the context of a closely related quantum
field theory — the Thirring model [40], which crucially does
not have the mass term generated by the gauge field. In this
work, we explore time-dependent solutions of the exact form
of the bosonized Schwinger model and in the presence of an
external source, and discuss how this model can be created
using a judiciously applied bias current distribution in a JTL.

On the numerical modeling front, to fully exploit the full
‘design space’ (since we are talking about a 1+1D model, we
have the freedom to study this model for different parameter
regimes) and not to be restricted only to dynamics that are
within or near analytically tractable evolutions, an efficient
and reliable numerical method is needed. In particular, nu-
merical stability over very long time periods is crucial for the
precise study of the formation and stabilization of coherent
electromagnetic structures. As we shall see, the issue is ex-
acerbated when there are multiple perturbations to the system
that disturb the balance between the nonlinearity and the dis-
persion, and when the dynamics to be simulated are far from
the stable solitary wave state. Overcoming these modeling
challenges can allow the detailed and reliable analysis of a
wide class of strongly perturbed SG models that describe far-
from-equilibrium soliton dynamics.

Radiative dissipation is another critical ingredient in mod-
eling relaxation toward stable structures. Accurately captur-
ing this radiative relaxation places significant demands on the
size of the computational domain. An alternative technique
to go around this difficulty is an open quantum system ap-
proach, where the infinite domain is divided into a system
and a bath, with stringent assumptions on the bath subsystem
and its coupling to the system. Here we take an alternative,
third route, introducing a space-time approach to implement
outgoing boundary conditions at the surface of an appropri-
ately chosen finite computational domain. A variant of this
approach has recently been shown to be compatible with the
corresponding second quantized theory in the case of scalar
non-relativistic electrodynamics [41, 42].

II. SUMMARY OF RESULTS

To guide the reader through the paper, this section presents
a summary of the results.

We study the long-time evolution and structure formation in
SG models. To do so, we first present our numerical method

that builds upon DEC-QED - a coarse-graining approach that
was recently developed for charged quantum fluids in multi-
scale heterogeneous environments [43, 44]. By incorporat-
ing the Minkowski metric into the formulation of the non-
linear wave equation, the spatial and temporal dimensions
can be consistently discretized together. Combining with the
structure-preserving framework of DEC-QED, this allows for
an enhanced stability for long-time simulations that is also
resource-efficient.

With the numerical technique in place, we first validate our
method by reproducing both the transient and the long-time
dynamics of fluxons and breathers in Josephson transmission
lines subject to various types of perturbation that are typically
met in realistic junctions. These include the effects of resis-
tive loss, external bias current, microshorts, and the dynamics
of vortex-antivortex collisions. These numerical calculations
serves a number of purposes: (1) first, they verify the results
expected from previous asymptotic and perturbative analysis
but have not been clearly demonstrated by direct long-time
simulations. (2) Secondly, these calculations validate the ac-
curacy of our proposed method and serve as benchmark ex-
amples to illustrate the advantages of our approach compared
to existing methods for time-evolution of nonlinear dynamics.
(3) Thirdly, the behavior of single fluxons or fluxon-antifluxon
interaction are useful prototypical dynamics for our study of
solitary waves in the massive Schwinger model.

To showcase the versatility of the proposed numerical tool
in practical modeling of Josephson junctions, we also examine
fluxon dynamics in a junction featuring narrow constrictions.
In this setting, we observe signatures of Cherenkov radiation
— a phenomenon previously thought to occur in long Joseph-
son junctions only when multiple junctions are coupled to-
gether [45]. We also study dynamical creation of fluxons and
breathers in a junction using external electromagnetic pulses.
The efficiency is illustrated through the finding of pulse pa-
rameters that would set off the desired soliton dynamics.

To demonstrate the effectiveness of the proposed method
for capturing multi-scale dynamics, we simulate the dynam-
ical screening of a charged capacitor caused by the backre-
action of e-p pairs generated via the Schwinger process [32]
from vacuum. By comparing our numerical simulations with
the analytical results in Ref. [34] for the massless case, we
observe that the full evolution of charge and current distri-
butions — including rapid oscillations, intermediate-time in-
terference, and long-time asymptotic decay — is accurately
reproduced. Furthermore, because the method is grounded in
the rigorous framework of discrete differential forms [46], ap-
plying DEC-QED to the full spacetime grid enables precise
enforcement of conservation laws, thereby improving numer-
ical stability. In particular, the local charge-current continuity
condition is exactly captured through its corresponding ge-
ometric identity, achieving machine-precision accuracy. To-
tal energy is approximately conserved over long simulations,
with numerical artifacts such as artificial micro-oscillations
significantly reduced with respect to other numerical integra-
tion techniques we compare to.

We next turn to the dynamics in the bosonized Schwinger
model, which is the central focus of this paper. Specifically,
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we investigate the behavior of a unit-charged soliton subject
to the influence of a fixed external charge that neutralizes it.
Building on semiclassical analysis of the bosonized model, we
numerically demonstrate the formation of a one-dimensional
analog of the Hydrogen atom in the asymptotic long time
limit. We henceforth refer to this structure as the “Schwinger
atom”. The full evolution — from initially separated compo-
nents to a stable bound state — is captured. We also investi-
gate the dynamics of oppositely charged soliton pairs, show-
ing their potential to form a bound state we call “Schwinger
positronium”. Depending on the parameter regime, the soliton
pair either evolves into a stable, breather-like 1D positronium
or scatters apart. In both the hydrogen-like and positronium-
like cases, the bosonized massive Schwinger model appears
to exhibit limit cycle behavior over a broad parameter range,
driving the system toward stable atomic configurations in the
long-time limit by radiating energy. Our results show that
this process is stabilized by the dynamical mass and radia-
tive boundary conditions, indicating that the dynamical mass
term is a relevant perturbation shaping the nature of the so-
lutions. These solutions are not only intrinsically interesting,
but the computational framework and analysis developed here
provide a foundation for broader investigations into structure
formation in non-perturbative QED.

The rest of the paper is organized as follows: In Section III
we review the background on the SG model in Josephson
transmission lines and the massive Schwinger process. In Sec-
tion IV we discuss the discretization of the nonlinear wave
equation in the spacetime plane using DEC-QED. In Sec-
tion V A we present the results for fluxons and breathers in
JJs without perturbations, as well as compare the accuracy
of our numerical method with the Euler’s method. In Sec-
tion V B we discuss the dynamics of these solitons in junc-
tions that contains resistive loss, bias currents, microshorts,
and vortex-antivortex annihilation. In Section VI A we present
the detailed backreaction dynamics arising from the massless
Schwinger process during the discharging of a capacitor and
compare our results with the Euler’s method and the Crank-
Nicholson method. We then focus on the massive Schwinger
model in Section VI B, specifically delving into the dynamics
of the Schwinger atom and Schwinger positronium. The tech-
nical details on how to derive the SG model for long Joseph-
son junctions from the electrodydrodynamical description of
the superconducting condensate is shown in Appendix A. De-
tails on how to implement boundary conditions in our method
are presented in Appendix C, while in Appendix D we com-
pare the runtime of this method with the Euler approach. More
results on solitons in JJs are also discussed in Appendix E
for the effect of boundary currents and magentic fields, Ap-
pendix F for the dynamics of solitons in narrow constrictions,
and Appendix G for the dynamical creations of solitons in
junctions. In Appendix H we provide results on the capaci-
tor discharge problem in the massive model.
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Figure 1. (a) 3D Schematic of a long junction in which the general-
ized flux variable φ(x, t) varies along the length of the junction. (b)
A view at an xz-slice of the junction. λL is the London penetration
depth and λJ is the Josephson penetration depth. (c) φ(x), ∂xφ and
∂tφ of a 2π−kink solution of the pure SG equation.

III. BACKGROUND

A. The Sine-Gordon Equation for Fluxons

A typical (short) Josephson junction is one whose lateral
dimensions are much shorter than the Josephson penetration
depth (L ≪ λJ in Fig. 1) [47]. For a junction made of an
insulator with thickness a sandwiched between two supercon-
ducting electrodes having London penetration depth λL, λJ is
given by λJ ≈

√
Φ0/[2πµ0jc (a+ 2λL)] [48], where Φ0 is

the flux quantum, and jc is the critical current density. For
junctions typically used in superconducting microwave cir-
cuits, λJ is in the order of a few µm, while λL ≈ few nm.
The dynamics of Josephson junctions in an electromagnetic
environment are encoded in the gauge-invariant, generalized
flux variable φ given by

φ = − 2π

Φ0

∫ 2

1

dℓ ·A, (1)

where the line integral is carried out from one superconduct-
ing island to the other, while A = A− ℏ

q∇θ, with A being
the magnetic vector potential and θ is the phase variable in the
Madelung representation of the superconducting order param-
eter ψ (ψ = ρeiθ) [49]. If one of the two lateral dimensions of
the junction is sufficiently long so that the externally applied
magnetic field only penetrates into a thin layer at the bound-
ary of the junction (L ≫ λJ ), the generalized flux variable
φ = φ(x, t) will vary along this long junction (see Fig. 1) and
its dynamics are described by the perturbed SG equation [1, 3]

∂2t φ− ∂2xφ+ α∂tφ+ sinφ = −β. (2)

In Eq. 2 above, x labels the coordinate (in units of Josephson
penetration depth λJ ) along the long dimension of the junc-
tion, and t is the time variable normalized by the inverse of
the Josephson plasma frequency ωp/2π = c

√
µ0jc/Φ0. In

Eq. 2, the perturbations to the original SG equation are char-
acterized by the dissipative term α quantifying the resistive
loss in the junction, and the term β describing the amplitude
of an external bias current injected into the junction which can
be spatiotemporally varying.

It is well known that supercurrent vortices can be created
and stabilized within the nonlinear medium centered around
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the nanometer-thick insulating region that separates the two
superconducting islands of a Josephson junction. These vor-
tices - also called fluxons - are circulating supercurrents that
carry a 2π− jump (a “kink”) in the value of φ(x) (see
Fig. 1(b)).

If there are no perturbations (α = β = 0), a fluxon cor-
responds to the analytical solution of Eq. 2 that describes a
single soliton [1]. In general, the unperturbed SG equation
permits solutions containing an arbitrary number of fluxons,
antifluxons (i.e. antivortices), as well as radiation. While an-
alytical solutions exist for the pure SG case [1] and for SG
model with small perturbations [50, 51] (we discuss some an-
alytically known solutions in Section V), the precise dynamics
of solitons in the presence of significant losses and external
biases can only be studied numerically.

B. The Sine-Gordon Equation for the Bosonized Schwinger
Model

The Schwinger model [52] is a 1+1D model of relativistic
quantum electrodynamics of Dirac fermions coupled to the
electromagnetic field. The Lagrangian is given by

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν , (3)

where ψ is the fermion spinor field, m is the mass of the
fermion, Dµ = ∂µ − ieAµ is the gauge covariant deriva-
tive, and Fµν = ∂µAν − ∂νAµ is the electromagnetic field
strength tensor, which in 1+1D has only one independent
component, Fµν = ϵµνF 01 (where ϵµν is the 1+1D Levi-
Civita tensor, so that ϵ01 = 1), identified as the electric field
F 01 = −F 10 = E(x, t). The Schwinger model can be equiv-
alently rewritten as a theory of bosons where components of
the Dirac field ψ are mapped to exponentials of the corre-
sponding boson fields, i.e. the vertex operators in the bosonic
theory [27, 28, 53]. In particular, the bosonized equivalence
of the Schwinger model is described by the following La-
grangian

L =
1

2
∂µφ∂

µφ+
κ

2
cos
(
2
√
πφ
)
+
g

2
φϵµνFµν −

1

4
FµνF

µν

(4)
where φ(x, t) is a Hermitian scalar field satisfying bosonic
commutation relations, g = e√

π
, and κ = m

πϵ where ϵ is a UV
cutoff scale in energy. The term proportional to κ originates
from the fermionic mass term in Eq. (3), while the term pro-
portional to g — as will become clear once the gauge field is
integrated out (see Eq. (7)) — leads to a dynamically gener-
ated mass for the scalar field φ. Intuitively, this can be traced
back to earlier analyses [27, 54, 55] of the exactly solvable
massless fermion case, which revealed that the fundamental
excitations are not isolated charged particles but rather neu-
tral, dipole-like mesonic states. These mesons acquire mass
through their hybridization with the gauge field. A concise
summary of the relevant bosonization framework is provided
in Appendix B.

