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The practical implementation of many quantum algorithms known today is believed to be limited by the
coherence time of the executing quantum hardware [1, 2] and quantum sampling noise [3–5]. Here we present
a machine learning algorithm, NISQRC, for qubit-based quantum systems that enables processing of temporal
data over durations unconstrained by the finite coherence times of constituent qubits. NISQRC strikes a balance
between input encoding steps and mid-circuit measurements with reset to endow the quantum system with an
appropriate-length persistent temporal memory to capture the time-domain correlations in the streaming data.
This enables NISQRC to overcome not only limitations imposed by finite coherence, but also information
scrambling or thermalization in monitored circuits [6]. The latter is believed to prevent known parametric
circuit learning algorithms even in systems with perfect coherence from operating beyond a finite time period
on streaming data. By extending the Volterra Series analysis of dynamical systems theory [7] to quantum
systems, we identify measurement and reset conditions necessary to endow a monitored quantum circuit with a
finite memory time. To validate our approach, we consider the well-known channel equalization task to recover
a test signal of Nts symbols that is subject to a noisy and distorting channel. Through experiments on a 7-qubit
quantum processor and numerical simulations we demonstrate that Nts can be arbitrarily long not limited by
the coherence time.

The development of machine learning algorithms that can
handle data with temporal or sequential dependencies, such as
recurrent neural networks [8] and transformers [9], has revo-
lutionized fields like natural language processing [10]. Real-
time processing of streaming data, also known as online in-
ference, is an essential component of applications like edge
computing, control systems [11], and forecasting [12]. The
use of physical systems whose evolution naturally entails tem-
poral correlations appear at first sight to be ideally suited for
such applications. An emerging approach to learning employs
a wide variety of physical systems, referred to as physical
neural networks (PNNs) [4, 13–15], to compute a trainable
transformation on an input signal. A branch of PNNs that has
proven well-suited to online data processing is physical reser-
voir computing [16], distinguished by its trainable component
only being a linear projector acting on the observable state
of the physical system [17]. This approach has the enormous
benefit of fast convex optimization through singular value de-
composition routines, and already has enabled temporal learn-
ing on various hardware platforms [11, 18–21].

Among many physical systems considered for PNNs, quan-
tum systems are believed to offer an enormous potential for
scalable, energy-efficient and faster machine learning [3, 22–
28], due to their evolution taking place in the Hilbert space
that scales exponentially with the number of nodes [29–35].
However, quantum machine learning (QML) on present-day
noisy intermediate-scale quantum (NISQ) hardware has so far
been restricted to training and inference on low-dimensional
static data due to several difficulties. A fundamental restric-
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tion is Quantum Sampling Noise (QSN) – the unavoidable un-
certainty arising from the finite sampling of a quantum system
– which limits the accuracy of both QML training and infer-
ence [4, 5, 36] even on a fault-tolerant hardware. Secondly,
the training of a quantum system often encounters so-called
barren plateaus in the optimization landscape [37, 38], which
are exponentially difficult to resolve, hindering the implemen-
tation of QML at practical scales.

Two further concerns arise when considering inference on
long data streams, which call into question whether quantum
systems can even in principle be employed for online learn-
ing on streaming data. Firstly, without quantum error cor-
rection the operation fidelities and finite coherence times of
constituent quantum nodes places a limit on the size of data
on which inference can be performed [1, 2], which would ap-
pear to rule out inference on long data streams. Secondly,
the nature of measurement on quantum systems imposes a
fundamental constraint on continuous information extraction
over long times. Backaction due to repeated measurements
on quantum systems necessitated by inference on streaming
data is expected to lead to rapid distribution of information
between different parts of the system, a phenomenon known
as information scrambling and thermalization [6, 39], mak-
ing it extremely difficult to track or retrieve the information
correlations in the input data. This constraint persists even in
an ideal system with perfect coherence, such as one that may
be realized by a fault-tolerant quantum computer. It is not
known precisely what conditions need to be satisfied to avoid
information scrambling. For classical dynamical systems, a
strict condition known as the fading memory property [7, 40]
is required for a physical system to retain a persistent tem-
poral memory that does not degrade on indefinitely long data
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streams. This imposes restrictions on the design of a classical
reservoir and encoding of input data. Here, a mathematical
framework known as Volterra Series theory [41] provides the
basis and guidance for analyzing the necessary conditions a
physical system has to satisfy for the fading memory prop-
erty. Such a general theory for quantum systems has so far
proved to be elusive.

Here we present a Volterra series theory for quantum sys-
tems that accounts for measurement backaction, necessary for
analyzing the conditions necessary for endowing a quantum
system with a persistent temporal memory on streaming data.
Based on this Quantum Volterra Theory we propose an al-
gorithm, NISQ Reservoir Computing (NISQRC), that lever-
ages recent technical advances in mid-circuit measurements
to enable inference on an arbitrary long time-dependent sig-
nal, not limited by the coherence time of constituent physical
qubits (see Fig. 1). The property that enables inference on an
indefinitely-long input signal is intrinsic to the algorithm: it
survives even in the presence of QSN, and does not require
operating in a precisely-defined parameter subspace – and is
thus unencumbered by barren plateaus.

The practical viability of NISQRC is demonstrated through
application to a task of immense technological importance for
communications systems, namely, the equalization of a wire-
less communication channel. Channel equalization aims to re-
construct a message streamed through a noisy, non-linear and
distorting communication channel and has been employed in
benchmarking reservoir computing architectures [17, 20] as
well as other machine learning algorithms [42, 43]. This task
poses a challenge for parametric circuit learning-based algo-
rithms [25] because the number of symbols in the message,
Nts, to recover in the inference stage directly determines the
length of the encoding circuit, which in turn is limited by
the coherence time of the system. A more critical issue is
that the recovery has to be done online, as the message is
streamed, which structurally is not suitable for static encod-
ing schemes. We demonstrate, in Section I C, through experi-
ments on a 7-qubit quantum processor and numerical simula-
tions that NISQRC provides the key components so Nts can
be arbitrarily long, not limited by the coherence time. The
role of the coherence time is to set the temporal memory. We
show that by balancing the length of individual input encod-
ing steps with the rate of information extraction through mid-
circuit measurements, it is possible to endow the circuit with a
memory that is appropriate for the ML task at hand. Interest-
ingly, it is found that even in the limit of infinite coherence, the
temporal memory is still limited by this balance. Reliable in-
ference on a time-dependent signal of duration Trun = 117µs
is demonstrated on a 7-qubit quantum processor with qubit
lifetimes in the range 63µs – 164µs and T2 = 9µs – 231µs.
In our experiments longer durations are restricted by limita-
tions on mid-circuit buffer clearance. To leave no doubt that
a persistent memory can be generated, we first compare the
experimental results to numerical simulations with the same
parameters, showing excellent agreement. Building on the
reliability of numerical simulations in the presence of finite
coherence and noise model, we demonstrate that successful
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FIG. 1. Schematic representation of NISQRC architecture for ma-
chine learning on temporal data using a convex optimization algo-
rithm on finitely-sampled partial measurements. For concreteness,
the architecture is shown for a quantum circuit with projective com-
putational basis readout; both the underlying quantum system and
measurement scheme can be much more general. Temporal input
data is encoded into the evolution of the reservoir at every time-step
n via a quantum channel U(un); a non-trivial I/O map is enabled via
partial readout and subsequent reset of a Readout subsystem, while
a Memory subsystem retains memory of past inputs. Observables
x(n) are obtained via measurements (more precisely, stochastic un-
biased estimators X̄(n) of expected features are constructed from S
repetitions of the experiment, see Method III A), and a learned linear
combination is used to approximate the target functional y(n) of un.
The overall execution time of the circuit is O(NS), where N is the
length of input temporal sequence.

inference can be made on a signal of 5000 symbols, the in-
ference on which would require 500 lifetimes. Direct numer-
ical sampling, required for this demonstration, is not possible
for very deep circuits. We are able to do this demonstration
by a numerical method we introduce (see Methods III B) that
allows us to sample from repeated partial measurements on
circuits of arbitrary depth. We further show that other seem-
ingly reasonable-looking encoding methods adopted in previ-
ous studies lead to a sharp decline in performance. Drawing
upon the Quantum Volterra Theory, we unveil the underlying
cause: the absence of a persistent memory mechanism.

I. RESULTS

The general aim of computation on temporal data is
most naturally expressed in terms of functionals of a time-
dependent input u = {u−∞, · · · , u−1, u0, u1, · · · , u∞}.
A functional F : u 7→ y maps a bounded function
u to another arbitrary bounded function y, where y =
{y−∞, · · · , y−1, y0, y1, · · · , y∞}. Without loss of general-
ity these functions can be normalized; we choose un ∈
[−1, 1] and yn ∈ [−1, 1]. Within the reservoir computing
paradigm [44], this processing is achieved by extracting out-
puts x(n), where n is a temporal index, from a physical
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system evolving under said time-dependent stimulus un ≡
u(n). Learning then entails finding a set of optimal time-
independent weights w to best approximate a desired F with
a linear projector yn ≡ y(n) = w ·x(n). If the physical sys-
tem is sufficiently complex, its temporal response x(n) to a
time-dependent stimulus u is universal in that it can be used to
approximate a large set of functionals F [u] with an error scal-
ing inversely in system-size and using only this simple linear
output layer [32, 33, 45].

To analyze the utility of this learning framework, it proves
useful to quantify the space of functionals F [u] that are acces-
sible. For classical non-linear systems, a firmly-established
means of doing so is a Volterra series representation of the
input-output (I/O) map [7]:

xj(n) =

∞∑
k=0

∞∑
n1=0

· · ·
∞∑

nk=nk−1

h
(j)
k (n1, · · · , nk)

k∏
κ=1

un−nκ (1)

where the Volterra kernels h
(j)
k (n1, · · · , nk) characterize the

dependence of the systems’ measured output features at time
n on its past inputs un−nκ . Hence the support of h(j)

k over
the the temporal domain (n1, · · · , nk) quantifies the notion of
memory of a particular physical system, with the kernel or-
der k being the corresponding degree of nonlinearity of the
map. Most importantly, the Volterra series representation de-
scribes a time-invariant I/O map, as well as the property of
fading memory, which roughly translates to the property that
the reservoir forgets initial conditions and thus depends more
strongly on more recent inputs [46]. Such a time-invariant
map is essential for a physical system to be reliably employed
for inference on an input signal of arbitrary length, and thus
for online time series processing.

In classical physical systems, the existence of a unique in-
formation steady state and the resulting fading memory prop-
erty is determined only by the input encoding dynamics – the
map from input series to system state. More explicitly, the in-
formation extraction step (sometimes referred to as the “out-
put layer”) on a classical system is considered to be a passive
action, so that the state can always be observed at the pre-
cision required. However for physical systems operating in
the quantum regime, the role of quantum measurement the-
ory is fundamental: in addition to the inherent uncertainty in
quantum measurements as dictated by the Heisenberg uncer-
tainty principle, the conditional dependence of the statistical
system state on prior measurement outcomes – referred to as
backaction – strongly determines the information that can be
extracted. Recent work in circuit-based quantum computa-
tion has shown that the qualitative features of the statistical
steady state of monitored circuits strongly depends on the rate
of measurement [47, 48]. In particular, generic quantum sys-
tems that alternate dynamics and measurement (input encod-
ing and output in the present context) are known to give rise to
deep thermalization of the memory subsystem [49, 50], result-
ing in a Haar-random state with vanishing temporal memory.
The absence of a comprehensive famework in QML for ana-
lyzing and implementing an encoding-decoding system with
finite temporal memory, along with characterization tools for

the accessible set of input-output functionals, has hindered
both a systematic study and the practical application of online
learning methods.

Here, we develop a general temporal learning framework
suitable for qubit-based quantum processors and the associ-
ated methods of analysis based on an appropriate generaliza-
tion of the Volterra Series analysis to monitored quantum sys-
tems, the Quantum Volterra Theory (QVT). Our approach in-
corporates the effects of backaction that results from quantum
measurements in the process of information extraction.

Consider the ‘input’ component of the map given by a
pipeline (encoding) that injects temporal data {un} to an
L-qubit system through the parameterized quantum channel
U(un)ρ̂ = eτL(un)ρ̂, acting over a time τ , where L is given
by:

L(u)ρ̂ = −i[Ĥ(u), ρ̂] +DTρ̂. (2)

Here the input appears in the Hamiltonian Ĥ(u), while DT =∑L
i=1 γiD[σ̂−,z

i ] describes dissipative processes. To enable
persistent memory in the presence of quantum measurement,
we separate the L-qubit system into M Memory qubits and R
Readout qubits (L = M+R). After evolution under any input
un, only the R Readout qubits are (simultaneously) measured;
this separation therefore allows for the concept of partial mea-
surements of the full quantum system, which proves critical
to the success of our learning framework. The measurement
scheme itself can be very general, characterized by a positive
operator-valued measure (POVM)

OR =
{
M̂j

∣∣∣M̂j = Î⊗M ⊗ Êj

}
(3)

satisfying Êj ⪰ 0 and
∑

j Êj = Î⊗R. A simple example
is the projective measurement of a complete set of commut-
ing observables, given by Êj = |bj⟩⟨bj | where each bit-
string bj is the R-bit binary representation of integer j ∈
{0, 1, · · · , 2R−1} denoting the bit-wise state of the measured
qubits. Then, a single evolution step for input un constitutes
unmonitored evolution via U(un), followed by measurement
of the Readout subsystem to obtain measured observables at
time step n,

xj(n) = Tr(M̂j ρ̂
MR
n ), (4)

where ρ̂MR
n is the effective full L-qubit system state at time

step n (see Methods III B for further details).

While for null inputs (i.e. un = 0 for all n) such quan-
tum systems are guaranteed to have a unique statistical steady
state, the existence of a nontrivial memory and kernel struc-
ture is much more involved. Through QVT (see Methods
III B), we show that these requirements place strong con-
straints on the encoding and measurement steps viz. the choice
of (U , M̂j). This then enables us to propose an algorithm
for online learning that provably provides a controllable and
time-invariant temporal memory (which will be referred to as
persistent memory) – enabling inference on arbitrarily long
input sequences even on NISQ hardware without any error-
mitigation or correction. We refer to this general algorithm as
NISQRC.
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A. Quantum Volterra Theory and NISQRC

NISQRC is distinguished by an iterative encode-measure-
reset scheme; measure-reset is formally described by the
POVM operators Êj = K̂†

j K̂j in Eq. (3), with non-diagonal
Kraus operators K̂j = |b0⟩⟨bj |. Explicitly for each step n:
the system starts in the state ρ̂Mn−1 ⊗ |0⟩⟨0|⊗R, the input un

is encoded via U(un), and the Readout qubits are measured
and reset to their ground state (irrespective of the measure-
ment outcome). This process is iterated on the resulting state
ρ̂MR
n to process subsequent inputs um>n, as depicted in Fig. 1.

The output yn ≡ y(n) = w ·x(n) is obtained from the mea-
surement results in each step, defining the functional I/O map
which we characterize next (see details in Methods III A and
III B).

This structure elucidates the naming of the unmeasured
Memory qubits: these are the only qubits that retain mem-
ory of past inputs. We note that reset operations have been
used implicitly in prior work on quantum reservoir comput-
ing, where the successive inputs are encoded in the state of
an ‘input’ qubit [31, 51]. In NISQRC the purpose of partial
reset operation is instead to endow the system with asymp-
totic time-invariance, a finite persistent memory and a non-
trivial Volterra Series expansion (see Methods III B and Sup-
plementary Information (SI) C 3). Through analytical argu-
ments based on the QVT, we show that omitting the partial
reset operation renders all Volterra kernels trivial – a finding
corroborated by our experimental results in Fig. 4.

QVT also provides a way to characterize the nontrivial I/O
maps enabled by the NISQRC algorithm realized by a given
encoding, which in turn can aid encoding design for a given
ML task, as we demonstrate later. Remarkably, we show that
this can be done even in the presence of dissipation and de-
coherence. For concreteness, consider a specific Ising Hamil-
tonian encoding Ĥ(u) = Ĥ0 + u · Ĥ1 inspired by quantum
annealing and simulation architectures (other ansätze can like-
wise be considered),

Ĥ0 =
∑
⟨i,i′⟩

Ji,i′ σ̂
z
i σ̂

z
i′ +

L∑
i=1

hx
i σ̂

x
i , Ĥ1 =

L∑
i=1

hz
i σ̂

z
i . (5)

The coupling strength Ji,i′ , transverse x-field strength hx
i and

longitudinal z-drive strength hz
i are randomly chosen, but then

fixed for all inputs {un} (see SI A for more details). The
encoding channel is applied for duration τ , and each qubit has
a finite lifetime T1 = γ−1. We will specify the number of
Memory and Reset qubits of a given QRC with the notation
(M +R).

In Fig. 2(a) we plot the first two Volterra kernels h1 and h2

(cf. Eq. (1)) for a random (2 + 1)-qubit QRC using the above
encoding and the reset scheme. The expression for these ker-
nels have been derived from the QVT and are given in Meth-
ods, Eqs. (C19, C20). Importantly, we find all kernels have an
essential dependence on the statistical steady state or fixed-
point in the absence of any input: ρ̂MFP = limn→∞ ρ̂Mn

∣∣
un=0

.

FIG. 2. QVT analysis for (M+R)-qubit reservoir. (a) First and sec-
ond order Volterra kernels in a (2 + 1)-qubit QRC, which vanish at
large n1 and n2 due to finite memory nM. (b) Fixed-point of memory
Memory subsystem ρ̂MFP with reset (top) and without reset (bottom),
starting from an arbitrary initial state (center). Without reset, the
fixed point is always the trivial fully-mixed state and Volterra kernels
vanish. Top panel shows the distribution of the 4M = 256 eigen-
values of P0 in a (4 + 2)-qubit QRC, where red dots correspond to
the static unit eigenvalue λ1 = 1. The remaining eigenvalues λα≥2

(blue) evolve with evolution time τ , leading to a variable memory
time. Bottom panel shows the resulting memory time nM as a func-
tion of the evolution duration τ . (c) Memory time nM as a function
of qubit lifetimes T1 = γ−1, in terms of the evolution duration τ in a
(4 + 2)-qubit QRC. Provided T1 ≫ τ , nM → n0

M, so that the QRC
memory is mostly dominated by its lossless dynamical map, and not
by T1 in this regime.

Here ρ̂Mn
∣∣
un=0

= Pn
0 ρ̂

M
0 is obtained by n applications of the

null-input single-step quantum channel P0, defined in Meth-
ods III B. The properties of quantum Volterra kernels, includ-
ing their characteristic decay time, can be related to the spec-
trum of P0, defined by P0ϱ̂

M
α = λαϱ̂

M
α . Here ϱ̂Mα are eigenvec-

tors that exist in the 4M -dimensional space of Memory sub-
system states. The eigenvalues satisfy 1 = λ1 ≥ |λ2| ≥
· · · ≥ |λ4M | ≥ 0; examples are plotted in Fig. 2(b) for vari-
ous values of τ . The unique eigenvector corresponding to the
largest eigenvalue λ1 = 1 is special, being the fixed-point of
the Memory subsystem, ϱ̂M1 = ρ̂MFP, reached once transients
have died out.

The second largest eigenvalue λ2 determines the time over
which memory of an initial state persists as this fixed point
is approached, and is used to identify a memory time nM =
−1/ ln |λ2|. Note that this quantity is dimensionless and can
be converted to actual passage of time through multiplica-
tion by τ , while nM itself non-trivially depends on τ (see
Fig. 2(b)). The memory time describes an effective ‘envelope’
for a system’s Volterra kernels; additional nontrivial structure
is also required for QRC to produce meaningful functionals of
past inputs. With the spectral problem at hand, we next ana-
lyze the information-theoretical benefit of the reset operation.
Firstly, the absence of the unconditional reset operation pro-
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duces a unital P0 [52] with resulting ρ̂MFP = I⊗M/2M . This
fully-mixed state is inexorably approached after nM steps un-
der any input sequence and retains no information on past in-
puts: all Volterra kernels therefore vanish, despite a generally-
finite nM. Such algorithms (e.g. Refs. [32, 35]) are only capa-
ble of processing input sequences of length nM and would not
retain a persistent memory necessary for inference on longer
sequences of inputs. Hence such encodings would be unsuit-
able for online learning on streaming data. The possibility of
inference through the transients have been observed and uti-
lized before (see e.g. Ref. [18, 53, 54]) in the context of classi-
cal reservoir computing. However, the simple yet essential in-
clusion of the purifying reset operation avoids unitality – more
generally, a common fixed point for all u-encoding channels
– which we find is the key to enabling nontrivial Volterra
kernels and consequent online QRC processing (see Methods
III B). Once such an I/O map is realized, λα and the conse-
quent memory properties can be meaningfully controlled by
the QRC encoding parameters. As shown in Fig. 2(b) the
characteristic decay time set by nM, for instance, decreases
across several orders-of-magnitude with increasing τ .

The partial measurement and reset protocol also resolves
the unfavorable quadratic runtime scaling of prior approaches.
A wide range of proposals and implementations of QRC [32,
34, 55] consider the read out of all constituent qubits at ev-
ery output step, terminating the computation. Not only does
this preclude inference on streaming data, it requires the entire
input sequence to be re-encoded to proceed one step further
in the computation, leading to an O(N2S) running time. As
shown in schematic Fig. 1, incorporating partial measurement
with reset in NISQRC does not require such a re-encoding;
the entire input sequence can be processed in any given mea-
surement shot S, enabling online processing with an O(NS)
runtime, while maintaining a controllable memory timescale.

Most importantly, the nontrivial nature of Volterra kernels
realized by the NISQRC algorithm is preserved under the in-
clusion of dissipation. For example, we explore the effect of
finite qubit T1 on nM in Fig. 2(c). If T1/τ > n0

M, where n0
M

is the memory time of the lossless map, then nM → n0
M and is

essentially independent of T1, determined instead by the uni-
tary and measurement-induced dynamics. This requirement,
which can be met in contemporary quantum devices for n0

M
values relevant to practical tasks, ensures that dissipation does
not destroy the Volterra kernel structure. As a result, lossy
QRCs can still be deployed for online processing, with a to-
tal run time Trun that is unconstrained by (and can therefore
far exceed) T1. We will demonstrate this via simulations in
Sec I B with Trun ≫ T1, and via experiments in Sec. I C for
Trun ≃ T1; in the latter Trun is limited only by memory buffer
constraints on the classical backend.

B. Practical machine learning using temporal data

Thus far, we have assumed outputs to be expected features
xj(n), which in principle assumes an infinite number of mea-

surements. In any practical implementation, one must instead
estimate these features with S shots or repetitions of the algo-
rithm for a given input u. The resulting QSN constrains the
learning performance achievable in experiments on quantum
processors in a way that can be fully characterized [4], and
is therefore also included in numerical simulations which we
present next.

To demonstrate the utility of the NISQRC framework, we
consider a practical application of machine learning on time-
dependent classical data: the channel equalization (CE) task.
Suppose one wishes to transmit a message m(n) of length N ,
which here takes discrete values m : [N ] → {−3,−1, 1, 3},
through an unknown noisy channel to a receiver. This medium
generally distorts the signal, so the received version u(n) is
different from the intended m(n). Channel equalization seeks
to reconstruct the original message m(n) from the corrupted
signal u(n) as accurately as possible, and is of fundamental
importance in communication systems. Specifically, we as-
sume the message is corrupted by nonlinear receiver satura-
tion, inter-symbol interference (a linear kernel), and additive
white noise [17, 20] (additional details in SI F). As shown in
Fig. 3(a), even if one has access to the exact inverse of the
resulting nonlinear filter, the signal-to-noise (SNR) of the ad-
ditive noise bounds the minimum achievable error rate. We
also show the error rates of simple rounding and single-step
logistic regression on u(n) directly for comparison: logis-
tic regression outperforms rounding (≈30%), which is better
than random guessing (75%), but both methods are severely
limited by their linear, memory-less processing.

We now perform the CE task using the NISQRC algorithm
on a simulated (2 + 4)-qubit reservoir under the ansatz of
Eq. (5). The ability to efficiently compute the Volterra ker-
nels for this quantum system immediately provides guidance
regarding parameter choices. In particular, we choose ran-
dom parameter distributions such that the memory time nM ≈
O(101) is on the order of the length of the distorting linear ker-
nel h(n). These QRCs have K = 24 = 16 readout features
{xj(n)}j∈[K] whose corresponding time-independent output
weights w are learned by minimizing cross-entropy loss on
100 training messages of length N = 100 (see SI F for ad-
ditional details). The resulting NISQRC performance on test
messages is studied in Fig. 3(a), where we compare two dis-
tinct coupling maps shown in (b). In the highly-connected
(lower) system the performance approaches the theoretical
bound for S → ∞; finite sampling (here, S = 105 is in the
range typically used in experiments) increases the error rate
as expected.

We note that the split system (upper) performs significantly
worse even without sampling noise: this is because the quan-
tum system lives in a smaller effective Hilbert space – the
product of two disconnected three-qubit systems – and is far
less expressive as a result. Although in both cases the num-
ber of measured features is the same, those from the con-
nected system span a richer and independent space of func-
tionals. This functional independence can be quantified by
the Jacobian rank RJ , which is the number of independent u-
gradients that can be represented by a given encoding (SI E);
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FIG. 3. (a) Error rates on test messages for the CE task with a
Hamiltonian ansatz (2 + 4)-qubit QRC for two distinct connectiv-
ities shown in (b) The fully-connected QRC in red has Jacobian rank
RJ = 2R−1 = 15 and is shown for both S → ∞ (circles) and finite
S = 105 (⋆), whereas the split QRC has RJ = 2(22 − 1) = 6 and
only S → ∞ is plotted in magenta. These are compared with the
error rates of naive rounding (black dash-dots), logistic regression
(yellow +), and the exact channel inverse (blue dashed). (c) Perfor-
mance of connected QRC on SNR = 20 dB test signals (solid) of
increasing length Nts ≤ 5000, with shots S = 105. Training error
on N = 100-length messages is indicated for comparison in dashed
lines. Without reset (red) or using 4 ancilla qubit ansatz with quan-
tum non-demolition (QND) readout (proposed in Ref. [35], green),
the algorithms both fail, approaching the random guessing error rate
and showing that both architectures suffer from the thermalization
problem. Performance is only slightly reduced from the dissipation-
free case (blue) when strong decay T1 = 10τ is included (purple).
All error rates in (c) are averaged over 8 different test messages.

an increased connectivity and complexity of state-description
generally manifests as an increase in the Jacobian rank and
consequent improved CE task performance. This observa-
tion can be viewed as a generalization of the findings in time-
independent computation [4] to tasks over temporally-varying
data, and also agrees with related recent theoretical work [34].