The Euler-Lagrange equations for Eq. (4) yield

(∂2t − ∂2x)φ− g

2
ϵµνF

µν +
√
πκ sin

(
2
√
πφ
)
= 0, (5)

∂µF
µν = gϵµν∂µφ = jνϕ (6)

where jνϕ represents the conserved current in the bosonic pic-
ture. From this, Eq. 6 can be integrated to show that E = gφ
and plugged into Eq. 5 to get a single equation of motion for
the system:

(∂2t − ∂2x)φ+ g2ϕ+
√
πκ sin

(
2
√
πφ
)
= 0 (7)

where we can now explicitly see the role of g as a mass-gap
term for the scalar field.

From Eq. 6, one can see that the conserved total charge is
given by the difference in the values of φ at the boundaries of
the system.

Q = −g
∫ L

−L
dx ∂xϕ = −g

[
ϕ(L)− ϕ(−L)

]
(8)

Therefore, the boundary conditions on φ restrict us to a subset
of the state space in which the total fermion number (fermions
minus antifermions) is fixed. The system evolves in time by
creating and annihilating electron-positron pairs. An external
electric field applied to a system in the vacuum state creates
electron-positron pairs through the Schwinger process [56],
and the electric fields between the pairs will have a backre-
action effect on the original external field [34]. In Sections
VI A, VI B 1, we consider situations where the electric field is
created by a central point source [57].

In the limit where κ→ 0 (massless fermions), the equation
of motion is linear and can be solved exactly. The assignment
of the variable nameφ to both the generalized flux in a Joseph-
son junction and to the bosonic field in the Schwinger model
is an intentional choice here. By comparing Eq. 2 to Eq. 5, one
can see that there are similarities: both are wave equations that
have a non-linear sinusoidal term. In this manuscript, when-
ever the variable φ is discussed, the context will make it clear
whether the Josephson flux or the Schwinger bosonic field is
being referred to.

Key insight into the non-perturbative aspects of quantum
field theories of the type in Eq. (4) can be gained through a
semiclassical approach [58, 59] which involves analyzing so-
lutions of the corresponding classical field theory. In the re-
mainder of this paper, we carry out such an analysis in detail.

In addition to having the same pure SG terms, Eqs. 2 and
5 differ in the additional perturbing terms, which greatly af-
fect how the systems evolve over time and their steady states.
Nevertheless, as we will see, the solutions of Eq. (5) still fea-
ture solitary waves. In the bosonized picture of the Schwinger
model, the corresponding kink solution in φ represents a tran-
sition between two discrete vacua, which we will constrain to
be equal to a single electron charge in the case of the central
charge problem we analyze in Section VI B 1. Therefore, a
SG soliton here will be a finite-size field packet that carries
exactly one unit of charge [40].
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Figure 2. (a) A schematic of the 1+1D spacetime grid used for the
DEC algorithm. The vertices and edges on the primal mesh are col-
ored orange, while the dual vertices and dual edges are in green. An
example cell v† that is the dual of a primal vertex v is also shaded
in green. The primal edges connected to v are bolded in red. (b)
A closed-up view of an internal primal vertex v(i, j) along with its
single dual face v†, the neighboring vertices, and the primal edges
associated with this vertex. Dual faces of neighboring vertices are
not shown here. (c) A closed-up view of a boundary vertex v(i, j)
with the boundary primal edges associated with it.

Based on their solitary wave solutions, we can also establish
a correspondence between a macroscopic Josephson vortex
(antivortex) and an electron (positron) as in Table I: in addi-
tion to the mapping of the single-kink solution to a flux quan-
tum carried by the Josephson vortex and to an electron charge
in the Schwinger model that we have already discussed, the
spatial derivative ∂xφ maps to the magnetic field Hy(x) that
pierces the junction and corresponds to the charge density ρ
in the Schwinger model. The temporal derivative ∂tφ, on the
other hand, represents the voltage V in the long JJ, whereas in
the Schwinger model it is proportional to the current density
J .

Josephson vortex Schwinger electron
φ+∞ − φ−∞ flux quantum Φ0 charge e

∂xφ magnetic field Hy charge density ρ
∂tφ voltage V current density J

Table I. Mappings from the kink solution φ for SG equation and its
derivatives to the quantities that they are proportional to. φ−∞ and
φ+∞ are the asymptotic values of φ at x=±∞.

IV. DISCRETIZATION OF 1+1D FIELD THEORY WITH
DEC-QED

In this section, we discuss a discretization procedure for
the 1+1D field equations to enable their symplectic integra-
tion. Although in this section we will focus on the derivation
of the coarse-grained version of the perturbed sine-Gordon
equation in space-time, the process for coarse-graining other

nonlinear field equations follows a similar procedure (see e.g.
Ref. [43]). We consider a primal rectangular grid M that
discretizes the space-time computational domain, in which
∆x and ∆t are spacings between the neighboring grid points
along x and t, respectively. We label the vertices, edges, and
elemental faces of this mesh as v, e and f , respectively. Addi-
tionally, consider a dual mesh whose vertices are the circum-
centers of the rectangular cells f of the primal grid. Each edge
of this dual mesh is constructed by connecting the two dual
nodes corresponding to two neighboring primal faces (faces
that share a primal edge). The dual faces, edges, and nodes
are labeled v†, e†, and f†, respectively. Fig. 2a presents a
schematic of the spacetime grid, where the primal mesh is
colored orange and the dual mesh is in green.

By introducing the 1+1D Minkowski metric tensor gµν [60,
61], Eq. 2 can be conveniently rewritten as

gµν∂µ∂νφ+ α∂tφ+ sinφ = −β, (9)

where t is now treated on equal footing with the spatial coordi-
nate x. We now introduce the coarse-grained variables ϕx(ex)
and ϕt(et) living on the edges ex and et along x and t axes,
respectively

ϕx(ex) =

∫
∆x

∇xφdx, (10)

ϕt(et) =

∫
∆t

∇tφdt. (11)

Integrating Eq. 9 over a dual face v† surrounding a primal
node v (see Fig. 2(b)) and applying Gauss’s law gives

0 =

∫
v†
(gµν∂µ∂νφ+ α∂tφ+ sinφ+ β)dA (12)

=

∫
∂v†
n̂µ ·(∇φ)µ ds+ (α∂tφ+sinφ+β)∆A

=

−∑
∂tv†

∆t

∆x
ϕx+

∑
∂xv†

∆x

∆t
ϕt

+(α∂tφ+sinφ+β)∆A.

On the last line of Eq. 12 above, the summations are done over
all four boundary edges of the dual face v†, where ∂tv† de-
notes the two boundary edges along t and ∂xv† denotes the
two boundary edges along x. By dividing both sides of Eq. 12
by ∆A, we obtain the discrete version of the perturbed SG
equation

−
∑
∂tv†

ϕx
∆x2

+
∑
∂xv†

ϕt
∆t2

+ α
ϕ̄t
∆t

+ sinφ+ β = 0, (13)

where ϕ̄t is the average of the field values on the two ϕt edges
connected to v. Given initial conditions on either ϕt and φ
everywhere in space or ϕt and ϕx everywhere combined with
the value for ϕ at the boundary, Eq. 13 can be used to propa-
gate the system in time to study the evolution of ϕt, ϕx. The
procedure is as follows: by labeling each primal vertex using
their discrete spatial and temporal indices i and j and each
primal edge by the two vertices connected to it, Eq. 13 when
applied to a vertex v(i, j) can be rewritten as
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ϕt[(i, j), (i, j+1)] =

∆t2

1 + α∆t/2

{
ϕx[(i, j), (i+1, j)]− ϕx[(i−1, j), (i, j)]

∆x2
+

(
1

∆t2
− α

2∆t

)
ϕt[(i, j−1), (i, j)]− sinφ(i, j)− β

}
. (14)

From Eq.14 one can see that at each (j + 1)th time step the
field living on each internal edge ϕt[(i, j), (i, j+1)] can be
computed given the knowledge of the edge fields ϕx, ϕt and
the scalar field φ at the previous time step. The value of ϕt
at the boundary edges are determined by boundary conditions
(BCs). Depending on the type of BCs, they can be imposed ei-
ther on the boundary edges or the boundary vertices (Fig. 2c).
Details on how to impose boundary conditions (both closed
and outgoing BCs) are discussed in Appendix C. Once ϕt at
the (j + 1)th time step is determined everywhere in space, φ
can be updated by applying Eq. 11 and then ϕx can be found
by applying Eq. 10. On a discrete grid, these equations trans-
late exactly to the following update rules

φ(i, j+1) = ϕt[(i, j), (i, j+1)]+φ(i, j), (15)
ϕx[(i, j+1),(i+1, j+1)] = φ(i+1, j+1)−φ(i, j+1). (16)

Eqs. 14, 15, and 16, along with initial and boundary conditions
allow us to determine the fields ϕt, ϕx, and φ everywhere on
the spacetime grid. Note that Eq. 13 is effectively a first-order
equation in terms of the edge fields ϕx and ϕt, making numer-
ical simulations more time-efficient than directly simulating
the second-order SG equation in Eq. 2. In the next sections,
we demonstrate the stability and effectiveness of this scheme
for studying the long-time nonlinear dynamics of the SG equa-
tion under various perturbations.

V. DYNAMICS OF SOLITONS IN PERTURBED LONG
JOSEPHSON JUNCTIONS

A. The bare sine-Gordon equation

1. Single fluxon dynamics

We first apply the numerical scheme developed above to
compute the dynamics of a single fluxon in an ideal long
JJ, a case that has been well studied using other numerical
techniques [8, 62]. Here, the dynamics of the generalized
flux variable φ are governed by the unperturbed SG equation
(α = β = 0). The boundary conditions [3] are given by

∂xφ(0, t) = η + ξ (17)
∂xφ(L, t) = η − ξ (18)

where η is the normalized value of the y component of exter-
nal magentic field, and ξ is the normalized value of the exter-
nal current injected into the sides of the junction. In an ideal
and infinitely long junction, the analytical soliton solution de-

scribing a single fluxon is given by [1]

φ(x, t) = 4 tan−1

[
exp

(
x− x0 − ut√

1− u2

)]
+ 2πn, (19)

where n is an integer, x0 is the location of the fluxon at
t = 0, and u is its velocity that is bounded by the Swihart
velocity [9]. In Eq. 19, the Swihart velocity is normalized,
0 ≤ u ≤ 1. The solution in Eq. 19 corresponds to a 2π−kink
in φ that travels at constant speed u and is the 1+1D descrip-
tion of a single (2+1D) vortex trapped between the supercon-
ducting islands of the junction. One can show that the 1+1D
dynamics of φ that is given by the sine-Gordon equation can
be derived from the full 2+1D electro-hydrodynamical equa-
tions that couple the superconducting order parameter and the
EM field. For completeness, in Appendix A we present a rig-
orous derivation of this reduction.