Most importantly, we demonstrate in Fig. 3(c) that the
NISQRC algorithm enables the use of a quantum reservoir
for online learning. In all cases studied here, N = 100 is
used for training and the length of the SNR = 20 dB test
messages Nts is varied. As suggested by the QVT, the per-
formance is unaffected by Nts even if it greatly exceeds the
lifetime of individual qubits: Nts = Trun/τ ≫ T1/τ = 10,
and NISQRC can therefore be used to perform inference on
an indefinite-length signal with noisy quantum hardware. As
seen in the same figure, while dissipation imposes only a small
constant performance penalty, the reset operation is critical: if
removed, the error rate increases to that of random guessing,
as the Volterra kernels vanish and the I/O map becomes trivial.

In particular, partial readout alone does not provide a per-

sistent memory, if not accompanied by reset of system qubits
in which inputs are encoded. An analysis based on the QVT
shows that such encodings (e.g. as utilized in a recent article
Ref. [35] based on a quantum non-demolition measurement
proposal in Ref. [32]) can still result in zero persistent mem-
ory and to an amnesiac reservoir. In this scheme, the quantum
circuit is coupled to ancilla qubits by using transversal CNOT
gates. While each projective measurement of ancillas leads to
read out of system qubits and their collapse to the ancilla state
via back-action, subsequent reset of the ancillas does not re-
set the system qubits. This scheme therefore suffers from the
same thermalization problem as any no-reset NISQRC does,
and hence has zero persistent memory. We verify this analysis
in Fig. 3(c) by implementing the CE task with a four-ancilla-
qubit circuit. The error rates are found to be very close to the
no-reset-NISQRC one, whose I/O map we have shown before
to be trivial (see also Fig. 3(c)).

C. Experimental results in quantum systems

We now demonstrate NISQRC in action by performing the
SNR = 20 dB CE task on an IBM Quantum superconduct-
ing processor. To highlight the generality of our NISQRC
approach, we now consider a circuit-based parametric en-
coding scheme inspired by a Trotterization of Eq. (5), suit-
able for gate-based quantum computers. In particular, we
use a L = 7 qubit linear subgraph of the ibm algiers de-
vice, with M = 3 memory qubits and R = 4 readout qubits
in alternating positions, as depicted in Fig. 4(a). The encod-
ing unitary for each time step n is also shown: Û(un) =(
W(J)Rz(θ

z + θIun)Rx(θ
x)
)nT , where Rx,z are compos-

ite Pauli-rotations applied qubit-wise, and W(J) defines com-
posite Rzz gates between neighbouring qubits, all repeated
nT = 3 times (for parameters θx,z,I , J and further details see
Methods III D).

Realizing the NISQRC framework with the circuit ansatz
depicted in Fig. 4(a) requires the state-of-the-art implementa-
tion of mid-circuit measurements and qubit reset, which has
recently become possible on IBM Quantum hardware [56].
We plot the testing error using the indicated linear chain of
the ibm algiers device as a function of the number of shots
S in solid blue Fig. 4(b), alongside simulations of both the
ideal unitary circuit and with qubit losses in open circles. We
clearly observe that performance is influenced by the num-
ber of shots available, and hence by QSN. In particular, for
a sufficiently large S, the device outperforms the same lo-
gistic regression method considered previously. For the cir-
cuit runs, the average qubit coherence times over 7 qubits are
T av
1 = 124 µs, T av

2 = 91µs (see SI I for the ranges of all pa-
rameters, which varies over the time of runs as well), while the
total circuit run time for a single message is Trun ≈ 117 µs.
Even though Trun ≃ T av

1 , the CE task performance using
NISQRC on ibm algiers is essentially independent of qubit
lifetimes. This is emphatically demonstrated by the excellent
agreement between the experimental results and simulations
assuming infinite coherence-time qubits. In fact, finite qubit
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FIG. 4. (a) (3 + 4)-qubit linear chain of the ibm algiers device
used to perform the CE task. Qubits indexed {8, 14, 19} are used
for Memory and qubits {5, 11, 16, 22} for Readout, and gate-
decomposition of the encoding unitary Û(un) is depicted. Removing
gates shaded in brown yields two smaller chains to explore the role of
connectivity, while removing reset operations (shaded peach) allows
switching from a non-unital to a unital I/O map. (b) Testing error
rates for the SNR = 20 dB CE task of Sec. I B with N = 20 on the
ibm algiers device in filled circles and in simulation in open circles,
as a function of number of shots S. The connected circuit in blue
outperforms the split circuit in brown and the circuit without reset
in peach. For comparison, we plot the testing error rate of logistic
regression (yellow line), as well as random guessing (black dashed
line).

decay consistent with ibm algiers leaves simulation results
practically unchanged (as plotted in dashed blue); we find that
T1 times would have to be over an order of magnitude shorter
to begin to detrimentally impact NISQRC performance on this
device (see SI G). We further find that artificially increasing
Trun beyond T1 by introducing controlled delays in each layer
also leaves performance unchanged (see SI H).

Using the same device we are able to reiterate several im-
portant aspects of the NISQRC algorithm. First, we consider
the same CE task with a split chain, where the connection
between the qubits labelled ‘14’ and ‘16’ on ibm algiers is
severed by removing the Rzz gate highlighted in brown in
Fig. 4(a). The resulting device performance using these two
smaller chains is worse, consistent both with simulations of
the same circuit and the analogous split Hamiltonian ansatz
studied in Sec. I B. Next we return to the 7 qubit chain but now
remove reset operations in the NISQRC architecture, shaded
in red in Fig. 4(a): all other gates and readout operations are
unchanged. The device performance now approaches that of
random guessing: the absence of the crucial reset operation

leads to an amnesiac QRC with no dependence on past or
present inputs. This remarkable finding reinforces that reset
operations demanded by the NISQRC algorithm are therefore
essential to imbue the QRC with memory and enable any non-
trivial temporal data processing.

We note that there is room for improvement in CE perfor-
mance when compared against Hamiltonian ansatz NISQRC
of similar scale in Fig. 3. A key difference is the reduced num-
ber of connections in the nearest-neighbour linear chain em-
ployed on ibm algiers; including effective Rzz gates between
disconnected qubits significantly increases the gate-depth of
the encoding step, enhancing sensitivity to gate-fidelity in-
creasing runtimes. The demonstrated circuit ansatz can also
be optimized - using knowledge of the Volterra kernels - for
better nonlinear processing capabilities demanded by the CE
task, in addition to memory capacity determined by nM. Nev-
ertheless, the demonstrated performance and robustness of the
NISQRC framework to dissipation already suggests its via-
bility for increasingly complex time-dependent learning tasks
using actual quantum hardware.

II. DISCUSSION

By enabling online learning in the presence of losses,
NISQRC paves the way to harness quantum machines for tem-
poral data processing in far more complex applications than
the CE task demonstrated here. Examples include spatiotem-
poral integrators, ML tasks where spatial information is tem-
porally encoded, such as video processing. Recent results pro-
vide evidence that the most compelling applications however
lie in the domain of machine learning on stochastic measure-
ment trajectories originating from other, potentially complex
quantum systems [21, 57] for the purposes of quantum state
analysis.

In tackling such increasingly complex tasks, the scale of
quantum devices required is likely to be larger than those em-
ployed here. The NISQRC framework can be applied irre-
spective of device size; however, its readout features at a given
time live in a K = 2R dimensional space. For applications re-
quiring a large R, the exponential growth of the feature-space
dimension may give rise to concerns with under-sampling, as
in practice the available number of shots S may not be suffi-
ciently large. In such large-R regimes, certain linear combina-
tions of measured features can be found, known as eigentasks,
that provably maximize the SNR [4] of the functions approx-
imated by a given physical quantum system trained with S
shots. Eigentask analysis provides very effective strategies for
noise mitigation. In Ref. [4] the Eigentask Learning method-
ology was proposed to enhance generalization in supervised
learning. For the present work, such noise mitigation strate-
gies were not needed as the size of the devices used were suf-
ficiently small to efficiently sample. An interesting direction
is the application of Eigentask analysis to NISQRC, which we
leave to future work.

The present work, and the availability of an algorithm for
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information processing beyond the coherence time, opens up
new opportunities for mid-circuit measurement and control.
While mid-circuit measurement is essential for quantum error
correction [58], its recent availability on cloud-based quantum
computers has allowed exploration of other quantum applica-
tions on near-term noisy qubits. Local operations such as mea-
surement followed by classical control for gate teleportation
have been used to generate nonlocal entanglement [59–61].
Additionally, mid-circuit measurements have been employed
to study critical phenomena such as phase transitions [62–64]
and are predicted to allow nonlinear subroutines in quantum
algorithms [65]. The present work opens up a new direction
in the application space, namely the design of self-adapting
circuits for inference on temporal data with slowly-changing
statistics. This would require dynamic programming capa-
bilities for mid-circuit measurements, not employed in the

present work. We show here that implementing even the
relatively simple CE task challenges current capabilities for
repeated measurements and control; having a means to de-
ploy more complex quantum processors for temporal learn-
ing via NISQRC can push hardware advancements to more
tightly integrate quantum and classical processing for efficient
machine-based inference.

Note added. During the final stages of this work, we be-
came aware of related work, Ref. [66], and we coordinated to
release our papers simultaneously. Ref. [66] also introduces
a framework for quantum reservoir computing on continuous
time domain signals. Similar to their reservoir, our framework
also harnesses the capabilities provided by mid-circuit mea-
surements. In contrast with their work, we consider the prob-
lem of online inference of time-dependent targets on stream-
ing time-dependent data.
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reservoir computing using finitely-sampled quantum systems,
arXiv:2110.13849 [quant-ph] (2021).

[58] R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ansmann,
F. Arute, K. Arya, A. Asfaw, J. Atalaya, R. Babbush, D. Ba-
con, J. C. Bardin, J. Basso, A. Bengtsson, S. Boixo, G. Bor-
toli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. B.
Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell,
Y. Chen, Z. Chen, B. Chiaro, J. Cogan, R. Collins, P. Con-
ner, W. Courtney, A. L. Crook, B. Curtin, D. M. Debroy,
A. Del Toro Barba, S. Demura, A. Dunsworth, D. Eppens,
C. Erickson, L. Faoro, E. Farhi, R. Fatemi, L. Flores Bur-
gos, E. Forati, A. G. Fowler, B. Foxen, W. Giang, C. Gid-
ney, D. Gilboa, M. Giustina, A. Grajales Dau, J. A. Gross,
S. Habegger, M. C. Hamilton, M. P. Harrigan, S. D. Harring-
ton, O. Higgott, J. Hilton, M. Hoffmann, S. Hong, T. Huang,
A. Huff, W. J. Huggins, L. B. Ioffe, S. V. Isakov, J. Iveland,
E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, K. Kechedzhi,

https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1126/science.abn7293
https://doi.org/10.1103/PhysRevX.12.031010
https://doi.org/10.1103/PhysRevX.12.031010
https://doi.org/10.1103/PhysRevResearch.4.033007
https://doi.org/10.1103/PhysRevResearch.4.033007
https://doi.org/10.1002/qute.202100027
https://doi.org/10.1103/physrevapplied.8.024030
https://doi.org/10.1103/physrevapplied.8.024030
https://doi.org/10.1103/PhysRevApplied.14.024065
https://doi.org/10.1103/PhysRevApplied.14.024065
https://doi.org/10.1038/s42005-021-00556-w
https://doi.org/10.1103/PhysRevResearch.4.033176
https://doi.org/10.1103/PhysRevResearch.4.033176
https://arxiv.org/abs/2310.06706
https://doi.org/10.1103/PhysRevResearch.4.033154
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-27045-6
https://arxiv.org/abs/2210.14926
https://doi.org/10.1109/tcs.1983.1085328
https://doi.org/10.1109/tcs.1983.1085328
https://arxiv.org/abs/2212.14641
https://doi.org/10.1109/tsmcc.2009.2038279
https://doi.org/10.1109/tsmcc.2009.2038279
https://doi.org/10.1109/tsmcc.2009.2038279
https://doi.org/10.1155/2022/2053086
https://doi.org/10.1007/978-981-13-1687-6
https://doi.org/10.1007/978-981-13-1687-6
https://doi.org/10.1109/TNNLS.2019.2899649
https://doi.org/10.1109/TNNLS.2019.2899649
http://dx.doi.org/10.1103/PhysRevX.9.031009
http://dx.doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevLett.128.010604
https://doi.org/10.1103/PhysRevLett.128.010604
https://doi.org/10.1038/s41586-022-05442-1
https://doi.org/10.1103/PRXQuantum.4.030322
https://doi.org/10.1038/s41534-023-00682-z
https://doi.org/10.1038/s41534-023-00682-z
https://doi.org/10.1364/OE.20.003241
https://doi.org/10.1364/OE.20.003241
https://doi.org/10.1103/PhysRevResearch.4.013137
https://doi.org/10.1103/PhysRevResearch.4.013137
https://doi.org/10.1038/s41598-022-05061-w
http://arxiv.org/abs/2211.01925
http://arxiv.org/abs/2110.13849


10

J. Kelly, T. Khattar, M. Khezri, M. Kieferová, S. Kim, A. Y.
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III. METHODS

A. Generating features via conditional evolution and
measurement

Here we detail how an input-output functional map is ob-
tained in the NISQRC framework. The quantum system is
initialized to ρ̂MR

0 = ρ̂M0 ⊗ |0⟩⟨0|⊗R, where ρ̂M0 is the initial
state, which is usually set to be |0⟩⟨0|⊗M . Then, for each run
or ‘shot’ indexed by s, the process described in the following
paragraph is repeated.

Before executing the n-th step, the overall state can be de-
scribed as ρ̂M,cond

n−1 ⊗ |0⟩⟨0|⊗R (usually pure), where the su-
perscript cond emphasizes that the Memory subsystem state
is generally conditioned on the history of all previous in-
puts {um}m≤n−1 and all previous stochastic measurement
outcomes. The Readout subsystem state is in a specific
pure state, which can be ensured by the deterministic re-
set operation we describe shortly. Then, the current input
un is encoded in the quantum system via the parameterized
quantum channel U(un), generating the state ρ̂MR,cond

n =

U(un)
(
ρ̂M,cond
n−1 ⊗ |0⟩⟨0|⊗R ). In this work, U(un) takes the

form of continuous evolution under Eq. (2) for a duration τ ,
or the discrete gate-sequence Û(un) depicted in Fig. 4. The
R readout qubits are then measured per Eq. (3), and the ob-
served outcome is represented as an R-bit string: b(s)(n) =

(b
(s)
L+1(n), · · · , b

(s)
L+R(n)). Here we consider simple ‘compu-

tational basis’ (i.e. σ̂z) measurements, where each bit simply
denotes the observed qubit state. A given outcome j occurs
with conditional probability Tr(M̂j ρ̂

MR,cond
n ) as given by the

Born rule, and the quantum state collapses to the new state
ρ̂M,cond
n ⊗|bj⟩⟨bj | associated with this outcome. Finally, all R

readout qubits are deterministically reset to the ground state
(regardless of the measurement outcome); the quantum sys-
tem is therefore in state ρ̂M,cond

n ⊗|0⟩⟨0|⊗R. This serves as the
initial state into which the next input un+1 is encoded, and
the above process is iterated until the entire input sequence u
is processed. It is important to notice that ρ̂Mn depends on the
observed outcome in step n and thus the quantum state and its
dynamics for a specific shot is conditioned on the history of
measurement outcomes {b(s)i (m)}m≤n.

By repeating the above process for S shots, one obtains
what is effectively a histogram of measurement outcomes at
each time step n as represented in Fig. 1. The output features
are taken as the frequency of occurrence of each measurement
outcome, as in Ref. [4]: X̄j(n) =

1
S

∑S
s=1 X

(s)
j (n;u), where

X
(s)
j (n;u) = δ(b(s)(n), bj) counts the occurrence of out-

come j at time step n. These features are stochastic unbiased
estimators of the underlying quantum state probability ampli-
tudes xj(n) = EX

[
X

(s)
j (n;u)

]
= limS→∞ X̄j(n) [4]. As

noted in the main text, the final NISQRC output is obtained
by applying a set of time-independent linear weights to ap-
proximate the target functional ȳn = w · X̄(n). Importantly,
during each shot s ∈ [S], we execute a circuit with depth N ;
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the total processing time is therefore O(NS). If instead one
re-encoded Nm previous inputs prior to each successive mea-
surement the processing time is O(NmNS): Nm = O(N)
if the entire past sequence is re-encoded as is conventionally
done in QRC [31, 32, 51].

B. The Quantum Volterra Theory (QVT) and Analysis of
NISQRC

At any given time step n, the conditional dependence on
previous measurement outcomes, presented in Methods III A,
is usually referred to as backaction. Defining ρ̂MR

n as the ef-
fective pre-measurement state of the quantum system at time
step n of the NISQRC framework, quantum state evolution
from time step n− 1 to n can be written via the maps:

ρ̂MR
n = U(un)

(
TrR(ρ̂

MR
n−1)⊗ |0⟩⟨0|⊗R

)
, (6)

ρ̂Mn = TrR(U(un)(ρ̂
M
n−1 ⊗ |0⟩⟨0|⊗R

) ≡ C(un)ρ̂
M
n−1, (7)

which describes the reset of the post-measurement Readout
subsystem after time step n − 1, followed by input encoding
via U(un) into the full quantum system state. With an eye
towards the construction of an I/O map, it proves useful to
introduce the expansion of the relevant single-step maps U(u)
and C(u) in the basis of input monomials uk: U(u)ρ̂MR =∑∞

k=0 u
kRkρ̂

MR and C(u)ρ̂M =
∑∞

k=0 u
kPkρ̂

M. Then, via
iterative application of Eq. (7), ρ̂MR

n can be written as:

ρ̂MR
n =

∞∑
k1,···,kn=0

uk1
1 · · ·ukn

n Rkn

(
Pkn−1

· · ·Pk1
ρ̂M0 ⊗|0⟩⟨0|⊗R

)
. (8)

The measured features xj(n) can then be obtained via
xj(n) = Tr(M̂j ρ̂

MR
n ).

In the SI C 3, we show that these xj(n) obtained using the
NISQRC framework can indeed be expressed as a Volterra
series

xj(n) =

∞∑
k=0

∞∑
n1=0

· · ·
∞∑

nk=nk−1

h
(j)
k (n1, · · · , nk)

k∏
κ=1

un−nκ (9)

in the infinite-shot limit. The existence of this manifestly
time-invariant form is only possible due to the existence of an
information steady-state, guaranteed for a quantum mechani-
cal system under measurement.

Due to fading memory, the Volterra kernel
h
(j)
k (n1, · · · , nk) characterizes the dependence of the

systems’ output at time n on inputs at most nk steps in the
past (recall n1 ≤ · · · ≤ nk, see Eq. (9)). The evolution
of ρ̂MR

n upto step n − nk, namely for all i < n − nk, is
thus determined entirely by the null-input superoperator
P0. Then the existence of a Volterra series simply requires
the existence of an asymptotic steady state for the Memory
subsystem, limn→∞ Pn

0 ρ̂
M
0 = ρ̂MFP. As shown in the

SI C 3, such a fixed point is usually ensured by the map

P0ρ̂
M = C(0)ρ̂M = TrR(U(0)(ρ̂M ⊗ |0⟩⟨0|⊗R

)) being a
CPTP map in generic quantum systems. This immediately
indicates the fundamental importance of P0, the operator that
corresponds to the single-step map of the Memory subsystem
under null input: it determines the ability of the NISQRC
framework to evolve the quantum system to a unique statisti-
cal steady state, guaranteeing the asymptotic time-invariance
property, and hence the existence of the Volterra series.

One byproduct of computing infinite-S features {xj(n)}
is that it enables us to approximately simulate {X̄j(n)} in
a very deep N -layer circuit for finite S, without sampling
individual quantum trajectories under N repeated projective
measurement described in Methods III A. In fact, given any
n, once we evaluate a probability distribution {xj(n) ≥ 0}
satisfying

∑
j xj(n) = 1, we can i.i.d. sample under this

distribution vector for S shots and construct the frequency
{X̃j(n)} as an approximation of {X̄j(n)}. The validity of
this approximation is ensured by the additive nature of loss
functions in dimension of time. More specifically, given Q
input sequences {u(q) ∈ [−1, 1]N}q∈[Q], a general form
of loss function is L = 1

QN

∑
q

∑
n L(X̄(n;u(q))). As

shown in Appendix C5 of Ref. [4], 1
Q

∑
q L(X̄(n;u(q))) ≈

1
Q

∑
q L(X̃(n;u(q))) in all orders of 1

S -expansion for any
n ∈ [N ], as long as Q is large enough. This is because the
probability distribution of {X̃j(n)} is exactly the same as the
distribution (marginal in time slice) of {X̄j(n)}. Therefore,
1

QN

∑
q

∑
n L(X̃(n;u(q))) is a good approximation of L .

In SI B 1 and C 3, we show that without the reset operation,
the fixed-point Memory subsystem density matrix is the iden-
tity, ρ̂MR

FP = Î⊗L/2L. While this steady state is independent
of the initial state and therefore possesses a fading memory,
it can be shown that the I/O map it enables is entirely inde-
pendent of all past inputs as well, so that all Volterra kernels
h
(j)
k = 0. This yields a trivial reservoir, unable to provide any

response to its inputs u. Such single-step maps C(u) are re-
ferred to as unital maps (maps that map identity to identity),
and must be avoided for the NISQRC architecture to approx-
imate any nontrivial functional. The inclusion of reset serves
this purpose handily, although we have found certain improper
encodings with reset to still result in unital maps C(u) (e.g.,
setting nT = 1 in the circuit ansatz depicted in Fig. 4).

A more rigorous sufficient condition for obtaining a
nontrivial functional map, referred to as fixed-point non-
preserving map in the main text, is that C(u) does not share
the same fixed points for all u. It is equivalently Pkϱ̂

M
FP ̸= 0

for some k ≥ 1, due to the identity C(u)ϱ̂MFP = ϱ̂MFP +∑∞
k=1 u

kPkϱ̂
M
FP. We will prove the importance of this cri-

teria in C 3 of SI. The breaking of this criteria will lead to a
memoryless reservoir for all earlier input steps: if Pkρ̂

M
FP = 0

for all k ≥ 1, then h
(j)
k (n1, n2, · · · , nk) ̸= 0 only if n1 =

n2 = · · · = nk = 0.
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C. Spectral theory of NISQRC: Memory, Measurement, and
Kernel structures

Recall that we can always define the spectral problem
P0ϱ̂

M
α = λαϱ̂

M
α where ϱ̂Mα are eigenvectors that exist in

the (2M )2 = 4M -dimensional space of Memory subsystem
states, and whose eigenvalues satisfy 1 = λ1 ≥ |λ2| ≥ · · · ≥
|λ4M | ≥ 0. The importance of the spectrum of P0 is obvi-
ous from the definition of ρ̂MFP already. As ρ̂MFP is the fixed
point of the map defined by P0, it must equal the eigenvector
ϱ̂M1 since λ1 = 1. Then writing the initial density matrix in
terms of these eigenvectors, ρ̂M0 =

∑
α d0αϱ̂

M
α , the fixed point

becomes ρ̂MFP = limn→∞

(
ϱ̂M1 +

∑
α≥2 d

0
αλ

n
αϱ̂

M
α

)
. This not

only reproduces the result limn→∞ Pn
0 ρ̂

M
0 = ρ̂MFP but also

shows that the approach to the fixed point ρ̂MFP = ϱ̂M1 must
be determined by the magnitude of λ2; the smaller the magni-
tude, the faster terms for α ≥ 2 decay and hence the shorter
the memory time.

To see more directly how the spectrum of P0 influences
memory of inputs, it is sufficient to analyze the Volterra ker-
nels in Eq. (1). Focusing on single-time contributions from
un−p to xj(n) at all orders of nonlinearity (multi-time contri-
butions are exponentially suppressed, see SI D), these may be
expressed as

∞∑
k=1

h
(j)
k (p⊗k)uk

n−p =

4M∑
α=2

ν(j)α λp−1
α Fα(un−p), (10)

which can be viewed as a spectral representation of Volterra
kernel contributions to the jth measured feature obtained via
POVM M̂j . Here, Fα(u) =

∑∞
k=1 c

(k)
α1 u

k define 4M − 1
internal features, so-called as they depend only on input en-
coding operators via Pkϱ̂

M
α′ =

∑4M

α=2 c
(k)
αα′ ϱ̂Mα , and are in par-

ticular independent of the measurement scheme. Nontrivial
Fα(u) and c

(k)
α1 can be guaranteed if Pkϱ̂

M
FP ̸= 0 for some

k ≥ 1. The dependence of observables on the measurement
basis is via coefficients ν

(j)
α = Tr(M̂jR0(ϱ̂

M
α ⊗ |0⟩⟨0|⊗R

)).
Crucially, the weighting of Fα(un−p) for p steps in the past
is determined by eigenvalues λp−1

α of P0. For each α ≥ 2, it
vanishes when we take long time limit p → ∞. This property
is usually referred as fading memory. It also clearly defines a
set of distinct, but calculable, memory fading rates {|λα|}α≥2.

Importantly, the ability to construct Volterra kernels and in-
ternal features enable us to approximately treat the infinite-
dimensional function xj(n) = Fj(u≤n) as a function with
support only over a space with effective task dimension deff =
O(nM), representing deff time steps in the past:

xj(n) = Fj(u≤n) ≈ Fj(un−deff
, · · · , un−1, un), (11)

and we can interpret the fading memory functional as a func-
tion: y(n) ≈ F(un−deff

, · · · , un−1, un). In other words, at
any given time NISQRC can approximate nonlinear functions
that live in a domain of dimension deff .

D. IBMQ Implementation

We recall that the encoding circuit Û(un) =(
W(J)Rz(θ

z + θIun)Rx(θ
x)
)nT for the experi-

mental IBMQ implementation in Sec. I C describes a
composite set of single and two-qubit gates repeated
nT times. Here Rx,z are composite Pauli-rotations
applied qubit-wise, e.g. Rz =

⊗
i R̂z(θ

z
i + θIi u).

W(J) defines composite two-qubit coupling gates,
W(J) =

∏
⟨i,i′⟩ Wi,i′(J) =

∏
⟨i,i′⟩ exp{−i(Jτ/nT )σ̂

z
i σ̂

z
i′}

for neighboring qubits i and i′ along a linear chain in the
device and some fixed J . The rotation angles θx,z,I are
randomly drawn from a positive uniform distribution with
limits [a, a + δ], where a = τ

nT
θx,z,Imin and δ = τ

nT
∆θx,z,I .

We find that letting the number of Trotterization steps nT = 3
is sufficient to generate a well-behaved null-input CPTP
map P0. Our hyperparameter choices are further tuned to
ensure a memory time nM commensurate with the CE task
dimension. The particular hyperparameter choices for the
plot in Fig. 4 are θx,z,Imin = {1.0, 0.5, 0.1}, ∆θx,z,I = θx,z,Imin ,
J = 1, nT = 3, and τ = 1.