Using the expression in Eq. 19 at t = 0 as the initial con-
dition, we perform long-time simulations of a single fluxon in
a long JJ. Figs. 3a, 3b, and 3c show the plots for φ, ϕt, and
ϕx respectively when there is no external bias on the bound-
ary (η = ξ = 0), implemented by a Neumann-type boundary
condition for φ at x = 0, L. This translates to Dirichlet con-
ditions on the edge field ϕx. The length of the junction is
L=100, with a total time Tm=50000, and the initial condi-
tion is given by Eq. 19 in which u=0.55, x0 =0, and n=0.
The Lorentz factor, which determines the size of the soliton,
is therefore 1/

√
1− u2 ≈ 1.2. The spacings in the space-time

grid are kept at ∆x = 0.05, and ∆t = 0.04 in order to re-
solve the kink. With no external bias on the boundary, the
fluxon simply collides with the junction boundary, is reflected
back, and becomes an anti-fluxon that travels in the opposite
direction with the same velocity. Without external force or
perturbations, this process repeats indefinitely - as shown in
Figs. 3a-3c. Within the simulated time (Tm = 50000) the
fluxon collides with the two boundaries a total of 278 times,
while still maintaining its original shape and speed. By the
end of the simulation, the soliton has traveled a distance that
is 11583 times its size, providing an early hint for the stability
of the numerical scheme even in the long-time regime. To also
study the effect of boundary currents and magnetic fields, in
Appendix E we present simulations for the long-time dynam-
ics with nonzero η and ξ.

For a more quantitative insight into the stability of DEC-
based integration, we now provide a comparative analysis to
the Euler method. Although the Euler method is generally
first-order accurate for linear wave equations and can be un-
stable at long times due to dispersion [63–65], the soliton
solutions to the unperturbed sine-Gordon equation are the
steady-state solutions in which the nonlinear term perfectly
balances out the dispersion. Therefore, the Euler method can
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Figure 3. Long-time dynamics of a single fluxon trapped inside a Josephson junction. The junction length is L = 100, the total time of the
dynamics is Tm = 50000, and the initial velocity of the fluxon is u = 0.55, with no external bias on the boundary (η = ξ = 0). (a), (b) and
(c) show the value of φ, ϕt, and ϕt respectively.
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Figure 4. Comparisons on the final positions of the fluxon in the junc-
tion at the last time step (t = Tm = 50000) obtained with different
discretization steps ∆x and ∆t. (a) shows the results from using Eu-
ler method, and (b) shows the results from DEC-QED. In all the plots
from both figures, ∆t = 0.8∆x, u = 0.55, and L = 100.

be used here to compare with our method. In Figs. 4a and 4b
we compare the final positions of the fluxon in the JJ at the
last time step Tm = 50000 computed using the two methods
with various discretization steps ∆x and ∆t. With sufficiently
small steps (∆x = 0.025), the Euler method and DEC con-
verge to the the same location for the fluxon at t = Tm that we
use as the benchmark (the blue curves in Fig. 4a and Fig. 4b)
for more more coarse discretizations. As we increase ∆x (and
∆t accordingly by setting ∆t=0.8∆x), the final location of
the fluxon gradually drifts away from the benchmark, but solu-
tions produced by DEC are noticeably closer to the benchmark
than those obtained from the Euler method with the same di-
cretization. Overall, as ∆x increases, Euler’s method diverges
from the accurate solution faster than DEC does. In Fig.4 the
discrepancies are most significant with ∆x = 0.4, when the
soliton in both methods falls behind in the number of colli-
sions with the boundary; the soliton in the Euler method only
completes nc = 268 collisions, 10 less than 278. The soliton
in DEC, on the other hand, has nc = 276, only two collisions
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Figure 5. (a) Simulated dynamics of the field ϕx(x, t) that corre-
sponds to a vortex-antivortex pair in a long Josephson junction. The
initial distance between the pair is d = 66, with each soliton having
an initial speed of u = 0.55 and set to travel towards each other. (b)
The field ϕx(x, t) that corresponds to a breather traveling inside a
long JJ also with speed u = 0.55.

shy of the correct number.
We also recorded the run times of our spacetime DEC-QED

method as well as the Euler method in these simulations and
found that although the two methods scale at the same rate,
DEC-QED is always faster because it deals directly with the
first-order equation for the edge fields rather than a second
order equation for φ as in the Euler method. The quantitative
comparison is presented in Appendix D.

2. Fluxon-antifluxon dynamics

In general, the unperturbed sine-Gordon equation admits
solutions that contain an arbitrary number of fluxons, anti-
fluxons, and non-soliton radiation. A case that is typically
investigated is the vortex-antivortex solution whose analytical
form is known [1]

φvav(x, t) = −4 tan−1

(
sinh

[
(ut− d/2)/

√
1− u2

]
u cosh

[
(x− x0)/

√
1− u2

]) ,
(20)

where x0 is the initial position of the center of mass of the
fluxon-antifluxon pair, u is the velocity of the fluxon in the
center-of-mass frame of reference, and d sets the initial dis-
tance between the fluxon and the antifluxon. As the name
suggests, the fluxon-antifluxon solution in Eq. 20 describes
the generalized flux variable φ(x, t) in a long JJ containing a
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vortex-antivortex pair. Using Eq. 20 as the initial condition,
the dynamics of a vortex-antivortex pair in an unperturbed
junction is simulated using our method and shown in Fig. 5.
Without any loss mechanism or perturbations and with suffi-
cient kinetic energy, the two-soliton initial condition is sus-
tained by the system and the two solitons pass through each
other without losing speed. In this case, shown in Fig. 5, the
fluxon and antifluxon are not bound together; after colliding
with each other, each continues to travel with the same speed
towards the opposite boundaries before being reflected back.

3. Breathers

In certain cases, it is more energetically favorable for a pair
to be bound together rather than being two separate solitons.
These are called breathers, and their solutions in the rest frame
of the center of mass are given by

φB(x, t) = 4 tan−1

(
tan ν sin [(cos ν)(t− t0)]

cosh [(sin ν)(x− x0)]

)
. (21)

Eq. 21 describes a fluxon and an antifluxon oscillating around
the pair’s center of mass with a frequency given by cos ν.
If the breather is moving inside the junction at velocity u, a
Lorentz transformation x → (x − ut)/

√
1− u2, t → (t −

ux)/
√
1− u2 will boost the solution in Eq. 21 to one that

describes a traveling breather. A numerical calculation of a
breather bouncing between the two boundaries of a junction
is shown in Fig. 5.

B. Vortices under perturbations

So far, we have presented numerical results for the pure
sine-Gordon equation where the form of some families of
solutions are analytically known to verify the accuracy and
stability of DEC-QED based integration. We now apply the
method to study the sine-Gordon model with perturbations.

1. Solitons under resistive loss and external bias

Consider the perturbed sine-Gordon model given in Eq. 2
with finite resistive loss α and bias current β. Although ana-
lytical solutions for Eq. 2 do not exist, numerical simulations
provide a clear understanding of how these perturbations af-
fect the SG solitons. We shall see that soliton solutions appear
to be stable to perturbations of the class studied here, at least
when such perturbations are small.

In Figs. 6a-b, we plot the dynamics of a fluxon that has
initial velocity u = 0.55 and travels in a lossy junction with
α = 0.003 and without a bias current (β = 0). The fluxon
slows down over time due to friction, as evidently seen from
the change in the slope of the trace that the soliton makes in
space-time. The fading intensity of the trace in Fig. 6a, where
we plot ϕt, also signifies the slowing down of the soliton. This
is more apparent in Figs. 6c-d, where the dissipation rate is
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Figure 6. Dynamics of a SG soliton under dissipation and external
bias current. The total simulated time is Tm = 1000, the initial
velocity of the fluxon is u = 0.55, and the junction length is L =
100 with boundary coefficients η = 0.002 and ξ = 0.006. In parts
(a)-(f), the initial soliton is a fluxon. The coefficients for the resistive
loss and bias current (a) and (b) are [α = 0.003, β = 0], (c) and
(d) are [α = 0.03, β = 0], and in (e) and (f) are [α = 0.003,
β = 0.001]. The initial soliton in parts (g) and (h) is a breather
traveling in a medium with coefficients [α = 0.003, β = 0].

stronger with α = 0.03, forcing the soliton to quickly come
to a stop without ever reaching the junction boundary. In
Figs. 6e-f the dissipation rate is set to α=0.003 as in Figs. 6a-
b, but now we also include a bias current by setting β=0.001.
This bias current exerts a Lorentz force on the soliton and
pulls it towards the −x direction if the soliton is a vortex and
towards the +x direction if it is an antivortex. We can see
this force in action in Figs. 6e-f; the vortex is initially set to
travel towards the +x direction until it hits the boundary and
becomes an antivortex that travels in the −x direction. The
antivortex slows down due to both the friction coming from
the α term and the Lorentz force pulling it in the +x direction
and comes to a complete stop. It then accelerates in the op-
posite direction (+x) due to the Lorentz force until it hits the
boundary and turns into a vortex again.

Note that when traveling in a lossy medium and experi-
encing a bias current, the fluxon remains a soliton the whole
time while changing its velocity. Depending on the veloc-
ity of the soliton, its shape varies according to the Lorentz
contraction rule but it never losses its structural integrity (as
shown in Figs. 6b, 6d, and 6f). This is, however, not the case
for breathers, as seen in Figs. 6g-h, where the dynamics of a
breather in a lossy medium is plotted. Unlike (anti)fluxons,
breathers spread out and decrease in amplitude over time
when dissipation is present. This is because a breather con-
tains a fluxon-antifluxon pair oscillating around the center of
mass, causing it to lose amplitude as it dissipates energy into
the lossy medium.

2. Vortex-antivortex annihilation

As we saw in Section V A, without any perturbation in a
pure JJ, a fluxon-antifluxon pair can either exist as two sepa-
rate solitons or as a bound breather that oscillates indefinitely.
In the presence of dissipation (for example, through a finite
loss term α), the system loses energy and a vortex and antivor-
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Figure 7. Vortex-antivortex dynamics in a lossy Josephson junction.
The total simulated time is Tm = 1500, the junction length is L =
100, and the resistive loss coefficient is α = 0.003. In (a) and (b),
the initial speeds of the two solitons are both u = 0.4. In (c) and (d)
their initial speeds are u = 0.55.

tex can annihilate each other by binding together, forming a
breather, and then the oscillations of the breather dissipating
its energy to the lossy medium.

The dynamics shown in Figs. 7a-b is an example of such
a scenario; here, the initial speeds of the two solitons are
u = 0.4, large enough so that they pass through each other
at first. Then, they each reflect off their respective boundaries,
and in the second time around they meet each other, the re-
sistive medium has slowed down the solitons sufficiently such
that they are bound together. The kinetic energy of each of
them is no longer large enough to escape the other’s attrac-
tion, and they oscillate together as a breather, losing energy in
the process.

Total annihilation of a pair does not always happen, how-
ever, as the pair has to eventually form a breather for this to
happen. In Figs 7c-d, we present a different scenario. The ini-
tial speed of the pair is u = 0.55, slightly higher than in the
previous case, while all other parameters are kept the same.
We see that upon their second collision with each other, the
solitons now still have enough kinetic energy to escape from
each other. They are eventually slowed down to a complete
stop at a finite distance away from each other and become two
stationary solitons. Here we do not see a destruction of the
pair because it is never bound into a breather.

3. Interaction between a vortex and a microshort

Mircoshorts are micro-scale (or sometimes nano-scale)
short-circuits that can appear in long Josephson junctions.
These short circuits happen when the insulating region be-
comes too narrow at some locations in the junction, causing
current density to approach infinity there. They can either
be unwanted defects that occur due to fabrication imperfec-
tions or intentional design decisions [66]. Therefore, precise
modeling of vortex interactions near microshorts is important.
The modified sine-Gordon equation that takes into account the
presence of microshorts is given by

x0 xs x0
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Figure 8. (a) Schematic of a fluxon initially located at x0 and is
moving towards a microshort at location xs. (b) The dynamics of
a fluxon repelled by the microshort, whose location is indicated by
the horizontal dashed line. The initial speed of the fluxon is ui =
0.3. The inset shows the fluxon at the equilibrium point xe where
the repulsion from the short is balanced by the Lorentz force. (c)
Dynamics of a fluxon that has enough kinetic energy to pass through
the short. The initial speed of the fluxon is ui = 0.618.

φtt−φxx+αφt+sinφ+
∑
s

µsδ(x−xs) sinφ = −β, (22)

where xs are the locations of the short circuits, and µs is the
critical current at the shorts. The contribution of a short to the
Hamiltonian is therefore given by

Hs = µs(1− cosφ)δ(x− xs). (23)

We therefore see that for φ = 2πn with n being an arbitrary
integer, Eq. 23 vanishes and there is no energy stored in the
short. If a fluxon is in the vicinity of the microshort, φ deviates
from the bulk value and now Hs > 0. The short draws energy
directly from the vortex and causes it to slow down, or equiv-
alently the vortex experiences a repulsion as it approaches the
short. The dynamics of this process is shown in Fig. 8. We
consider a junction whose length is L = 40, has a resistive
loss rate of α = 0.005 and is subjected to a bias current β.
A fluxon is initially prepared at terminal velocity ut (veloc-
ity at which friction and Lorentz force cancel each other) at
x0 = 10, sufficiently far away from and moving towards a
microshort at xs = −10. In Fig. 8b, where we set ut = 0.3
(which corresponds to β = 0.002), the fluxon is repelled by
the short. After the first repulsion, the fluxon travels in the
opposite direction until it is slowed down to a complete stop
by both resistance and the Lorentz force. The Lorentz force,
which always pulls the fluxon in the −x direction, then accel-
erates the fluxon towards the short again. As seen in Fig. 8b,
the fluxon bounces off the mircoshort multiple times, losing
energy in the process due to resistance, and eventually oscil-
lates inwards into the pinning position, which is an equilib-
rium point xe where the Lorentz force and the repulsion from
the short balance out each other (see inset of Fig. 8b). Note
that when the fluxon is repelled by the microshort, it does not
turn into an antifluxon, unlike what happens when it collides
with the boundary.
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If the initial kinetic energy of the vortex is sufficiently large,
it can escape pinning [1]. This scenario is shown in Fig. 8c, in
which the initial speed of the soliton is ut = 0.618 and corre-
sponds to a bias current β = 0.005. The fluxon simply passes
through the microshort with negligible changes in kinetic en-
ergy.

Microshorts are the extreme examples of when Joseph-
son junctions have varying critical current across their length.
More generally, the thickness of the insulating region sepa-
rating the superconducting islands of a long junction may be
nonuniform, which may affect the structure and the dynamics
of fluxons as they travel along the junction. In Appendix F we
investigate such a situation, where we consider a fluxon travel-
ing in junctions that have one or a few constricted regions that
force the fluxon to slow down by emitting radiation. In par-
ticular, we observe signatures of Cherenkov radiation [45, 67]
when a fluxon arrives at a constriction with an incident veloc-
ity larger than the Swihart velocity in that constricted region.

VI. THE BOSONIZED SCHWINGER MODEL

We now turn to the analysis of the bosonized Schwinger
model and its classical solutions.

A. Massless case (κ = 0)

Through the bosonization of the Dirac field, the Schwinger
process for massless fermions is described by the Klein-
Gordon equation [34]

∂2t φ− ∂2xφ+ g2φ = −gF, (24)

which is simply Eq. 5 with κ = 0. Recall that φ is the real-
valued scalar field and F is the classical background field. The
term proportional to g engenders a mass gap in the bosonic
sector that reflects the fact that the low-energy excitations of
the fermionic theory are mesons, bound particle-antiparticle
pairs of mass e/

√
π. This term was the first manifestation

of quark trapping in a low-dimensional gauge theory, requir-
ing a non-perturbative approach [27]. In modern parlance,
the low-energy excitations of the massless Schwinger model
are hybridized longitudinal excitations of the gauge field and
fermionic dipoles.

As discussed in Eqs. 6, the current and charge densities of
the fermionic fluid relates to the scalar field by ρ = −g∂xφ
and J = g∂tφ. Therefore, the edge fields ϕx and ϕt, as de-
fined in Eqs. 10 and 11 take on physical meanings as the av-
erage charge and average current integrated over a finite reso-
lution ∆x and ∆t, respectively. Hence, a discrete version of
Eq. 24 written in terms of the fields ϕx and ϕt can be used to
study the backreaction dynamics of the electron-positron fluid
in the presence of the source. Before exploring the dynamics
of massive fields, we benchmark our numerical method using
this well-studied linear model of the Schwinger process [34].

The setup under consideration is the backreaction dynamics
of massless fermions to a pair of fixed charges ±Q stationed

at ∓L/2 that form a 1D capacitor [68]. This setup creates an
external electric field

F = Q

[
Θ

(
x+

L

2

)
−Θ

(
x− L

2

)]
(25)

that sources the Klein-Gordon equation given in Eq. 24. The
initial conditions are chosen to be φ(x, 0) = ∂tφ(x, 0) = 0
so that at t = 0 there are no charges. We employ radiative
boundary conditions - the details of which are discussed in
Appendix C - which allow us to simulate long-time dynamics
while simultaneously limiting the computational domain to a
finite spatial region. It is also interesting to note that while
we have no reference to topological BCs [34] the total charge
within the system is still conserved at all times. This is due
to the fact that the total initial charge is Q = 0 and that DEC
enforces exactly local charge conservation (to be discussed
in details in Sec. VI A 2). The DEC-QED simulations are
shown in Fig. 9. The distance between the fixed charges is
L = 40, while Q = 4 and g = 1.2. In Fig. 9a, where the
heatmap for ϕx(x, t) is plotted, we see that pairs of fermions
are immediately created near the capacitor plates that screen
the fixed charges ±Q. Each capacitor is a source from which
matter waves originate. These waves then travel within the
light cone and create particle-antiparticle pairs on their path.

The ability of DEC-QED to capture evolution over very
long times while simultaneously probing the detailed dynam-
ics that happen within much shorter time scales is critical to
to the phenomenology of this problem. Figs. 9c, 9d, and 9e
provide a snapshot of the current density at x=100 - a finite
distance to the right of the capacitor - in long, intermediate,
and early times, respectively. From Fig. 9e, we can see that it
takes a finite amount of time for the waves to reach this loca-
tion. The first wave to arrive is the one that originates from the
source at +L/2. Note that when it first appears at x=100, the
oscillation has very high frequency which slows down while
the amplitude increases. After some time, the wave sourced
by the other charge at −L/2 arrives and interferes with the
first wave. As just mentioned, because the frequencies of the
waves also vary when they travel, the mismatch in frequencies
of the two waves at x=100 results in a beating pattern seen at
Fig. 9d. The widths of the beats stretch because both frequen-
cies are decreasing over time. As seen in Fig. 9c, eventually
at very long times both frequencies approach the asymptotic
value and the beating pattern vanishes. The asymptotic car-
rier frequency of both waves, and hence of the overall oscilla-
tion frequency scale at every location, is precisely the effective
mass g (Fig. 10). Note that the rate at which the frequency ap-
proaches this asymptotic value sets the intermediate time scale
of the backreaction dynamics, i.e. the time scale over which
the beating pattern occurs.

The envelope switches from beats to decay over longer
time scales. This is expected because at asymptotically long
times, it is known from other considerations [27] that the fixed
charges will be totally screened and the leakage of current out
of the capacitor will have to cease. The charge density also de-
cays, as the plot for ϕx(t) in Fig. 9c indicates. The envelope
decays at an asymptotic long-time rate of 1/

√
t [34], though

this behavior emerges only well after the oscillations have set-
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Figure 9. Backreaction dynamics of the massless fermionic fluid in response to a capacitor with fixed charges ±Q at ∓L/2, with Q = 4,
L = 40, and g = 1.2. The dynamics is captured up to Tm = 25000. The x− t heatmaps at early times 0 ≤ t ≤ 500 for ϕx(x, t) and ϕt(x, t)
are shown in (a) and (b), respectively. (c) shows the evolution of the current J(t) at x = 100 over the entire simulated time 0 ≤ t ≤ Tm,
while (d) shows the current over an intermediate time (t < 1200), and (e) zooms into the current at early times (t < 120). The current at the
center of the capacitor is shown in (f), while the electric field E(t) there is plotted in (g). The field ϕx at x = 100 is plotted in (h).
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Figure 10. Oscillation frequency of the current J at x = 100 in
the capacitor setup is plotted as a function of the period number. The
parameters in the simulations are ±Q at ∓L/2, with Q = 4, L = 40,
and g = 1.2.

tled into their asymptotic frequency.

Within the capacitor region (−L/2 < x < L/2), electron-
positron pairs are rapidly created to screen the electric field
generated by the fixed charges. Since the fermions are mass-
less in this model, pair production occurs almost instanta-
neously, leading to fast, underdamped oscillations in the po-
larization current. Over time, these charge oscillations dis-
sipate as the system radiates energy and approaches equi-
librium. Both the current (Fig.,9f) and the electric field E
(Fig.,9g) gradually decay as the generated pairs effectively
screen the sources.
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Figure 11. Energy and charge conservation in the backreaction dy-
namics of the massless fluid in response to a capacitor with fixed
charges. (a) The energy computed from the simulation results ob-
tained from DEC is compared to those calculated using the Euler
method and the Crank-Nicolson method. For all three methods,
∆x = 0.333, ∆t = 0.125, Tm = 1000. (b) A closed-up view of
the energy computed using the Euler method and using DEC. (c)
The heat map of ϕ(f), evaluated at each primal face f by summing
up the edge fields ϕx and ϕt on the boundary of that face.

1. Conservation of energy

We also computed the energies associated with the back-
reaction dynamics and used it as a metric to compare DEC-
QED with other approaches for simulating time dynamics.
Fig. 11(a) shows the energy components as a function of time
obtained from simulations using the Crank-Nicolson method,
the Euler method, and DEC. Due to the underlying property
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of the Crank-Nicolson (CN) method in the way it takes time-
averages of spatial derivatives, there is no consistent way to
compute the energies from this method. As a result, the to-
tal energy is not conserved in the Crank-Nicolson method and
decays over time (see Fig. 11a). Instead of the traditional time
propagation, this method also requires matrix inversions to
obtain the field at all locations at once, making it grossly in-
efficient and memory intensive when applied to large prob-
lems. To quote some numbers – to complete a simulation
for Tm = 1000, L = 40 with grid spacings of dt = 0.125
and dx = 0.333, the CN method needs about one hour.
The Euler method and DEC, on the other hand, both finish
the simulation with the same parameters in under 5 seconds.
These two methods also ensure that energy conservation is
respected. The Euler method, however, introduces unphysi-
cal micro-oscillations in the total energy, as seen in Fig. 11b.
These oscillations originate from the evaluation of the spatial
and temporal derivatives using the discrete values of φ ob-
tained from solving the second-order Eq. 24. The errors are
then carried over to the calculation of the Hamiltonian

H(t) =

∫ L/2

−L/2
dx

1

2

[
(∂xφ)

2
+ (∂tφ)

2
+ (gφ+ F )

2
]
,

(26)
where the terms in the bracket are the quadratic potential, ki-
netic energy, and the energy stored in the electric field, re-
spectively. In DEC-QED, the derivatives are encoded on the
edges of the spacetime grid and are directly solved for from
the equation of motion. This allows for the suppression of
unphysical oscillations in calculating the discretized Hamilto-
nian, which is given by

Hdec(j) =

Nx−1∑
i=1

ϕ2x[(i, j), (i+ 1, j)]

2∆x

+

Nx∑
i=1

∆x

4∆t2
{ϕt[(i, j−1), (i, j)] + ϕt[(i, j), (i, j+1)]}

+

Nx∑
i=1

∆x

2
[gφ(i, j) + F (i, j)]

2
, (27)

where Nx is the number of grid points in the spatial dimen-
sion. As seen in Fig. 11b, the total energy computed using
DEC is more stable with noticeably smaller oscillations than
those obtained from the Euler method.