In the experiment, mid-circuit measurements and qubit re-
sets are performed as separate operations, due to the differ-
ences in control flow paths between returning a result and the
following qubit manipulation [56]. Related hardware com-
plexities restrict us to a slightly shorter instance of the CE task
than considered in Sec. I B, with messages m(n) of length
N = 20, submitted in batches of 200 jobs with 100 cir-
cuits each and 125 observations (shots) per circuit in order
to prevent memory buffer overflows. Regardless, using cross-
validation techniques, we ensure that our observed training
and testing performance is not influenced by limitations of
dataset size. We also forego the initial washout period needed
to reach ρMR

FP for similar reasons. Finally, the Wi,i′(J) ro-
tations in the two-qubit Hilbert space that implement W(J)
are generated by the native echoed cross-resonance interaction
of IBM backends [67], which provides higher fidelity than a
digital decomposition in terms of CNOTs for Trotterized cir-
cuits [68].
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Appendix A: Details of the NISQRC architecture

1. The NISQRC algorithm

The underlying dynamical system we analyze in this article consists of L = M +R qubits, with M qubits serving as Memory
qubits and R qubits serving as Readout qubits. The evolution is governed by a Hamiltonian that is linearly parameterized by a
one-dimensional variable u ∈ [−1, 1] (serving as input):

Ĥ(u) = Ĥ0 + u · Ĥ1. (A1)

We choose a form of Ĥ0 and Ĥ1 that can be implemented in a quantum annealing system or analog quantum simulator in a
hardware-efficient way: Ĥ0 =

∑
⟨i,i′⟩ Ji,i′ σ̂

z
i σ̂

z
i′ +

∑L
i=1 h

x
i σ̂

x
i and Ĥ1 =

∑L
i=1 h

z
i σ̂

z
i The coupling strength Ji,i′ , transverse

x-field strength hx
i = hx + εxi and longitudinal z-drive strength hz

i = hz + εzi are pre-selected via randomness: Ji,i′ ∼
Unif[0, Jmax], εxi ∼ εxrms × N (0, 1) and εzi ∼ εzrms × N (0, 1). One thing that needs to be emphasized is that the encoding
scheme Eq. (A1) is general enough such that encoding Eq. (5) is merely an illustrative example. A variety of Ĥ0, Ĥ1 can be
employed as long as they are resource-efficiently realized in a physical platform.

In theory, the domain Z of n is infinite. However in practical experiments, it is impossible to feed an input sequence from
infinite past n = −∞ to infinite future n = ∞. Thus we cutoff infinity of time-step index into n ∈ [N ] ≡ {1, 2, · · · , N}. As
a summary, now we have a sequence of reservoir recurrent units, each of which is characterized by an underlying Hamiltonian
H(un) for all n ∈ [N ], and step evolution duration τ .

As what we will prove in Appendix B, since calculating readout feature functions {xj(n)}j∈[K] can be done by taking

xj(n) = Tr
(
M̂j ρ̂

MR
n

)
where the effective density matrix is ρ̂MR

n = U(un)
((

C(un−1) · · · C(u1)ρ̂
M
0

)
⊗ |0⟩⟨0|⊗R

)
, the full

dynamics of NISQRC can also be written into set of recurrent equations
ρ̂MR
n = U(un)

(
ρ̂Mn−1 ⊗ |0⟩⟨0|⊗R

)
,

x(n) = {xj(n)}j∈[K] = {Tr(M̂j ρ̂
MR
n )}j∈[K],

yn = w ·x(n).

(A2)

This algorithm induce a functional F : u 7→ y, where y(n) = yn. We define an observable

M̂w ≡
K−1∑
j=0

wjM̂j , (A3)

and therefore yn = Tr(M̂wρ̂MR
n ) which affords a great deal of convenience in our notation.

FIG. 5. NISQRC architecture to generate a functional map F : u 7→ y by using a qubit-based quantum system. The input function can be
written as a time-discrete sequence u = {u−∞, · · · , u−1, u0, u1, · · · , u∞}, which is encoded in the quantum system at every time step n

via a fixed encoding scheme, here shown as a Hamiltonian encoding Ĥ(un). Measured features X̄j(n) are constructed from finite samples S
under a specified measurement scheme at each time step (for example probabilities of measured bit-strings b(s)(n) under computational basis
measurement). The output function y = {y−∞, · · · , y−1, y0, y1, · · · , y∞} is constructed from these finitely-sampled measured features. The
goal of the trained functional F is to approximate a desired functional F⋆ : u 7→ y⋆, where y⋆ = {y⋆

−∞, · · · , y⋆
−1, y

⋆
0 , y

⋆
1 , · · · , y⋆

∞}, so that
under the same input u, y⋆

n ≈ yn ∀ n with as little error as possible.
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The readout features xj(n) are nothing but the respective probabilities of measuring bj at the n-th time step, and we call
this readout scheme the probability representation [4]. In the literature, the readout features are alternatively chosen to be the
quantum spin moments. In this moment representation, O′

R = {M̂j |M̂j = I⊗M ⊗⊗L
i=M+1 σ̂i} where each σ̂i ∈ {Î , σ̂z}.

These two different representations can be related by a Walsh-Hadamard transformation [4].

Appendix B: Quantum dynamics under NISQRC – Role of repeated evolution, measurement, and reset

1. Quantum dynamics under measurement without subsequent qubit reset

For simplicity, we first consider a QRC with M = 1 memory qubit and R = 1 readout qubit (namely L = M + R = 2).
Furthermore, we consider σ̂z measurement of the readout qubit at each time step n of the framework. The measurement Kraus
operators introduced in the main text then take the specific form

P̂i = Î ⊗ |i⟩⟨i| . (B1)

The corresponding observable M can be written as M̂ =
∑1

i=0 iP̂i = Î ⊗ |1⟩⟨1|, which measures the probability of the single
readout qubit being in excited state.

The NISQRC framework then involves a continuous pipeline of evolution under a quite arbitrary superoperator U(n) (not
restricted to the linearly parameterized Hamiltonian form we consider in the main text), followed by measurement, repeated
until all inputs {un} have been processed by the QRC. The inclusion of measurement with stochastic outcomes interleaved with
evolution steps, as opposed to at the final step, makes our knowledge of the QRC state conditional on the entire measurement
history. For example, starting from the initial state ρ̂MR

0 and evolving under U1 at time step n = 1, the subsequent measurement
yields a measurement outcome Xn = in, where in ∈ {0, 1} for a single readout qubit. The post-measurement state ρ̂MR,cond

1 is
then conditioned on the measurement result at time step n = 1, as indicated by the superscript cond. For an arbitrary time step
n, this conditioning thus extends to the entire measurement history {X1, X2, . . . , Xn−1}. The entire pipeline can be viewed
schematically as below:

ρ̂MR
0

U1,P̂i1−−−−→ ρ̂MR,cond
1

U2,P̂i2−−−−→ ρ̂MR,cond
2 · · · Un,P̂in−−−−→ ρ̂MR,cond

n · · ·
⇓ ⇓ ⇓
X1 X2 Xn (B2)

It is not hard to show that this process is equivalent to the quantum nondemolition scheme proposed in Ref. [32].

In practice, we are often interested not in the result of a single ‘shot’, but of the ensemble average computed over many shots;
in the limit of infinite-sampling, this defines the readout features x(n) computed via ensemble averages over an infinite number
of repeated shots of their stochastic conditional counterparts Xn:

x(n) = E[Xn]. (B3)

Computing this expectation using individual measurement shots would be the standard approach in any experimental NISQRC
realization, but is prohibitively expensive for this analysis. This is not least because of the dependence of Xn at any time step
n on the entire measurement history {X1, X2, . . . , Xn−1}, a complexity that scales very unfavourably with QRC size and the
total number of time steps N . Instead, we show that the expectation can be efficiently evaluated - crucially, accounting for
the conditional dynamics due to interleaved measurements - to yield a simplified expression for the infinitely-sampled readout
features in terms of an effective, ensemble-averaged density matrix ρ̂MR

n , namely x(n) = Tr(M̂ρ̂MR
n ).

To proceed, we note that, by mathematical induction, the conditional state with associated measurement record {X1 =
i1, · · · , Xn−1 = in−1} is

ρ̂MR,cond
n =

Un

(
P̂in−1 · · · U2

(
P̂i1

(
U1ρ̂

MR
0

)
P̂ †
i1

)
· · · P̂ †

in−1

)
Tr
(
P̂in−1

· · · U2

(
P̂i1

(
U1ρ̂MR

0

)
P̂ †
i1

)
· · · P̂ †

in−1

) , (B4)

while the probability of obtaining this measurement record is simply

Pr[X1 = i1, · · · , Xn−1 = in−1] = Tr
(
P̂in−1

· · · U2

(
P̂i1

(
U1ρ̂

MR
0

)
P̂ †
i1

)
· · · P̂ †

in−1

)
. (B5)
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In order to further simplify this expression, we observe the following identity for any Â ∈ C4×4, which can be verified by direct
computation ∑

i=0,1

P̂iÂP̂ †
i = (1̂⊗ Î) ◦ Â (B6)

where the matrices Î =

(
1 0
0 1

)
and 1̂ =

(
1 1
1 1

)
, and the notation ◦ represents the Hadamard product (element-wise

product): (Â ◦ B̂)ij = AijBij . Eq. (B6) enables us to introduce the measurement-induced decoherence superoperator M:

Mρ̂MR = (1̂⊗ Î) ◦ ρ̂MR. (B7)

Therefore, according to Eq. (B5), the unconditional expectation E[Xn] =
∑

i1,··· ,ininPr[X1 = i1, · · · , Xn = in] of the random
variable Xn can be computed by contraction:

x(n) = E[Xn] =
∑

i1,··· ,in

inTr
(
P̂inUn

(
· · · U2

(
P̂i1

(
U1ρ̂

MR
0

)
P̂ †
i1

)
· · ·
)
P̂ †
in

)
= Tr

(
M̂
(
UnMUn−1 · · · U2MU1ρ̂

MR
0

))
. (B8)

where we used Eq. (B7) and M̂ =
∑

in
inP̂in . This expression naturally leads to the identification of the term in square brackets

as the effective density matrix at time step n, ρ̂MR
n = UnM· · · U2MU1ρ̂

MR
0 , such that computing the trace with respect to this

density matrix provides any readout feature at time step n in the infinite sampling limit, x(n) = Tr(M̂ρ̂MR
n ). The generalization

to a QRC with L = M + R ≥ 3 and input sequence {un} is now straightforward: Un is replaced with U(un), while the
measurement-induced decoherence superoperator M generalizes to:

Mρ̂MR =
(
1̂⊗M ⊗ Î⊗R

)
◦ ρ̂MR. (B9)

With these changes, the effective density matrix at time step n for the NISQRC framework without reset is given by

ρ̂MR
n = U(un)MU(un−1) · · · U(u2)MU(u1)ρ̂

MR
0 . (B10)

Note that ρ̂MR
n accounts for both any time-dependent unitary dynamics via Un, as well as the role of repeated measurements via

recurrent applications of M.

a. Thermalization induced by repeated measurements without reset

We need to point out that even if the circuits have similar structures to those used in measurement-induced phase transition
[47]: at step n associated with unitary evolution Un, qubits indexed by a random subset In ⊆ [L] will be measured. In this
scenario, the effective state evolution is similar ρ̂MR

n = UnMIn−1
· · · U2MI1

U1ρ̂
MR
0 , the only difference is that measurement-

induced decoherence superoperator Mn now is no longer a time-independent map

MIn
ρ̂MR =

(
L⊗

i=1

Êi

)
◦ ρ̂MR, Êi =

{
Î , if i ∈ In,
1̂, if i /∈ In.

(B11)

For any overall state ρ̂MR, the Frobenius distance
∥∥∥ρ̂MR − I⊗L

2L

∥∥∥2
F

will never increase after either unitary evolution U or mea-
surement MI : ∥∥∥∥∥U ρ̂MR − Î⊗L

2L

∥∥∥∥∥
2

F

=

∥∥∥∥∥U
(
ρ̂MR − Î⊗L

2L

)∥∥∥∥∥
2

F

=

∥∥∥∥∥ρ̂MR − Î⊗L

2L

∥∥∥∥∥
2

F

, (B12)

∥∥∥∥∥MI ρ̂
MR − Î⊗L

2L

∥∥∥∥∥
2

F

=

∥∥∥∥∥MI

(
ρ̂MR − Î⊗L

2L

)∥∥∥∥∥
2

F

≤
∥∥∥∥∥ρ̂MR − Î⊗L

2L

∥∥∥∥∥
2

F

, (B13)

where the proof employs that fully mixed state Î⊗L

2L
is the simultaneous fixed point of U and MI (equivalently, both maps are

unital CPTP map). The non-increasing purity implies that

lim
n→∞

ρ̂MR
n =

Î⊗L

2L
. (B14)
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The final QRC state therefore has no memory of the initial state ρ̂MR
0 . As a result, in previous works [32, 35] this type of

evolution has been employed to equip QRCs with the fading memory property. However, note that the final state is also entirely
independent of the input u(n), which renders it incapable of performing any useful computations on this input. Hence input-
dependent unitary evolution combined with readout only does not yield a useful QRC. We show next how a simple modification
of the measurement protocol can allow fading memory without yielding a trivial I/O map.
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FIG. 6. NISQRC readout features for a (2 + 1)-qubit QRC, under both finite sampling (dashed lines) and infinite sampling (solid line and
dots). The hyperparameters are Jmax = hx = εxrms = hz = εzrms = 1 in units of 1/τ . (Left) Without reset. (Right) With reset. In both
cases, with increasing shots, the finitely-sampled readout features become closer to the black dashed features under infinite shots, as expected.
However, without reset the readout features approach trivial values dictated by the effective density matrix of Eq. (B14) as n increases.