2. Local conservation of charge

An outstanding feature of DEC is that it enforces exactly
local current-charge conservation on the discrete grid. In the
bosonic picture, local charge conservation in the Schwinger
process is given by

∂ρ

∂t
+
∂J

∂x
= 0. (28)

In the spacetime plane, the left-hand side of Eq. 28 is equiva-
lent to ∇×∇φ. The discrete version of local charge conserva-
tion rule is obtained by integrating Eq. 28 over a primal face
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Figure 12. (a) The total electric field E(x) created by a classical
charge at x = 0 and an oppositely charged soliton at a finite distance
away from the classical source. The center of the soliton is indicated
by the vertical orange dashed line. (b) The field ϕx that corresponds
to the massive Schwinger dynamics of a soliton oscillating around
the classical source. (c) Schematic of a long Josephson junction with
half of its length (i.e. the region where x ≥ 0) being biased by an
external current. (d) The field ϕx that corresponds to the dynamics
of a fluxon in a Josephson junction with a biased current influencing
half the junction, where x ≥ 0.

f with dimensions ∆x-by-∆t and applying Stokes’ theorem∫
f

da·(∇×∇φ) =
∫
∂f

dℓ·∇φ (29a)

=
∑
et∈∂f

ϕt(et) +
∑
ex∈∂f

ϕx(ex) (29b)

=
∑

e[vi,vj ]∈∂f

φ(vj)− φ(vi) (29c)

= 0. (29d)

In Eq. 29b above, the sums are over the four boundary edges
of f . From Eq. 29b to Eq. 29c we have used the definitions
given in Eq. 10 and Eq. 11 for the edge fields. The sum in
Eq. 29c is zero because each vertex of f appears twice in
the sum but with opposite signs. We have therefore proven
that the structure-preserving nature of DEC allows for local
charge conservation to be transferred exactly from the contin-
uous EoM to the discrete one. This exactness is demonstrated
in Fig. 11c, where we show that the sum of ϕt and ϕx for ev-
ery face f (i.e. Eq. 29b) in the grid is zero up to machine
precision.

B. Massive case

We now turn to the Schwinger process involving massive
fermions, described by Eq. 5. To simplify the algebra and
to draw connections to the standard form of the Sine-Gordon
equation, we rescale the variables as follows: φ→ 2

√
πφ,

t→
√
2πκt, x→

√
2πκx, and g → g/

√
2πκ. The nomalized

equation of motion for the scalar field in the massive case is
given by

∂2t φ− ∂2xφ+ g2φ+ sinφ = −gF. (30)
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Figure 13. Interaction between a fixed classical charge and an oppositely charged soliton in the context of the massive Schwinger process. The
fixed charge is located at x = 0. The initial condition for the scalar field φ is the SG fluxon solution that is also initially placed at the origin
with an initial velocity u = 0.55. (a) and (b) show the resulting fields ϕx and ϕt for g = 0.1 at early times (0 < t < 200). The vertical green
dashed line in each plot indicates the fixed location of the classical source. (c) and (d) also show the fields ϕx and ϕt at early times, but for
g = 1.0. (e) plots the field ϕx for g = 0.3 at early times, while (f) plots the same field but at late times 5800 ≤ t ≤ 6000. (g) plots each of
the terms in the Hamiltonian of the system and the total energy as functions of time. (h) plots the dependence on time of the energies within a
finite region −16 ≤ x ≤ 16. (i) shows the frequencies in the oscillations of each term in the Hamiltonian as a function of the period number.

Eq. 30 is a sine-Gordon equation with a source term on the
right-hand side and an additional term g2φ on the left. As was
seen in the massless dynamics, the term g2φ is crucial to the
creation of mesons and to mediating the interaction between
classical charges and/or charged solitons. This is because the
total electric field generated by the mesons is proportional to
gφ. We will be especially interested in the effect of this ad-
ditional term on the SG equation in the following simulations
on the 1D atom and positronium. Also, one should keep in
mind that after the rescaling of variables to obtain Eq. 30, g
is now also rescaled to be g/

√
2πκ. From here onward, un-

less specified, we will use this new definition of g for massive
Schwinger calculations.

1. Schwinger atom

We consider a setup composed of a single classical charge
Q fixed at the origin x=0. This source has to be balanced by
an oppositely charged soliton in the scalar field so that the to-
tal electric energy is finite. The choice of initial conditions is
therefore a delicate matter and we choose it to be the known
analytical form for the kink solution of the unperturbed SG
model (Eq. 19) that has a total charge of 2πg. For the system
to be charge-neutral, we choose Q = −2πg. At the bound-
aries of the finite computational domain, radiative BCs are ap-
plied to allow the mesons that are created during transient dy-

namics to leave the system without being artificially reflected
back into the domain and affecting the true dynamics.

We first study the case where the initial position of the SG
kink is x0 = 0, exactly on top of the classical source, and
has a starting velocity u > 0. Due to the finite electric field
generated in the region between the classical source and the
soliton (Fig. 12a), the soliton is constantly pulled towards the
source. As a result, a soliton with an initial velocity will os-
cillate around the source (Fig. 12b) and together they form a
1D “atom” which we refer to as the Schwinger atom. If we
turn off this mediation of attractive interaction by removing
the term g2φ from Eq. 30, we return to the pure SG equation
on the left-hand side with a step function source −gQΘ(x) on
the right-hand side. The resulting dynamics of a soliton gov-
erned by this modified equation is shown in Fig. 12d, where
instead of oscillating around the source, the charged soliton
escapes towards x→ −∞ at a constant velocity. It is help-
ful here to establish an analogy to fluxon dynamics in a JTL,
which for the conditions stated here, has half of its length sub-
ject to a bias current (Fig. 12c). In that scenario, the dynamics
in Fig. 12d is equivalent to that of a vortex initially at x = 0
and moving into the biased region. In this region, the vor-
tex experiences the Lorentz force from the bias current and is
pulled towards negative x, causing it to slow down and switch
its direction. Eventually the vortex exits the biased region and
travels towards x→−∞.

Both the initial spatial range and frequency of the soliton



14

kinetic
field

total
cosine potential

quadratic potential

kinetic
field

total
cosine potential

quadratic potential

200

0
200-200

200

0

200

0

200-200

200-200

200

0
200-200

15-15 15-15

200

0

0

0.125

0

1

4
0.05

(a)

6000

5800
0 600Peak #

0
0

25

6000

(b)

(c) (d)

(e) (f)
(g)

(h)

Figure 14. Interaction between a fixed classical charge and an oppositely charged soliton. The classical charge is placed at x = 0, while
the soliton is initially at a distance away from the source and is moving towards it. (a), (b), (c), and (d) show the dynamics of the charge
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g = 0.3 and x0 = −10, and (f) plots the late-time dynamics of the same field. (g) shows the frequencies in the oscillations of each term in the
Hamiltonian as a function of the period number. (h) plots the dependence on time of the energies within a finite region −16 ≤ x ≤ 16.

oscillation depend on g, as can be seen in Figs. 13a-d. The
larger g is, the faster the oscillation is and the shorter the
round trip that the soliton makes in each period. This oscil-
lation damps out at long times. This is shown in Fig. 13e-f
where we compare the oscillations at early times 0 ≤ t ≤ 200
and after a relatively long time, when 5800 ≤ t ≤ 6000. We
also see that amplitudes in the oscillations of the energy terms
decrease accordingly (Fig. 13g). Note that although each term
in the Hamiltonian oscillates as the soliton winds around the
source, the sum of these terms (the total energy) is constant –
DEC-QED is able to preserve this conservation law through-
out long-time simulations. In Fig. 13 we also plot the energies
within a finite domain (−16 ≤ x ≤ 16) around the atom and
observe a decay in the total energy stored within this domain.
This is because as the soliton oscillates around the source,
it also releases energy in the form of radiation. The radia-
tion leakage from the atom slows down over time and ends
as t→ ∞ when the soliton comes to a full stop on top of the
source. Note that this state of affairs can only be captured by
the correct implementation of radiation BCs at the boundary
of the computational domain. Finally, the evolution in the fre-
quencies of the oscillations in each energy term is shown in
Fig. 13i. At any time, the energy terms oscillate at the same
frequency and this frequency evolves over time. In this setup,
where the soliton is initially placed right where the source is,
the frequency at asymptotic time depends exclusively on g in
a nonlinear manner.

We next consider a situation where the soliton is initially
at a distance away from the source and is moving towards it.
We again choose the initial condition to be a SG soliton with
initial position x0 and velocity u = 0.55. In Figs. 14a-d the
results for the current ϕt(x, t) at early times 0 ≤ t ≤ 200
are shown for g = 0.1, 0.3, 0.35, and 0.4, respectively. In
these figures, the soliton is initially located at x0 = −30.
As the coupling strength g increases, the shape and trajec-

tory of the SG soliton become increasingly distorted and it
emits radiation more rapidly. The soliton accelerates as it
approaches the external charge, as reflected in the changing
slope of its trajectory — most clearly seen in Fig. 14a. How-
ever, its speed remains bounded by the speed of light, and in
Fig. 14b, we observe the soliton approaching this relativistic
limit. In Figs. 14b and 14c, we also see that as the soliton
reaches its maximum distance from the source and begins to
reverse direction due to the attractive interaction, part of its
charge separates and continues to propagate away. Through-
out its motion, the soliton gradually loses its integrity, con-
tinuously shedding radiation in the form of mesons that travel
outward from the source-soliton system.

The initial position of the soliton with respect to the source
also plays a role, because the distance between them sets the
initial energy stored in the electric field. In Fig. 14e, the early
dynamics are plotted for g = 0.3 and x0 = −10. This is
the same value for g as in Fig. 14b, but with a different ini-
tial location of the soliton. The closer the soliton starts to the
source, the shorter its round-trip trajectory around the atom,
and the less radiation is emitted to dissipate the energy ini-
tially stored. This process of meson emission and dispersion
continues until the soliton has released all its excess energy
and settles into the configuration needed to effectively screen
the source. Fig 14f shows the long time dynamics of the same
setup as in Fig 14e (where the early dynamics is shown). The
oscillations of the soliton are now very localized around the
source. The long-time behavior of the soliton-source system
here is similar to what was observed earlier in Fig. 13f with
x0 = 0. This indicates that, for g in a certain range, regardless
of the initial condition on the SG soliton it will always even-
tually be trapped by the fixed source to form an atom. The
evolution of the frequencies of the energy terms is plotted in
Fig.14g and, similar to the previous setup, they approach the
same asymptotic frequency value. After initially losing en-
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Figure 15. Comparisons between DEC-QED and the Euler method
in simulating the out-of-equilibrium dynamics of the massive
Schwinger process when a soliton interacts with a fixed classical
source. The classical charge is placed at x = 0, while the soliton
is initially at x0=−30, away from the source and is moving towards
it with velocity u= 0.55. The 1+1D distribution of ϕt for t ≤ Tm

is computed with dx = 0.02, dt = 0.016 using DEC and Euler’s
method are shown in (a) and (b) respectively. The same field com-
puted with dx = 0.1, dt = 0.08 using the two methods are shown
in (c) and (d), respectively. ϕt(x) at the time slice t = Tm obtained
from both methods with dx = 0.02, dt = 0.016 are plotted in (e),
while the results computed with dx=0.1, dt=0.08 are shown in (f)
for DEC and in (g) for Euler.

ergy to mesons that travel to infinity, the energy of this atom
is also stabilized at long times (see Fig. 14h).

Figs. 14(c-d) show that with a sufficiently large effective
mass g and large initial energy, governed by the soliton’s ini-
tial displacement and velocity, the soliton undergoes rapid
destabilization, fragmenting into radiative modes. Capturing
such far-from-equilibrium dynamics poses numerical chal-
lenges, as errors are more prone to accumulate for dynamics
far away from localized solitary wave solutions. We take this
opportunity to benchmark the DEC-QED integrator.

We show the evolution of ϕt over 0≤ t ≤ Tm =300 com-
puted with discretization steps dx = 0.02, dt = 0.016 using
DEC-QED (Fig. 15a) and Euler (Figs. 15b). We see that with
such a finely discretized grid, the two methods produce prac-
tically the same dynamics within the simulated time t≤ Tm.
This is also evident in Fig.15e, where the details of ϕt at the
last time slice t = Tm obtained using the two methods are
compared in the same plot. However, when the calculations
are done with coarser discretization steps, we see that while
DEC remains fairly accurate (Figs.15c, 15f), Euler’s method

quickly diverges from the correct dynamics (Figs.15d, 15g).

2. Schwinger positronium

An additional hypothesis of interest is the potential exis-
tence of a stable Schwinger “positronium,” which we investi-
gate next.

In the framework of 1+1D field theory, positronium can be
understood as a stable bound state of a soliton–antisoliton pair
oscillating around one another. In the physical 3+1D QED,
positronium is not a bound state but rather a two-body reso-
nance with a well-studied finite lifetime [69, 70].

The evolution from two separated solitons to a bound pair is
strictly prohibited by the unperturbed SG model. This means
that when two solitons in the pure SG model collide, they sim-
ply pass through each other. The solitary wave solutions in
that theory are solitons according to the stricter definition of
the term [71]. The inclusion of the dynamical mass term g2φ,
however, breaks the integrability of the SG model and may
facilitate the formation of a bound positronium from two ini-
tially separated solitons.

In Figs. 16a-c we present the early-time space-time dynam-
ics of the charge density ϕx(x, t) that corresponds to a soliton-
antisoliton pair for different values for g and the initial sepa-
ration d. The initial condition for ϕ in all three cases have
been chosen as the analytically known fluxon-antifluxon solu-
tion in Eq.20. Comparing Figs. 16a and 16b, one can see that
smaller d leads to faster decay in the oscillation of the pair.
The reason is clear – a smaller initial separation reduces the
initial energy stored in the electric field, which is confined to
the space between the two solitons, thereby limiting the en-
ergy available to sustain the oscillations that emit radiation.
Comparing Figs. 16b with Figs. 16c, one sees that smaller g
also results in slower decay. This occurs because the soliton
accelerates when propagating in a large-g background, as we
also observed in the case of the atom with a fixed charge. The
increased acceleration leads to enhanced radiation emission
from the soliton, causing the positronium to lose energy more
rapidly.

In all of the three cases presented in Figs. 16a-c, although
the oscillations decay over time, the pair is not completely
annihilated but is reduced to a steady state of persistent os-
cillation. We show an example in Fig. 16d, where the late-
time dynamics for g = 0.3, d = 22 (the same parameters
as Figs. 16b) is plotted. The oscillations of the pair are stabi-
lized as the decay rate becomes progressively small. The bind-
ing of an initially separated SG soliton-antisoliton pair into a
breather may remind us of the vortex-antivortex interaction in
a lossy junction that was discussed in Sec V B 2. However, un-
like in the lossy junction case, where the breather decays until
it vanishes entirely due to the effect of the resistive term ∂tφ,
here the solitons only decay until the system reaches a steady
state of self-sustained oscillation. In this massive Schwinger
process, the breather seen in Fig. 16d is an oscillating electric
dipole, and the internal oscillation of the breather at asymp-
totic time is facilitated by the attractive force between its two
oppositely charged halves.
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positronium at t = 4000.

The evolution of energy within the finite domain −16 ≤
x ≤ 16, shown in Fig. 16e, offers further insight into these
observations. It can be seen that, following an initial rapid de-
cay, the total energy within this region stabilizes at a steady-
state value at late times, indicating that energy leakage from
the atom eventually ceases. As shown in Fig. 16g, which pro-
vides a close-up view of the energy dynamics in the steady
state, the kinetic energy oscillates π out of phase with the
other energy components. This phase relationship suggests
a coherent exchange of energy between the kinetic term, the
potential energy of the positronium, and the energy stored in
the electric field.

In Fig. 16h, which displays the field ϕx across the entire
spatial domain at t = 4000, it is evident that most pair cre-
ation occurs early in the evolution, as the soliton–antisoliton
system stabilizes. These pairs – mesons – subsequently prop-
agate away from the positronium. As time progresses, both
the rate of pair creation and the group velocity of the emitted
mesons diminish. At asymptotically late times, the amplitude
of ϕx in the vicinity of the positronium becomes vanishingly
small (see Figs.,16i–k), indicating that the energy loss from
the positronium effectively ceases.

The possibility of a mechanism for radiative relaxation to-
wards a true bound state of a positronium is very unusual and
its rigorous establishment requires further asymptotic analy-
sis, which we leave to future work. An interesting hypothesis
is that, as opposed to the physical 3+1D case where positron-
ium is a resonance with a finite lifetime, in 1+1D the numer-
ical simulations presented above indicate that a true bound

state may exist. As we shall see next, this however is limited
to a certain regime of g and not the case generally.

Up to this point, we have considered only the parameter
regimes in which a steady-state positronium is formed. How-
ever, if g is large enough, depending on the initial conditions,
a soliton-antisoliton system may scatter without forming a sta-
ble atom. Fig. 17 illustrates this point by showcasing various
dynamical scenarios, all initiated with a soliton–antisoliton
pair. In Figs. 17a–d, where early-time dynamics is explored
for g = 0.4 and u = 0.55 across different initial separations
d, the pair is seen to immediately transition into breather-like
configurations upon release. A larger g leads to faster meson
production, and splitting the initial soliton into an internally
oscillating breather helps to suppress the creation of mesons.
As each breather acts as an oscillating electric dipole, the pair
— being aligned dipoles — mutually attract. Owing to this
mutual attraction, the breather pair initially oscillates around
each other before eventually dispersing, and it is observed that
a smaller initial separation d results in a longer period of os-
cillation prior to scattering.

In scattering off one another, the breathers emit mesons,
and if the electric field holds enough energy — when d is large
— stable structures can form and persist near the origin. Fig-
ures 17e and 17f present the late-time dynamics for the initial
conditions used in Figs. 17a and 17b, respectively. In Fig. 17e,
we observe a steady beating pattern around x = 0, where
meson density periodically disperses and refocuses. This be-
havior stems from two secondary breathers, formed from the
residual charge left by the original breathers, which oscillate
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Figure 18. Fractalization of the initial velocity into intervals that
correspond to either scattered solitons or a bound positronium in the
long-time limit. Here, g=0.32, and d/u=20.

internally and orbit each other. Another scenario, shown in
Fig. 17f, involves the formation of a stable positronium-like
state after the initial breathers disperse. Here, a single breather
remains at x = 0, oscillating indefinitely without radiative
losses. Another possible outcome is a final state in which
all the initial energy radiates away to x → ±∞. This oc-
curs in a two-breather system lacking sufficient initial energy
in the electric field — specifically, when the initial separa-
tion d is too small, as shown in Figs. 17c–17d. Although the
breather pair oscillates longer for smaller d, they eventually
disperse. The resulting electric field from the emitted mesons
is too weak to generate or sustain further mesons within the
region between the departing breathers. To validate the differ-
ent late-time configurations observed in our numerical study
of soliton-antisoliton dynamics, we also analyze the evolution
of energy terms for each of these cases and the results are dis-
cussed in Appendix I.

3. Long-time phase diagram of 1+1D Positronium

Our numerical experiments indicate that for sufficiently
large g, the fate of an electron–positron pair — whether they
scatter or form a stable bound state — depends sensitively on
the initial conditions. In Fig. 18, we map the final state as a
function of the initial velocity u (0.05 ≤ u ≤ 0.7). Interest-
ingly, there is no single critical velocity separating the scatter-
ing and bound states; instead, we find a series of disjoint in-
tervals where the system alternates between these outcomes.
This “fractal” dependence on the incident velocity closely re-
sembles the complex behavior seen in Z2 soliton dynamics
within φ4 theory [72, 73].

By comparing the dynamics in Fig. 17c where d = 13.75
with those in Fig. 17b where d=16.5, we can predict a phase
transition at d between these two values where the transition
is from a system that sustains a localized atom at steady state
to one that does not. Along the same line of thought, by com-
paring the dynamics in Fig. 17a (where g=0.4) with those in
Fig. 16b (where g = 0.3) - two dynamics that have the exact
same initial conditions for the SG soliton pair but with differ-
ent values for g - we can predict a phase transition at g = gc
somewhere between these two values that separates a phase
(g<gc) in which the initial SG soliton pair turns into a stable
positronium with a phase (g>gc) in which the initial solitons
turn into breathers. To quantitatively identify in parameter
space (u, d, g) the boundaries of the possible phases that an
initial pair of solitons can evolve into at steady state, further
detailed analysis will need to be carried out in the future.

VII. DISCUSSION

In this article, we examine the long-time behavior of a
generalization of the Sine-Gordon equation that captures the
semiclassical dynamics of the four-current of the Dirac field
of fermions in the presence of gauge fields in 1+1 dimen-
sions. Capturing emergent coherent structures – such as
long-lived, particle-like solitary waves – requires numerical
methods that remain accurate deep into the long-time regime.
We present a space-time coarse-graining framework designed
for this purpose, targeting the dynamics of generalized Sine-
Gordon equations. Through systematic benchmarking against
analytical solutions and established numerical methods, we
validate the reliability of the framework across a range of
physically relevant scenarios, before applying it to the dy-
namics of charge carriers interacting with a localized central
charge – the 1+1D Hydrogen atom.

Firstly, the results demonstrate that the proposed coarse-
graining method accurately captures the formation, propaga-
tion, and interaction of localized structures over asymptot-
ically long timescales, with significantly improved numeri-
cal stability and reduced dispersion-induced artifacts. In par-
ticular, the method resolves regimes where conventional ap-
proaches fail to preserve the integrity of solitary wave solu-
tions or suffer from cumulative errors. These capabilities es-
tablish the framework as a robust tool for investigating non-
perturbative dynamics in semiclassical field theories, includ-
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ing those exhibiting soliton-like behavior and radiative decay.
Secondly, our results motivate further investigation into

the analog simulation of relativistic 1+1D QED – the mas-
sive Schwinger model – using Josephson Transmission Lines
(JTLs). While the present study operates strictly within the
confines of the semiclassical regime of the quantum Sine-
Gordon model, earlier foundational work [58, 59], has estab-
lished that classical field dynamics can serve as a meaning-
ful starting point for probing quantum phenomena beyond the
reach of perturbative techniques, such as those we investigate
in this work. In this context, it is essential for future work
to clarify which aspects of the massive Schwinger model can
be faithfully captured through analog implementations in JTL
architectures.

Thirdly, extending the framework developed here to the
associated quantum field theory holds the potential to yield
novel insights into non-perturbative phenomena that under-
pin the foundations of quantum theory — namely, the sta-
bility and structure of atoms. Atomic spectra and radiative
transition rates are traditionally understood through pertur-
bative expansions in the gauge-field coupling and the renor-
malization framework [74]. Even the stability of the Hydro-
gen atom’s ground state has only been rigorously established
within perturbative QED through the ingenious use of inequal-
ities [75]. A non-perturbative numerical approach capable of
accessing such properties – even in the reduced dimensional
setting of 1+1D – would represent a significant advance, of-
fering a unique window into atomic structure that remains out
of reach for perturbative approaches to quantum gauge theory.
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Appendix A: Derivation of the SG equation from the
gauge-invariant EHDS equations

In this appendix, we show that the sine-Gordon equation
can be derived from an electrohydrodynamics description of
superconductors (EHDS) [43, 76] applied to the long Joseph-
son junction. This will confirm that although the SG equation
is a 1D effective field equation in which the spatial variation
along the thickness of the junction is not considered, it can
still be rigorously traced back to a first principles formulation.