2. Quantum dynamics under measurement and reset

For notational simplicity, we once again analyze a system with M = 1 memory qubit and R = 1 readout qubit (namely
L = M + R = 2). We apply Pauli z measurement on the readout qubit at each QRC step, the corresponding observable is
M̂ = Î ⊗ |1⟩⟨1|. Since now we apply the conditional reset. The measurement process is described by a POVM measurement
(i = 0, 1):

K̂i = Î ⊗ |0⟩⟨i| , (B15)

and thus when overall state ρ̂MR is measured, the post-measurement state should be K̂iρ̂
MRK̂†

i if the random readout index is i.
These two POVMs satisfy the completeness relation:∑

i=0,1

K̂†
i K̂i =

∑
i=0,1

Î ⊗ |i⟩ ⟨i| = Î ⊗ Î . (B16)

The NISQRC pipeline including reset can now be viewed schematically as:

ρ̂MR
0

U1,K̂i1−−−−→ ρ̂MR,cond
1

U2,K̂i2−−−−→ ρ̂MR,cond
2 · · · Un,K̂in−−−−−→ ρ̂MR,cond

n · · ·
⇓ ⇓ ⇓
X1 X2 Xn (B17)

Proceeding as before, the conditional state with associated measurement record {X1 = i1, · · · , Xn−1 = in−1} is

ρ̂MR,cond
n =

Un

(
K̂in−1 · · · U2

(
K̂i1

(
U1ρ̂

MR
0

)
K̂†

i1

)
· · · K̂†

in−1

)
Tr
(
K̂in−1

· · · U2

(
K̂i1

(
U1ρ̂MR

0

)
K̂†

i1

)
· · · K̂†

in−1

) , (B18)

and the probability of obtaining this measurement record {X1 = i1, · · · , Xn = in} is

Pr[X1 = i1, · · · , Xn = in] = Tr
(
K̂inUn

(
K̂in−1

Un−1

(
· · · K̂i1

(
U1ρ̂

MR
0

)
K̂†

i1
· · ·
)
K̂in−1

)
K̂†

in

)
. (B19)
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which are analogous to the previous results with the replacement P̂in → K̂in . Similar to Eq. (B6), we can verify that for any
Â ∈ C4×4, ∑

i=0,1

K̂iÂK̂†
i = TrR(Â)⊗ |0⟩⟨0| . (B20)

For a quantum reservoir, we let Un = U(un). A similar contraction as Eq. (B8)∑
i

K̂iU(ρ̂M ⊗ |0⟩⟨0|)K̂†
i = TrR(U(ρ̂M ⊗ |0⟩⟨0|))⊗ |0⟩⟨0| (B21)

gives the effective state evolution x(n) = Tr(M̂ρ̂MR
n ) where ρ̂MR

n = Un

((
Cn−1 · · · C1ρ̂M0

)
⊗ |0⟩⟨0|

)
and Cnρ =

TrR
(
Un

(
ρ̂M0 ⊗ |0⟩⟨0|

))
.

Also, for more general M > 1 and R > 1 we used in the main text, we can still introduce the effective density matrices ρ̂MR
n

in NISQRC having the same expression

ρ̂MR
n = U(un)

((
C(un−1) · · · C(u1)ρ̂

M
0

)
⊗ |0⟩⟨0|⊗R

)
. (B22)

where C(u)ρ̂M = TrR

(
U(u)

(
ρ̂M0 ⊗ |0⟩⟨0|⊗R

))
. Hence, we finish deriving the expression of ρ̂MR

n .

Appendix C: Deriving the NISQRC quantum I/O map

In this appendix section, we will derive the I/O map of the NISQRC framework, ultimately arriving at the results presented in
Eq. (1) of the main text.

1. Technique of u-expansion and Rk and Pk superoperators

In Appendix B, we have obtained concise formulae Eq. (B22) for evaluating the infinitely-sampled readout features xj(n)
under a general superoperator U(n) and a simple quantum measurement and reset scheme. However, the explicit dependence of
these readout features on the input u(n) - which defines the I/O map implemented by the NISQRC scheme - is not yet apparent.

Uncovering this dependence requires addressing two complex, and in our framework, related issues. First, the I/O map is
generally nonlinear in the input space. For example, in the Hamiltonian model we consider in main text, even if both the
Hamiltonian encoding Ĥ(u) = Ĥ0 + u · Ĥ1 in Eq. (A1) and readouts ⟨M̂w⟩ρ̂MR

n
are linear, the evolution defined by Û(u) =

e−iτĤ(u) will clearly lead to a nonlinear dependence on the inputs at every time step. Secondly, the map also extends over
past inputs: the NISQRC framework has memory. The dependence on past input history must be extricated by unraveling the
recurrent structure of, for example, Eq. (B22), necessitated by the multi-step nature of NISQRC for temporal data processing.
We will show that both these complications are addressable within a unified framework using a Volterra series description.

The key theoretical tool we employ to achieve this is referred to as the u-expansion: an expansion of the superoperators
governing dynamics in the NISQRC framework, including measurement and reset, in powers of the input u. More precisely, we
wish to expand the superoperators U(u) and C(u) in terms of the monomial uk:

U(u)ρ̂MR =

∞∑
k=0

ukRkρ̂
MR, (C1)

C(u)ρ̂M =

∞∑
k=0

ukPkρ̂
M. (C2)

for some superoperators {Rk}, {Pk} respectively.

Regardless of the exact expression of u-expansion of the other dynamical superoperator, C(u)ρ̂M, the relationship between
U(u) and C(u) means that the u-expansion of the latter may be directly derived from the u-expansion of the former. In particular,

C(u)ρ̂M = TrR

(
U(u)

(
ρ̂M ⊗ |0⟩⟨0|⊗R

))
=

∞∑
k=0

ukTrR

(
Rk

(
ρ̂M ⊗ |0⟩⟨0|⊗R

))
. (C3)
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where we have used Eq. (C1). The final expression is exactly the desired form of Eq. (C2), provided we make the identification

Pkρ̂
M = TrR

(
Rk

(
ρ̂M ⊗ |0⟩⟨0|⊗R

))
. (C4)

If k = 0, then in the main text we have already pointed out that the null-input superoperator P0 = C(0) is a CPTP map.
Furthermore, notice the expansion identity:

C(u)ρ̂M = P0ρ̂
M +

∞∑
k=1

ukPkρ̂
M, (C5)

the trace-preserving nature, namely Tr(C(u)ρ̂M) = Tr(P0ρ̂
M) ≡ 1, implies the tracelessness of Pk for all k ≥ 1, i.e.

Tr(Pkρ̂
M) = 0. (C6)

If we take Pkρ̂
M =

∑4M

α=1 c
(k)
α ϱ̂Mα , where ϱ̂Mα are the eigenmatrices of superoperators P0ϱ̂

M
α = λαϱ̂

M
α . The decomposition

coefficient c(k)1 is the most different one since its associated matrix ϱ̂M1 = ρ̂MFP will remain unchanged when applied by P0 while
other modes decay to zero: limn→∞ Pn

0 Pkρ̂
M
0 = c

(k)
1 ρ̂MFP. As a result,

c
(k)
1 = c

(k)
1 Tr(ρ̂MFP) = lim

n→∞
Tr(Pn

0 Pkρ̂
M
0 ) = lim

n→∞
Tr(Pkρ̂

M
0 ) = 0. (C7)

Therefore, we conclude a very useful property that

Pkρ̂
M =

4M∑
α=2

c(k)α ϱ̂Mα (C8)

for any memory density matrix ρ̂M and any k ≥ 1.

2. Rk and Pk for linear Hamiltonian encoding scheme by regrouping the BCH formula

We now evaluate the u-expansion of U(u)ρ̂MR = e−iτĤ(u)ρ̂MReiτĤ(u). Central to this expansion is the Baker-Campbell-
Hausdorff (BCH) formula, which allows us to write this expression in the series form

e−iτĤ(u)ρ̂MReiτĤ(u) =

∞∑
q=0

(−iτ)q

q!
[Ĥ(u), [· · · [Ĥ(u), ρ̂MR] · · · ]] (C9)

Using the explicit form Ĥ(u) = Ĥ0 + uĤ1, we can compute the superoperator coefficient of any term in the series:

(−iτ)1

1!
: [Ĥ(u), ρ̂MR] =[Ĥ0, ρ̂

MR] + u1[Ĥ1, ρ̂
MR],

(−iτ)2

2!
: [Ĥ(u), [Ĥ(u), ρ̂MR]] =[Ĥ0, [Ĥ0, ρ̂

MR]] + u1
(
[Ĥ0, [Ĥ1, ρ̂

MR]] + [Ĥ1, [Ĥ0, ρ̂
MR]]

)
+ u2[Ĥ1, [Ĥ1, ρ̂

MR]],

(−iτ)3

3!
: [Ĥ(u), [Ĥ(u), [Ĥ(u), ρ̂MR]]] =[Ĥ0, [Ĥ0, [Ĥ0, ρ̂

MR]]]+

+ u1
(
[Ĥ0, [Ĥ0, [Ĥ1, ρ̂

MR]]] + [Ĥ0, [Ĥ1, [Ĥ0, ρ̂
MR]]] + [Ĥ1, [Ĥ0, [Ĥ0, ρ̂

MR]]]
)

+ u2
(
[Ĥ1, [Ĥ1, [Ĥ0, ρ̂

MR]]] + [Ĥ1, [Ĥ0, [Ĥ1, ρ̂
MR]]] + [Ĥ0, [Ĥ1, [Ĥ1, ρ̂

MR]]]
)

+ u3
(
[Ĥ1, [Ĥ1, [Ĥ1, ρ̂

MR]]]
)
,

...

Note that each term in the series can be viewed as a series in uk instead. Furthermore, each appearance of uĤ1 in Ĥ(u)
contributes exactly one factor of u. This allows us to determine the coefficient of uk in the qth term:

uk × (−iτ)q

q!

∑
{Ĉ1,Ĉ2,··· ,Ĉq}

[Ĉ1, [Ĉ2, [· · · , [Ĉq, ρ̂
MR] · · · ]]] (C10)
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Here, the summation is over all
(

q
k

)
possible combinations {Ĉ1, Ĉ2, · · · , Ĉq} which is an ordered set with k instances of Ĥ0

and (q − k) instances of Ĥ1. This expression allows us to regroup the BCH formula not by the parameter q as in Eq. (C9), but
by powers uk of the input. We therefore arrive at the desired form of Eq. (C1),

U(u)ρ̂MR =

∞∑
k=0

ukRkρ̂
MR, (C11)

with

Rkρ̂
MR =

∞∑
q=k

(−iτ)q

q!

∑
{Ĉ1,Ĉ2,··· ,Ĉq}

[Ĉ1, [Ĉ2, [· · · , [Ĉq, ρ̂
MR] · · · ]]]. (C12)

3. Functional I/O map: time-invariance and Volterra kernels

Our work in the previous subsection allows us to express the action of individual superoperators U(u) and C(u) on a general
ρ̂MR as a u-expansion at every time step. The dynamical map defined by our time-dependent NISQRC framework involves the
repeated application of these superoperators for distinct inputs un, so that the output at time step n may have a complicated
dependence on prior inputs u≤n. We are now in a position to extract this dependence explicitly. To do so, we simply substitute
our u-expansions for the superoperators U(u) and C(u) into the evolution equation Eq. (B22) defining ρ̂MR

n at an arbitrary time
step n, i.e. ρ̂MR

n = U(un)
((

C(un−1) · · · C(u1)ρ̂
M
0

)
⊗ |0⟩⟨0|⊗R

)
. Then, the density matrices at time step n attain the formal

expression:

ρ̂MR
n =

∞∑
k1,··· ,kn=0

uk1
1 · · ·ukn−1

n−1 ukn
n ×Rkn

((
Pkn−1

· · · Pk1
ρ̂M0
)
⊗ |0⟩⟨0|⊗R

)
(C13)

Before evaluating the readout features xj(n), we need to simplify Eq. (C13) as much as possible. The starting point is first
looking at the simplest contribution from term un−1 to ρ̂MR

n (namely the one-step backwards linear contribution). This means
that we can let k1 = · · · = kn−2 = kn = 0 and kn−1 = 1. The associated prefactor is

R0

((
P1Pn−2

0 ρ̂M0
)
⊗ |0⟩⟨0|⊗R

)
, (C14)

Similarly, analyzing contribution from term un to ρ̂MR
n+1 (that is, let k1 = · · · = kn−1 = kn+1 = 0 and kn = 1) gives associated

prefactor

R0

((
P1Pn−1

0 ρ̂M0
)
⊗ |0⟩⟨0|⊗R

)
. (C15)

In principle, Pn−2
0 ρ̂M0 ̸= Pn−1

0 ρ̂M0 and therefore term Eq. (C14) and Eq. (C15) are analytically different. However, with the
existence of fixed point state

lim
n→∞

Pn
0 ρ̂

M
0 = ρ̂MFP, (C16)

it ensures the approximation

Pn−2
0 ρ̂M0 ≈ ρ̂MFP ≈ Pn−1

0 ρ̂M0 , (C17)

and hence Eq. (C14) and Eq. (C15) are asymptotically the same. Such property is usually referred as (asymptotic) time-
invariance. In fact, we can further weaken this requirement that all peripheral spectrum λα (namley those eigenvalue with
magnitude |λα| = 1) are λα = 1. For example, for a fully connected quantum reservoir with M +R qubits, if Ji,i′ are constant
for every coupling pair and hx

i , h
z
i are also constant for every qubit, then fixed points of ρ̂M0 will have a degeneracy (2M)!

M !(M+1)! .
In this case, the fixed point limn→∞ Pn

0 ρ̂
M
0 = ρ̂MFP still exists but will depend on initial state ρ̂M0 .

The above calculation works for any contribution terms in ρ̂MR
n . This establishes all analytical expressions of Volterra series

kernels. The leading order kernels can be written down compactly:
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• The zero-th order Volterra kernel:

h
(j)
0 = Tr

(
M̂jR0

(
ρ̂MFP ⊗ |0⟩⟨0|⊗R

))
, (C18)

• The first order Volterra kernel (n1 ≥ 0):

h
(j)
1 (n1) =

 Tr
(
M̂jR1

(
ρ̂MFP ⊗ |0⟩⟨0|⊗R

))
, if n1 = 0,

Tr
(
M̂jR0

((
Pn1−1
0 P1ρ̂

M
FP

)
⊗ |0⟩⟨0|⊗R

))
, if n1 ̸= 0,

(C19)

• And the second order Volterra kernel (n2 ≥ n1 ≥ 0):

h
(j)
2 (n1, n2) =



Tr
(
M̂jR2

(
ρ̂MFP ⊗ |0⟩⟨0|⊗R

))
, if n1 = 0, n2 = 0,

Tr
(
M̂jR1

((
Pn2−1
0 P1ρ̂

M
FP

)
⊗ |0⟩⟨0|⊗R

))
, if n1 = 0, n2 > 0,

Tr
(
M̂jR0

((
Pn2−1
0 P2ρ̂

M
FP

)
⊗ |0⟩⟨0|⊗R

))
, if n1 = n2 > 0,

Tr
(
M̂jR0

((
Pn1−1
0 P1Pn2−n1−1

0 P1ρ̂
M
FP

)
⊗ |0⟩⟨0|⊗R

))
, if 0 < n1 < n2.

(C20)

These kernel expressions show that if the reservoir output nontrivially depends on the history, then Pkρ̂
M
FP ̸= 0 for some k ≥ 1.

Equivalently, if Pkρ̂
M
FP = 0 for all k ≥ 1, then h

(j)
k (n1, n2, · · · , nk) ̸= 0 only if n1 = n2 = · · · = nk = 0.

We emphasize that even though h
(j)
k (n1, n2, · · · , nk) (e.g., Eq. (C18-C20) are kernels of real values xj(n), these kernels all

take the form of Tr(M̂j · ), where “ · ” are always quantum operators which expand ρ̂MR
n . Those quantum operators are the central

objects in the u-expansion, justifying the nomenclature ofQuantum Volterra Theory used for the entire framework in the main
text.

Note: As we proved in Eq. (B14), limn→∞ ρ̂MR
n = Î⊗L

2L
. This can also be understood through the Volterra expansion. Recall

Eq. (B10), i.e. ρ̂MR
n = U(un)M· · · U(u2)MU(u1)ρ

MR
0 . By plugging Eq. (C1) and Eq. (C2), we get

ρ̂MR
n =

∞∑
k1,k2,··· ,kn=0

uk1
1 uk2

2 · · ·ukn
n RknMRkn−1 · · ·MRk2MRk1 ρ̂

MR
0 (C21)

All Pkρ̂
M in previous Volterra analysis must be replaced with MRkρ̂

MR. However, MR0ρ̂
MR
FP = ρ̂MR

FP implies ρ̂MR
FP = Î⊗L

2L
, and

thus all Volterra kernels must vanish, since the identity makes all commutator terms in Eq. (C12) vanish exactly. This reproduces
the null response of a NISQRC architecture in the absence of the reset operation.

4. u-expansion and Volterra kernels for dissipative quantum systems

Thus far, we have demonstrated how the u-expansion can be performed for a CPTP map without explicit dissipative evolution.
In this subsection, we extend this analysis to account for dissipative quantum systems, as is relevant for practical NISQRC
implementations.

In particular, we wish to now consider the evolution governed by the general CPTP map eτL(u)ρ̂MR, where L is the Liouvillian
superoperator, for example of the type introduced in Eq. (2). We first note that the BCH formula of Eq. (C9) can be rewritten
compactly in the dissipation free case by first introducing the adjoint action [X̂, Ŷ ] = adX̂ Ŷ for arbitrary matrices X̂, Ŷ . With
this notation, the BCH formula becomes:

e−iτĤ(u)ρ̂eiτĤ(u) = e−iτ [Ĥ(u), · ]ρ̂ =

∞∑
q=0

(−iτ)q

q!
adk

Ĥ(u)
ρ̂. (C22)

In presence of dissipation, the adjoint action allows us to write the operation of the Liouvillian L(u), eτL(u)ρ̂MR, in the form:

eτL(u)ρ̂MR =e
−iτ

((
adĤ0

+iDT

)
+u adĤ1

)
ρ̂MR

=ρ̂MR +
(−iτ)1

1!

((
adĤ0

+ iDT

)
+ u adĤ1

)
ρ̂MR +

(−iτ)2

2!

((
adĤ0

+ iDT

)
+ u adĤ1

)2
ρ̂MR + · · · . (C23)
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FIG. 7. The first and second order Volterra Kernel example in a (2 + 1)-qubit quantum reservoir with fundamental decay γ. The parameters
are chosen to be constant Ji,i′ = hx

i = hz
i = 1.3 (in unit 1/τ ) for simplicity. (The same as Fig. 2). (a) The first order kernel h(1)

1 (n1), with
decay rate γ = 0 (no decay, in red), 0.01Jmax (in blue), 0.1Jmax (in green). (b) The second order kernel h(1)

2 (n1, n1), with decay rate γ = 0
(no decay, left), 0.01Jmax (middle), 0.1Jmax (right). The first and second order kernel without decay is exactly the kernel in Fig. 2(a).

where we have also used the explicit form of Ĥ(u) = Ĥ0 + uĤ1, and where DT describes T1 decay of all qubits in the QRC
with a rate γ, see Eq. (2).

Based on this formalism, we are now able to read off the u-expansion for the CPTP map eτL(u)ρ̂MR by regrouping modified
BCH formula:

eτL(u)ρ̂MR =

∞∑
k=0

ukQkρ̂
MR, (C24)

where the superoperators are defined as

Q0ρ̂
MR = ρ̂MR − iτ

(
adĤ0

+ iDT

)
ρ̂MR − τ2

2!

(
adĤ0

+ iDT

)2
ρ̂MR + · · ·

= ρ̂MR − iτ
(
[Ĥ0, ρ̂

MR] + iDTρ̂
MR
)
− τ2

2!

(
[Ĥ0, [Ĥ0, ρ̂

MR]] + i[Ĥ0,DTρ̂
MR] + iDT[Ĥ0, ρ̂

MR]−D2
Tρ̂

MR
)
+ · · ·

≡ eτL(0)ρ̂MR,

Q1ρ̂
MR = −iτadĤ1

ρ̂MR − τ2

2!

((
adĤ0

+ iDT

)
adĤ1

+ adĤ1

(
adĤ0

+ iDT

))
ρ̂MR + · · · ,

= −iτ [Ĥ1, ρ̂
MR]− τ2

2!

(
[Ĥ0, [Ĥ1, ρ̂

MR]] + [Ĥ1, [Ĥ0, ρ̂
MR]] + iDT[Ĥ1, ρ̂

MR] + i[Ĥ1,DTρ̂
MR]
)
+ · · · ,

Q2ρ̂
MR = −τ2

2!
ad2

Ĥ1
ρ̂MR + · · · = −τ2

2!
[Ĥ1, [Ĥ1, ρ̂

MR]] + · · · .
...

The knowledge of superoperators {Qk} therefore allows us to compute the Volterra kernels for NISQRC in the presence of
dissipation. Some numerical simulations of the first- and second-order kernels are shown in Fig. 7, with increasing decay rate γ
(for other QRC parameters, see caption). We see that dissipation can reduce the amplitude of the QRC response to the input -
governed by the amplitude of the kernels - in particular to past inputs indicated by increasing values of n1, n2. Hence dissipation
can reduce the memory of the NISQRC framework. However, even for modest amounts of dissipation smaller than the strength
of Hamiltonian terms, the kernels are certainly far from trivial, retaining their qualitative features with a non-zero memory term.
This indicates the applicability of the NISQRC framework to contemporary dissipative quantum systems used as QRCs.

Appendix D: Fading memory modes

For any k ≥ 1, we define for each α′ ∈ N

Pkϱ̂
M
α′ =

4M∑
α=2

c
(k)
αα′ ϱ̂

M
α . (D1)
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FIG. 8. 4M − 1 = 15 internal features Fα(u) in a (2 + 1)-qubit QRC. The hyperparameters are (Jmax;h
x, εxrms;h

z, εzrms) = (1; 3, 1; 4, 2)
in unit 1/τ . Fα(u) is potentially a complex-valued function. The eigenvalues of P0 appears in pair: λα being an eigenvalue implies λ∗

α also
being an eigenvalue. Therefore, both function Fα(u) and its conjugate Fα(u)

∗ are internal features. So the of 4M−1 internal feature functions
contains exactly 4M − 1 independent real-function. They are plotted separately in sense of of real part (red solid lines) and imaginary part
(purple solid lines). The darker the line is, the larger the corresponding eigenvalue norm |λα| is and the slower this internal feature fades.

Notice that c(k)1α′ ≡ 0 for any k ≥ 1 due to the tracelessness of Pk (recall ϱ̂M1 = ρ̂MFP by definition), thus the summation begins
with α = 2. Contributions from (un−n1

, un−n2
, · · · , un−nP

), where 0 < n1 < n2 < · · · < nP , is given by

∞∑
k1,··· ,kP=1

h
(j)
k1+···+kP

(n⊗k1
1 , · · · , n⊗kP

P )× uk1
n−n1

· · ·ukP
n−nP

=

∞∑
k1,··· ,kP=1

Tr
(
M̂jR0

(
Pn1−1
0 Pk1 · · · P

nP−nP−1−1
0 PkP

ρ̂MFP ⊗ |0⟩⟨0|⊗R
))

× uk1
n−n1

· · ·ukP
n−nP

=

∞∑
k1,··· ,kP=1

Tr

M̂jR0

Pn1−1
0 Pk1

· · · PnP−nP−1−1
0

 4M∑
αP=2

c
(kP )
αP 1 ϱ̂

M
αP

⊗ |0⟩⟨0|⊗R

× uk1
n−n1

· · ·ukP
n−nP

...

=

∞∑
k1,··· ,kP=1

4M∑
α1,··· ,αP=2

Tr
(
M̂jR0

(
λn1−1
α1

c(k1)
α1α2

· · ·λnP−nP−1−1
αP

c
(kP )
αP 1 ϱ̂

M
α1

⊗ |0⟩⟨0|⊗R
))

× uk1
n−n1

· · ·ukP
n−nP

=
4M∑

α1,··· ,αP=2

λn1−1
α1

· · ·λnP−1
αP

∞∑
k1,··· ,kP=1

c(k1)
α1α2

· · · c(kP )
αP 1Tr

(
M̂jR0

(
ϱ̂Mα1

⊗ |0⟩⟨0|⊗v
))

× uk1
n−n1

· · ·ukP
n−nP

. (D2)

Namely, we can decompose the contributions from (un−n1
, un−n2

, · · · , un−nP
) to xj(n) into (4M − 1)P memory modes of

internal features:

xj(n) =

4M∑
α1,α2,··· ,αP=2

ν(j)α1
λn1−1
α1

λn2−n1−1
α2

· · ·λnP−nP−1−1
αP

× Fα1,α2,··· ,αP
(un−n1 , un−n2 , · · · , un−nP

) + · · · (D3)

where the cross-step internal features

Fα1,α2,··· ,αP
(un−n1

, un−n2
, · · · , un−nP

) =

∞∑
k1,k2··· ,kP=1

c(k1)
α1α2

c(k2)
α2α3

· · · c(kP )
αP 1 u

k1
n−n1

uk2
n−n2

· · ·ukP
n−nP

. (D4)

Thanks to the fading memory property, namely that λn
α converges to zero if α ≥ 2, the more history steps one monomial

term in Volrerra series Eq. (1) involves, the less it contributes to the current-time readout features xj(n). Therefore, it will be
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illustrative for this section to mostly be concerned with a single past time step’s contribution. To be more specific, if we focus
on the contribution from un−p to xj(n) (where p ≥ 1). For this history record contribution,

∞∑
k=1

h
(j)
k (p⊗k)uk

n−p =

4M∑
α=2

ν(j)α λp−1
α Fα(un−p). (D5)

Each coefficient ν(j)α = Tr
(
M̂jR0

(
ϱ̂Mα ⊗ |0⟩⟨0|⊗R

))
characterizes a different observable M̂j’s response to different internal

features Fα(u) where

Fα(u) =

∞∑
k=1

c
(k)
α1 u

k. (D6)

Especially, if α = 1, then c
(k)
α1 = 0 for any k ≥ 1, according to Eq. (C7). That is why the summation over α starts from α = 2,

and it only gives us 4M − 1 internal features (see Fig. 8 as an example).

Appendix E: Relation between functional-independence and Jacobian rank

In this appendix we analyze the functional-independence of readout features in the NISQRC framework. Assuming a finite-
dimensional input space u = (u1, u2, · · · , uN ), then NISQRC readout features define K finite-dimensional functions (assum-
ing K ≤ N ), xk(u1, u2, · · · , uN ), k ∈ {0, · · · ,K − 1}. An important question is whether these K functions are in fact
functionally-independent from one another, since their inter-dependence can impose a limitation on their usefulness for func-
tional approximation using the NISQRC framework.