Consider a long Josephson junction composed of two su-
perconducting islands that are separated by a thin (≲ few

(a)

(b)

Figure 19. (a) Schematic of a long Josephson junction. The thickness
of the effective insulating region is labeled a. The long dimension is
L≫λJ while the other dimension is W ≪λJ . (b) The discretization
of the long Josephson junction using a quasi-1D grid, in which the
Josephson phase φ(x) is encoded on the single layer of z−oriented
edges that encompass the thickness of the junction along this dimen-
sion. The orange patch indicates the face dual to the primal ith z-
edge.

nm) layer of either insulator or normal metal, as illustrated
in Fig. 19. The long dimension of the junction is along x
and has length L ≫ λJ , where λJ is the Josephson pene-
tration depth. The superconductor-insulator-superconductor
variation in material properties is along z, while the remain-
ing dimension W of the junction along y is assumed to be
much less than λJ so that there is effectively no field vari-
ation inside the junction in this direction. If the separation
between the superconducting island is thin, the superconduct-
ing condensate can leak into this region and, if the decay tails
from two islands touch, a supercurrent can be established in
the junction [77]. Let ψ be the macroscopic order parameter
of the collective superconducting condensate fluid that lives
in the entire junction and is made of Cooper pairs (with mass
m=2me and charge q=2e, where me and e are the electron
mass and charge respectively). Using the Madelung represen-
tation ψ =

√
ρeiθ, where ρ is the local density of conden-

sate and θ is the gauge-dependent superconducting phase, the
EHDS equation governing the dynamics of the condensate in
the presence of the electromagnetic field (V,A) is given by

∇×∇×A+ µ0ϵ
∂2A
∂t2

+
µ0q

2

m
ρA− µ0ϵq

2m

∂

∂t
∇
∣∣A∣∣2

+
µ0ϵℏ2

2mq

∂

∂t
∇
[
∇2(

√
ρ)

√
ρ

]
= µ0Jsrc, (A1)

where A = A− ℏ
q∇θ is the gauge-invariant hybridized field

that lives everywhere throughout space. When applied to a
short Josephson junction with a sufficiently thin separation
between the superconducting islands, it was rigorously shown
in Ref. [43] that the Josephson current-phase relation is pro-
duced from the last two nonlinear terms on the left hand
side of Eq. A1 canceling each other. For a long Josephson
junction, the same cancellation holds if the spatial variations
of the field A along x and y appear at much larger length
scales than along z. In the case of Josephson fluxons, the
fluxons are assumed to be translationally invariant throughout
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the y direction. The sizes of the fluxons along x are deter-
mined by the Swihart velocity and the speed of the fluxons.
These conditions typically result in fluxon sizes on the order
of 10−100 nm. Therefore, the condition for the mentioned
cancellation of two nonlinear terms is well satisfied.

To proceed, we discretize the long junction using a quasi-
1D grid composed of an array of xz-facing rectangular cells
aligned along x (Fig. 19b). The z-oriented edges start from
deep in the bulk of one superconducting island and end at the

other island. This minimal discretization also takes into ac-
count the fact that the field variation over the thickness of the
junction along y is negligible and can be captured by a single
layer of edges. We define the edge fields Φz=

∫
ez
dℓ·A which

live on the edges along z and Φ+
x =

∫
e+x
dℓ·A, Φ−

x =
∫
e−x
dℓ·A

which live on the upper and lower horizontal edges along x,
respectively. Upon integrating both sides of Eq. A1 over the
dual face e†z(i) of the z−edge ez(i) and applying DEC to the
curl-curl operator we obtain

−Φz(i−1)+2Φz(i)−Φz(i+1)+Φ+
x (i)−Φ−

x (i)−Φ+
x (i− 1)+Φ−

x (i− 1)

∆x2
+ µ0ϵ

∂2Φz(i)

∂t2
− µ0J

z
s (i) = µ0J

z
src(i), (A2)

where Jzs (i) and Jzsrc(i) are the supercurrent and the exter-
nally applied current flowing from one superconducting island
to the other along z. Since the upper and lower horizontal
edges are deep in the superconductor and because of the mir-
ror symmetry between two islands, we have Φx(i)

+=Φ−
x (i).

This allows for the simplification of the first term in Eq. A2.
By introducing the normalized flux variable φ = −2πΦ/Φ0,
where Φ0 is the flux quantum, Eq. A2 becomes

−φ(i−1)+2φ(i)−φ(i+1)

∆x2
+ µ0ϵ

∂2φ(i)

∂t2

+ µ0J0 sinφ(i) = µ0J
z
src(i), (A3)

where we have used the sinusoidal dependence on φ to ex-
press the supercurrent. By rewriting the first term of Eq. A3
above into −∂2xφ, we obtain the sine-Gordon equation.

Appendix B: Bosonization of the massive Schwinger model

As introduced in Section III B, the massive Schwinger
model is described by the Lagrangian

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν (B1)

in the absence of the background θ-angle, where ψ ≡
( ψR

ψL

)
is the Dirac fermion field in 1+1D, Dµ = ∂µ − ieAµ is the
gauge covariant derivative, and Fµν = ∂µAν − ∂νAµ is the
electromagnetic tensor.

For bookkeeping purposes, we define the field theory on
the finite domain x ∈ [−L/2, L/2] and consider the theory
on R as the L → ∞ limit. Provided that the ψ field can
be expanded in modes labeled by integers (e.g. the momen-
tum modes for periodic boundary conditions), the N -fermion
Hilbert space constructed from the fermionic ladder operators
cηk, c

η†
k is spanned by the following bosonic creation operators

acting on the n-fermion ground state:

bη†q ≡ 1
√
q

∑
k∈Z

uηk · c
η†
k+qc

η
k, for q = 1, 2, 3 · · · (B2)

where η labels the fermion species while uηk is a species-
dependent phase factor (|uηk| = 1) determined by the bound-
ary conditions. For periodic boundary conditions, η ∈ {R,L}
labels the chiral fermion components and uηk = i. However,
for other boundary conditions, η does not indicate fermion
chirality in general. For example, with closed boundary con-
ditions η would label and even and odd modes instead.

More precisely, employing the partition function analysis
by Haldane [78], one can prove the following operator iden-
tity:

ψη(x) = Uηgη(nµ;x)e−i·2
√
πϕη(x) (B3)

where ϕη(x) is the real scalar field constructed from the lad-
der operators bηq , b

η†
q , the Klein factor Uη is the unitary opera-

tor that removes the highest-energy η-fermion from any (free-
theory) nη-fermion ground state, and gη(nη;x) is a c-number
function for fixed fermion number nη whose analytical ex-
pression can be determined by evaluating the ground-state ex-
pectation value of Uη†ψη(x).

In 1+1D, the gauge field can be integrated out from Eq. B1
and expressed in terms of the real scalar field

ϕ(t, x) ≡
∑
η

ϕη(t, x) =
e√
π
E(t, x) (B4)

In the L → ∞ limit, Eq. B3 and Eq. B4 allow us to rewrite
Eq. B1 as the following Lagrangian density in terms of ϕ(t, x)
alone:

L =
1

2
∂µϕ(t, x)∂

µϕ(t, x)− e2

2π
ϕ2(t, x)

+
c

πϵ
cos
(
2
√
πϕ(t, x)

) (B5)

where the order-1 constant c is a function of Euler’s constant
(e.g. c = eγ for periodic boundary conditions), while ϵ ≡ L

πΛ
with Λ the cutoff imposed on the summation in Eq. B2.

In particular, the bosonization dictionary suggests that the
mass term in the fermionic theory gives us the following co-
sine potential in the bosonic theory

mψ̄ψ → − c

πϵ
cos
(
2
√
πϕ
)

(B6)
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If the cosine is properly normal ordered with respect to the
renormalized boson modes, the factor of 1

ϵ will be canceled
and the renormalized Lagrangian takes the form

L =
1

2
∂µϕ∂

µφ+
κ

2
cos
(
2
√
πφ
)
+
g

2
φϵµνFµν −

1

4
FµνF

µν

(B7)
with κ = eγme

π3/2 for small fermion masses. In addition, one
obtains a ϕ2 term in the bosonic Lagrangian due to the gauge
interaction, which gives rise to a free Schwinger boson mass
of g = e√

π
.

Appendix C: Boundary conditions in DEC
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Figure 20. An example spacetime grid used in DEC-QED simula-
tion.

In this appendix, we discuss how boundary conditions are
implemented in DEC and on a 1+1D spacetime grid. We focus
on boundary conditions that are typically met in long Joseph-
son junctions and in the Schwinger process.

Closed Dirichlet boundary condition: this is a BC imposed
on the value of the scalar field φ at the boundary (for exam-
ple: φ(0, t) = f(t), φ(L, t) = h(t), where x = 0, L are the
spatial boundary coordinates). This boundary condition can
be straightforwardly imposed at the boundary vertices.

Ordinary Neumann boundary condition: examples of this
type of boundary condition were presented in Eqs. 17, 18,
and G1, in which the conditions on ∂xφ at the boundary in-
corporate how external magnetic field and injected boundary
currents affect the internal dynamics of the junction. These
BCs, which set the value for ϕx at the boundary, can be di-
rectly implemented on the boundary edges ex[(1, j), (2, j)]
and ex[(Nx − 1, j), (Nx, j)] at every time step j in the
spacetime grid (Fig. 20). Similarly, boundary conditions im-
posed solely on the time derivative of the scalar field, ∂tφ,
can be implemented on the field ϕt on the boundary edges
et[(1, j), (1, j + 1)] and et[(Nx, j), (Nx, j + 1)].

Outgoing boundary condition: this type of boundary condi-
tions is typically inhomogeneous, i.e. it depends both on the

spatial and temporal derivatives of the field as well as on the
specific wave equation in consideration. Here we discuss a
general approach for outgoing boundary conditions which is
effective for weakly nonlinear wave equations of the type

φtt − φxx + U(x, t)φ = 0, (C1)

with U(x, t) ≪ 1. By performing a Fourier transform
φ(x, t)=1/(4π2)

∫∫
ei(kx+ωt)φ̂(k, ω)dkdω to Eq. C1 and col-

lecting the terms in the integrand we obtain

k2 = ω2 − 1

4π2

∫ ∫
Û(k′, ω′)ei(k

′x+ω′t)dk′dω′

= ω2 − U(x, t). (C2)

This yields the dispersion

ik = ±iω
√
1− U(x, t)

ω2
≈ ±iω

[
1 +

U(x, t)

2(iω)2
+ ...

]
(C3)

The series expansion in Eq. C3 allows for order-by-order im-
provements in the open boundary condition such that the re-
flection of waves exiting the computational domain is sup-
pressed. Through the mappings ik → ∂x and iω → ∂t, the
zeroth and first order outgoing boundary conditions at the left
boundary is given by

∂xφ = ∂tφ, (C4)
∂xtφ = ∂ttφ+ Uφ/2. (C5)

Similar outgoing conditions for the right boundary are ob-
tained by flipping the sign on the left-hand side of Eqs. C4-C5.
Higher order boundary conditions can be readily obtained by
keeping more terms in the expansion in Eq. C3.

The DEC implementation of the BC in Eq. C4 can be done
by setting

ϕt[(1, j), (1, j + 1)] = (∆t/∆x)ϕx[(1, j), (2, j)], (C6)

while the BC given in Eq. C5 is imposed by setting

ϕt[(1, j), (1, j + 1)] = ϕt[(1, j−1), (1, j)]

+ (∆t/∆x) {ϕx[(1, j), (2, j)]− ϕ[(1, j−1), (2, j−1)]}
−∆t2U(1, j)φ(1, j)/2. (C7)

Appendix D: Profiling simulation times

A comparison on the runtimes of DEC-QED and the Euler
method is presented in Fig. 21. The problem used for the com-
parison is the dynamics of a sine-Gordon fluxon trapped inside
an unperturbed Josephson junction of length L = 100. The
simulated fluxon moves inside the junction at speed u = 0.55
and for a duration of Tm = 50000. For all the spatial step size
∆x tested, we choose ∆t = 0.8∆x. Since the two methods
have the same complexity, the number of computations scales
linearly with the number of gridpoints in the spacetime grid.
However, because DEC-QED deals with the first-order PDE
of the edge fields, it is faster than solving the second-order
noninear wave equation for the scalar field φ using the tradi-
tional Euler method. As a result, DEC-QED is slightly faster
than the Euler method regardless of the step size used in the
simulation.
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Figure 21. Comparisons on the run times of DEC-QED and Euler
methods in simulating a fluxon trapped inside an unperturbed Joseph-
son junction. For all simulations here, Tm = 50000,∆t = 0.8∆x,
u = 0.55, and L = 100.

Appendix E: Modification of vortex dynamics due to biased
boundary conditions

Figs. 22a, 22b, and 22c show the results for φ, ϕt, and ϕx
with η = 0.002 and ξ = 0.006. We observe a gradual speed-
ing up of the soliton over time. This is because every time
the soliton collides with a boundary where η and ξ are non-
zero, it is in contact with an externally injected current and
a magnetic field that either add to or decrease its kinetic en-
ergy depending on the relative orientation of the current of the
(anti)vortex with these boundary effects. For the parameters
chosen for the simulations in Figs. 22a-c, after each round-
trip (i.e. after colliding with the boundary on both ends) the
soliton obtains a small additional energy and speeds up. How-
ever, the acceleration decreases over time as the circulating
current of the (anti)vortex approaches the same velocity as the
boundary current. In total, the dynamics shown in Fig. 22a-c
has 453 collisions with the boundaries, covering a total dis-
tance slightly greater than 18875 times its original size. To
compare with the vortex dynamics in Figs. 4 in the main text,
where we have the same initial conditions and parameters ex-
cept that η = ξ = 0, the fluxon only collides 278 times with
the boundary.

Appendix F: Vortex in narrow constrictions

Typically, in a long Josephson junction, it is difficult to
maintain uniform thickness and material properties through-
out the entire length of the junction. The microshorts dis-
cussed in the previous section are extreme cases, where the
thickness of the insulating region is near zero and the super-
conducting islands are essentially in contact with each other.
In general, the thickness of the insulating region can vary
along the junction, and the sine-Gordon equation can be mod-

ified accordingly to capture this behavior

∂2t φ− ∂2xφ+ α∂tφ+ µ(x) sinφ = −β (F1)

where the critical current µ(x) is now a function of x. Using
DEC-QED, we consider the evolution of a fluxon in a junction
that has a narrow constriction inside (see Fig. 23a), where the
insulating region is thinner than the rest of the junction, lead-
ing to a stronger critical current there. In general, the critical
current depends exponentially on the thickness of the insulat-
ing region. In the limit of thin junctions, the dependence is
approximately inversely proportional to the thickness of the
junction, a, [43], i.e. µ ∝ 1/ sinh(ξa) ∼ 1/a. In Fig. 23b-c
the dynamics of a fluxon moving in a constricted junction is
shown. The junction length is L = 200, the length of the con-
striction is ℓ = 40, and the lengths of the two tapered regions
that connect the constriction with the rest of the junction are
b = 10. In Fig. 23b, the critical current inside the constriction
is µcs = 10, while the critical current at the normal regions
are unity. The fluxon has an initial velocity of u = 0.85 and
travels without resistive loss. Similar to the microshort case,
this narrow constriction draws energy from the fluxon, pre-
venting it from entering and repeling it from the constriction.
The movement of this fluxon is therefore limited to bouncing
between the junction boundary and the edge of the constric-
tion.

If the critical current in the constriction is sufficiently re-
laxed, which is the situation in Fig. 23c where µcs = 3, the
fluxon can enter the narrow channel. When the fluxon is inside
this potential barrier, part of the kinetic energy is transferred
to potential energy and the soliton slows down, as can be seen
by the change in the slope of the trace in Fig. 23c. Note that
the higher critical current in a narrow junction means the Swi-
hart velocity is also lower there. When the soliton has just
entered the constriction, however, it can still have a velocity
higher than the maximum velocity allowed in this region. As
the soliton is abruptly slowed down to below the Swihart ve-
locity in the constriction, it also releases energy in the form of
radiation. These are similar to Cherenkov radiations that ap-
pear in nonlinear optical systems that have high-order disper-
sions such as in fiber optics [67]. This effect is evidently seen
in Fig. 23e, where the dynamics of a soliton moving through
a series of three constrictions is shown. The fringes caused
by radiation coming out of the soliton are most intense at the
bending corners of the trajectory, where the soliton enters a
narrow constriction and has to slow down. In this example,
after the soliton exits the last constriction, roughly ≈ 3% of
its initial kinetic energy has been transferred to radiations.

Appendix G: Creation of solitons using applied external pulse

So far we have discussed a wide variety of possible situa-
tions involving solitons embedded in Josephson junctions and
demonstrated how DEC-QED is able to reliably capture the
evolution of these systems. These simulations all begin with
solitons as initial conditions. However, in a realistic exper-
imental setup, these fluxons or breathers have to be created
by a well-controlled application of external fields [79, 80].
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Figure 22. Long-time dynamics of a single fluxon trapped inside a Josephson junction. The junction length is L = 100, the total time of the
dynamics is Tm = 50000, the initial velocity of the fluxon is u = 0.55, η = 0.002 and ξ = 0.006. (a), (b) and (c) show the value of φ, ϕt,
and ϕt respectively.
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Figure 23. (a) Schematic of a vortex moving inside a long Josephson
junction that contains a constriction region. (b) The ϕx field when a
fluxon travels inside a junction having a finite region of constriction.
The critical current inside the constriction is ten times the critical
current in the normal region. (c) The ϕx field when the fluxon trav-
els in a constricted junction, but when the critical current inside the
constriction is three times the critical current in the normal region.
(d) Schematic of a long junction containing three consecutive con-
strictions. (d) ϕt field when the fluxon travels a full length of the
triple-constriction junction.

Therefore, it is also important to be able to simulate how these
solitons can emerge from the background via external excita-
tion. In this section, we discuss how DEC-QED is a suitable
tool for this.

We consider a long junction subjected to an external mag-
netic pulse at one boundary edge of the junction. This pulse
affects the junction through a boundary condition of the form

∂xφ(x, t) = H(t) sinωt, (G1)

where ω is the frequency of the pulse, and H(t) is the ampli-
tude. We model the amplitude by a square envelope for H(t)
that is smoothed by Gaussian edges to account for the finite
rise time σrise and fall time σfall of the pulse.

When a junction experiences a finite pulse at the boundary,
radiations, fluxons, and antifluxons of any velocity u ≤ 1 can
occur on that boundary and travel into the junction. This is
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Figure 24. (a) Schematic of a Josephson junction excited by an ex-
ternal pulse at the boundary. (b) An example of dynamics inside
a junction constantly excited by a square pulse with Gaussian rise
and fall edges. The total duration of the pulse is Tm = 250, with fre-
quency ω = 0.8. The rise time and fall time are σrise = σfall = 10.
Between the rising and falling period, the pulse amplitude is held at
A = 1.5. A time slice at t = 160 of the dynamics shown in (b) (la-
beled by the green dashed line) is plotted in (c). (d) and (e) plot the
ϕx and φ fields inside a junction excited by a tuned pulse such that
there is exactly one fluxon, one antifluxon, and one breather created
in the system. The junction has length L = 160. The parameters for
the pulse are: σrise = σfall = 10, ω = 0.6, A = 1.4, and the total
duration of the pulse is Tp ≈ 70.

demonstrated in Fig. 24b, where we choose a junction whose
length is L = 160. The pulse has a total duration of Tm =
250, with frequency ω = 0.8. The rise time and fall time are
σrise = σfall = 10, and the pulse amplitude after the rise time
and before termination isA = 1.5. In the 2D x− t heatmap in
Fig. 24b one can see very clearly that the generated excitations
are a series of fluxons, antifluxons, and breathers, all moving
at different speeds and interfering with each other, plus some
background radiations. It is also worthwhile to note that in-
stead of looking at this holistic view of the full dynamics, one
can plot the field at a specific time slice (as done in Fig. 24
where ϕx at t = 160 is shown), and it appears as if there is
no structure to the dynamics generated by the pulse which is
actually composed of mostly solitons.

Given the efficiency and accuracy of the numerical scheme,
one can easily sweep a large parameter space to tune the pulse
to produce the desired results. To demonstrate, in Fig. 24c
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Figure 25. Time evolution of the electric field due to a sharged ca-
pacitor and the back reaction of the fermionic fluid. The capacitor is
charged at Q = 100, with the plates located at ±L/2 = ±20, and
g = 1.2. The dynamics is captured up to Tm = 2000. The electric
field E at x=0 is shown in (a), (b), and (c) for when the mass of the
fermions are m = 0, m = 0.1, and m = 1.0, respectively. In a
similar order, the evolution of E at x=100 when m = 0, m = 0.1,
and m = 1.0 are shown in (d), (e) and (f).

and 24d we plot the ϕx and φ fields for a setup in which the
external pulse creates exactly one fluxon, one anti-fluxion,
and one breather. To find the correct pulse, we had sam-
pled the parameter space of (A,ω, σrise, σfall, Tp) in the fol-
lowing ranges and steps: 1 ≤ A ≤ 2 with step ∆A = 0.1,
5≤σrise=σfall≤15 with step ∆σ=1, 0.5 ≤ ω ≤ 0.9 with
step ∆ω=0.1, and 40≤Tp≤80 with ∆Tp=2. This sampling
amounts to 12700 coordinates in the parameter space. We
choose a junction length of L = 160 that is discretized by grid
spacings ∆x = 0.02, while the simulated time is Tm = 250
with ∆t = 0.016. For each set of parameters for the pulse,
the simulation is therefore done with a spacetime mesh of 125
million grid points. The total time it takes for the sweep to
return the desired pulse is 5.5 hours.

Appendix H: Massive capacitor discharge

In Section VI A we studied the backreaction dynamics of
massless fermions under the influence of a charged capacitor.
In this appendix, we present the results for the capacitor dis-

charge dynamics when the fermions are massive. Figs. 25a-c
provide direct comparisons of the electric field at the center
of the capacitor when the fermion mass is m = 0, 0.1, and
1.0, respectively. Figs. 25d-f present the electric field at a fi-
nite distance away from the capacitor. As evidently shown in
Figs. 25, a finite mass m leads to fast oscillations in the field
due to the presence of the term sinφ in the equation of motion,
with larger m resulting in oscillations with higher amplitudes.

Appendix I: Different long-time scenarios of the Schwinger
soliton-antisoliton pair

In Section VI B 2 we discussed the various long-time
scenarios observed in our numerical investigation of the
Schwinger model when the initial condition is a soliton-
antisoliton pair carrying opposite unit charges. In addition to
an oscillating positronium, other possible long-time configu-
rations are shown in Fig. 17. In this Figs. 26a-d, we present
the results on the evolution of the energies in each of those
scenarios. The early-time dynamics of ϕx in Figs. 17a-d are
included as insets in Figs. 26a-d correspondingly for conve-
nience.

When the long-time configuration around the center is a
pair of secondary breathers oscillating around each other (re-
sulting in a steady beating pattern with the meson density peri-
odically dispersing and refocusing), the energy evolution also
exhibits the beating behavior (see Fig. 26a). The close-up in-
set reveals that, in the steady state, the energy associated with
the quadratic potential term, (∂xφ)2 (blue curve), undergoes
periodic collapse and revival as its dynamics intermittently
synchronize and desynchronize with the other energy compo-
nents. At steady state, the background meson oscillations near
the system’s center of mass also settle into a standing wave
pattern. This indicates the absence of propagation in these
oscillations, meaning that no energy escapes from the finite
region surrounding the core. The energy dynamics in Fig. 26b
corresponds to scenario shown in Fig. 17b in which the late-
time dynamics is a single breather remaining at x=0; the total
energy in the region around the origin reaches a steady state,
with energy cycling continuously at a fixed frequency among
kinetic, potential, and electric field contributions. Lastly, in
Figs. 26c-d we show the evolution of the energy terms over
time when the initial solitons turn into breathers and scatter
off to infinity without generating further mesons in the region
between them. The total energy within the finite region around
x = 0 drops to zero and remains there once the breathers have
left.
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markovian dynamics of a superconducting qubit in an open
multimode resonator, Physical Review A 94, 063848 (2016).

[42] K. Sinha, S. A. Khan, E. Cüce, and H. E. Türeci, Radiative
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