If the K functions are functionally-dependent, namely there exists some K-variate function G such that:

G(x0(u), x1(u), · · · , xK−1(u)) ≡ 0. (E1)

Take gradients 
∂G
∂u1

(u)
∂G
∂u2

(u)
...

∂G
∂uN

(u)

 =


∂x0

∂u1
(u) ∂x1

∂u1
(u) · · · ∂xK−1

∂u1
(u)

∂x0

∂u2
(u) ∂x1

∂u2
(u) · · · ∂xK−1

∂u2
(u)

...
...

. . .
...

∂x0

∂uN
(u) ∂x1

∂uN
(u) · · · ∂xK−1

∂uN
(u)




∂G
∂x0

(x0, x1, · · · , xK−1)
∂G
∂x1

(x0, x1, · · · , xK−1)
...

∂G
∂xK−1

(x0, x1, · · · , xK−1)

 = 0, (E2)

then gradients ∇ux0(u), ∇ux1(u), · · · ,∇uxK−1(u) must be linearly dependent at all points. Therefore, if {xj(u)}j∈[K] are
functionally-dependent, then the gradients {∇uxj(u)}j∈[K] must be linearly-dependent. Equivalently, it suffices to prove the
functional-independence of {xj(u)}j∈[K] by showing that {∇uxj(u)}j∈[K] are linearly-independent at almost all points u.

Now we argue by contradiction that K − 1 gradients of readout features xj(n) = Tr
(
M̂j ρ̂

MR
n

)
are functionally-independent

if there is no particular symmetry in the reservoir. We first select {M̂j} as the moment representation to remove the triv-
ial functional dependence that their summation is constant. Suppose there exists coefficients c1, c2, · · · , cK−1 such that∑K−1

j=1 cj∇Fj(u≤n) = 0. Notice that

∂xj

∂un−p
= Tr

(
M̂j

∂ρ̂MR
n

∂un−p

)
, (E3)

then
∑K−1

j=1 cj∇Fj(u≤n) = 0 implies that

K−1∑
j=1

cjTr

(
M̂j

∂ρ̂MR
n

∂un−p

)
= Tr

K−1∑
j=1

cjM̂j

 ∂ρ̂MR
n

∂un−p

 ≡ 0, (E4)

for all non-negative integer p ∈ N. For generic input sequence {u−∞, · · · , un−1, un}, there doesn’t exists such observable∑K−1
j=1 cjM̂j such that expectations of ∂ρ̂MR

n

∂un−p
for any p ∈ N always vanish, which is a contradiction.

This results shows that in principle, the linear combination of quantum probability readout will yield a function family whose
gradient space is much more abundant, because usually the feature number K − 1 is much larger than the readout qubit number
R.
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Appendix F: Channel equalization: background and training details

In this appendix section, we provide some more details of the channel equalization task used as an example of time-dependent
processing.

FIG. 9. Schematic of the goal of the channel equalization task, and a representative implementation using a QRC under the NISQRC frame-
work.

As mentioned in Sec. I B of the main text, the channel equalization task requires accurately reconstructing a temporally-
varying message m(n) from its corrupted copy u(n) after transmission. For the instance we consider, the distortion of the
transmitted signal is modeled via the action of a linear kernel h(n), nonlinear mixing f and additive Gaussian noise ϵ0:

u(n) = f

(
7∑

n1=0

h(n1)m(n− n1)

)
+ ϵ0. (F1)

We choose a kernel h ∈ R8, whose elements we now specify as h = [1.0, 0.18,−0.1, 0.091,−0.05, 0.04, 0.03, 0.01]. The
nonlinear distortion is modeled by the polynomial f(x) = x + 0.06x2 − 0.01x3, while the additive noise is parameterized
as ϵ0 ∈ N

(
0, 10

−SNR
10

)
. Recovering m(n) from u(n) therefore requires a nonzero memory time (to undo the linear kernel),

nonlinear processing (to undo the polynomial f ), and filtering (to remove added noise). In this simulated scenario where h(n)
and f(x) are known, the distortion can be inverted up to the additive noise ϵ0, thus providing a theoretical bound on the minimum
achievable error rate.

We select a (2+4) qubit reservoir, namely with M = 2 memory qubits and R = 4 readout qubits. The NISQRC Hamiltonian
is as given in Eq. (5). We now also detail hyperparameters defining this Hamiltonian for the instance analyzed in Fig. 3. In unit
of 1/τ , the single-qubit terms are defined by hyperparameters hz = εzrms = 0.5 and hx = εxrms = 2. The interaction strengths
Ji,i′ are uniformly sampled from [0, 1], but individual couplings are turned off when analyzing the different QRC connectivities.

Finally, the R = 4 readout qubits imply that at each time step n we acquire K = 24 = 16 readout features {X̄j(n)}j∈[K]. A
final processing step is the application of a logistic regression layer to these QRC readout features,

yn = argmax
m∈{−3,−1,1,3}

{σ(w · X̄(n))}m. (F2)

for computing and minimizing the cross-entropy loss, where w ∈ R4×K and X̄(n) ∈ RK . The results of testing using this
scheme are depicted in Fig. 3.

For comparison, Fig. 3(a) also provides the error rates of theoretical direct inverse and the numerical classical logistic regres-
sion. The direct inverse is yDI,n =

∑
n1

h−1(n1)f
−1(u(n−n1)), where h−1 is the inverse of linear transformation h. The noise

term ϵ0 in Eq. (F1) leads to a non-zero error rate for direct inverse. The classical logistic regression is a memoryless function
yLR,n = argmaxm σ(wLR ·u(n)), where wLR are the trained weights which minimized the corresponding cross-entropy loss.

Appendix G: IBM Device simulations as a function of qubit coherence times

In this appendix section we provide supplementary simulation results for the IBM device analyzed in the main text. From
Fig. 4(b) in the main text, we found that actual device results matched ideal results (in the absence of any losses) very well. Since
we are primarily interested in the role of finite qubit coherence times, we now consider the role of a loss model that accounts for
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FIG. 10. Testing error rates for the CE task in the main text, Fig. 4 as a function of number of shots S using simulations of the ibm algiers,
now for varying qubit coherence times. Details on coherence time values are provided in the text. For comparison, we plot the testing error
rate of logistic regression (yellow line), as well as random guessing (black dashed line).

finite qubit T1 and T2 times. In particular, we consider normal distributions T1 ∈ N (⟨T1⟩, σT1
). and T2 ∈ N (⟨T2⟩, σT2

) for the
L = 7 qubit chain. We start with an initial distribution of coherence times consistent with the actual ibm algiers device from
which experimental results are shown in the main text; here ⟨T1⟩ ≃ 100 µs, ⟨T2⟩ ≃ 170 µs, and σT1

= σT2
= 10 µs. We then

vary the average coherence times across four orders of magnitude (the standard deviations are also scaled by the same factor),
and simulate performance of the CE task analyzed in the main text; the resulting error rates are plotted in Fig. 10.

We note that for coherence times that are an order of magnitude shorter than the typical device coherence times, the CE
task performance is essentially unaffected. In fact, even for very low coherence times of ⟨T1⟩ ≃ 1 µs, around two orders of
magnitude shorter than device lifetimes, a nontrivial I/O map is retained by the NISQRC algorithm and the considered instance
of the CE task can still be performed (albeit with a testing error rate that now is marginally worse than that of single-step logistic
regression). For even lower coherence times the I/O map will ultimately become trivial as errors uncorrelated with the input
encoding start to overwhelm the dynamics of the system, and hence any outputs extracted from it.

Appendix H: IBM Device experiments under controlled delays

Fig. 4 of the main test shows the results of performing the CE task on the IBMQ device ibm algiers. With the circuit we have
employed, the total run time Trun approaches the average qubit T1 times on this device. In principle, the NISQRC algorithm
enables Trun to exceed T1 indefinitely provided T1 > n0

M required for the specific instance of the CE task. However, due to
limitations on the classical processing backend, the experiments are unable to be run for longer messages than N = 20 as of
present, so that Trun cannot be increased naturally by increasing N .

In this section, we present the results of an experiment used to artificially lengthen the total circuit run time Trun by introducing
controlled delays to the circuit. The circuit schematic we implement is shown in Fig. 11(a), with the grey block indicating delays
added after each set of gate applications, measurement, and reset operations, except after the final measurement. We consider
delays that are typically much larger than the total time τ in each unit of evolution under NISQRC. We emphasize that during
the delay time, the qubits forming the QRC can experience decay due to their finite lifetime. In the absence of delays, the
circuit run time is Trun = 117 µs, as indicated in the main text. By introduce a delay of Tdelay = 20 µs or Tdelay = 40 µs
per unit (significantly longer than the unit evolution time τ ), the run time can be extended to Trun = 497 µs or Trun = 877 µs
respectively; the latter is almost an order of magnitude larger than the mean T1 = 155 µs.

The testing error rate achieved is shown in Fig. 11(b). Here we show the performance cumulatively averaged over P permu-
tations of the training and testing datasets, a standard cross-validation technique to remove fluctuations in performance when
having access to only small datasets, and one we use for all results in the main text. We note that even with significantly longer
run times, the device is able to beat logistic regression at the CE task. Increasing the delay from 20 µs to 40 µs per unit also does
not significantly effect the performance, further highlighting the ability of NISQRC to overcome T1 limitations on run time.

We note that the absolute performance shown in Fig. 11(b) is achieved with a larger S ≃ 216 than the largest value shown in
Fig. 4 of the main text. The results in this section are calculated using data obtained several months after the data in Fig. 4 of the
main text. The slight reduction in performance observed can be attributed to drift in the device over this time frame.
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FIG. 11. Experimental testing error rates for the CE task in the main text, Fig. 4 under the inclusion of controlled delays to increase total circuit
run time much beyond individual qubit T1 times, Trun ≫ T1. Experiments are once again run on ibm algiers, with mean qubit T1 times of
⟨T1⟩ = 155 µs. For comparison, we plot the testing error rate of logistic regression (yellow line).

Appendix I: Lists of device parameters

Here we list device parameters used for producing Fig. 4(b) in the main text. All Rz gates are implemented as error-free
virtual rotation z gates. Since all qubits used form a line, all the CNOT gate errors in the table are indexed by the qubits with
small numbering in each control-target pair, therefore CNOT error is not applicable to the qubit 22. The averaged T1, T2 time
over the three experiments are T1 ≈ 124 µs and T2 ≈ 91 µs.

Qubit 5 8 11 14 16 19 22
T1 (µs) 159± 43 142± 29 144± 32 164± 20 160± 35 127± 38 147± 42
T2 (µs) 96± 34 231± 30 32± 7 97± 4 68± 1 29± 7 163± 28√

X error (%) 0.026± 0.006 0.043± 0.027 0.081± 0.060 0.037± 0.018 0.037± 0.005 0.050± 0.016 0.020± 0.005
CNOT error
to next (%) 0.936± 0.571 1.028± 0.569 0.762± 0.228 6.850± 0.980 not reported 1.162± 0.251 N/A

Readout
error (%) 0.746± 0.150 0.855± 0.093 1.412± 0.617 1.865± 0.528 26.292±19.676 9.675± 0.789 1.129± 0.274

Readout
length (µs) 0.857\0.910 0.857\0.910 0.857\0.910 0.857\0.910 0.857\0.910 0.857\0.910 0.857\0.910

TABLE I. Device parameters for connected QRC with mid-circuit measurement and deterministic reset (purple line in Fig. 4(b)). The calibra-
tions to the CNOT gates between qubit 16 and qubit 19 are not successfully fitted, hence not reported by ibqm algiers device. The re-calibration
of readout length on July 14th, 2023, caused the pre\post values 0.857\0.910 µs, therefore the experiments for different shots S have different
readout lengths.

Qubit 5 8 11 14 16 19 22
T1 (µs) 63± 22 125± 29 115± 25 139± 32 90± 17 102± 19 120± 24
T2 (µs) 93± 12 192± 52 26± 2 66± 16 9± 1 51± 3 146± 32√

X error (%) 0.028± 0.005 0.020± 0.002 0.067± 0.025 0.028± 0.013 0.070± 0.010 0.030± 0.006 0.017± 0.001
CNOT error
to next (%) 0.591± 0.074 2.255± 1.018 2.256± 1.139 1.655± 0.254 3.386± 0.491 0.848± 0.058 N/A

Readout
error (%) 0.803± 0.108 0.771± 0.051 1.314± 0.349 3.561± 0.282 6.053± 1.643 2.546± 0.097 0.710± 0.084

Readout
length (µs) 0.910 0.910 0.910 0.910 0.910 0.910 0.910

TABLE II. Device parameters for split QRC with mid-circuit measurement and deterministic reset (brown line in Fig. 4(b)).
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Qubit 5 8 11 14 16 19 22
T1 (µs) 63± 29 137± 15 118± 20 154± 26 114± 13 85± 25 133± 13
T2 (µs) 75± 21 205± 39 26± 2 76± 8 10± 1 47± 7 159± 30√

X error (%) 0.035± 0.010 0.018± 0.001 0.072± 0.054 0.017± 0.002 0.075± 0.019 0.030± 0.002 0.017± 0.002
CNOT error
to next (%) 0.742± 0.321 0.954± 0.320 1.020± 0.264 1.564± 0.156 3.532± 0.605 0.840± 0.058 N/A

Readout
error (%) 1.014± 0.464 0.770± 0.088 1.299± 0.183 3.438± 0.418 5.556± 1.982 2.473± 0.133 0.818± 0.142

Readout
length (µs) 0.910 0.910 0.910 0.910 0.910 0.910 0.910

TABLE III. Device parameters for connected QRC with mid-circuit measurement, but without deterministic reset (green line in Fig. 4(b)).
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